Refactor NNAPI VTS to remove unreasonable dependence between versions

To make it easier to create the next version of NNAPI, this change
removes the following nonsensical dependence:
- NNAPI 1.0 VTS depends on NNAPI 1.1 and 1.2
- NNAPI 1.1 VTS depends on NNAPI 1.2

In particular, I made the following changes:
- split GeneratedTestHarness.cpp into three separate implementations,
- created a restricted version of Callbacks.h for 1.0 and 1.1,
- removed the dependency on frameworks/ml/nn/HalInterfaces.h,
- refactored Android.bp files for more autonomy between 1.0, 1.1, and 1.2,
- consolidated some common code into Utils.h,
- created structure for sharing code between VTS versions (VtsHalNeuralNetworksV1_0_utils).

Bug: 74827824
Bug: 124462414
Test: VtsHalNeuralnetworksV1_0TargetTest
Test: VtsHalNeuralnetworksV1_1TargetTest
Test: VtsHalNeuralnetworksV1_1CompatV1_0TargetTest
Test: VtsHalNeuralnetworksV1_2TargetTest
Test: VtsHalNeuralnetworksV1_2CompatV1_0TargetTest
Test: VtsHalNeuralnetworksV1_2CompatV1_1TargetTest
Change-Id: I4243d0b5e574255cef1070850f4d0a284f65f54e
Merged-In: I4243d0b5e574255cef1070850f4d0a284f65f54e
(cherry picked from commit 1d6b4659972010b9999dc77fbe65892b8b69d6da)
diff --git a/neuralnetworks/1.2/vts/functional/GeneratedTestHarness.cpp b/neuralnetworks/1.2/vts/functional/GeneratedTestHarness.cpp
new file mode 100644
index 0000000..c3578cd
--- /dev/null
+++ b/neuralnetworks/1.2/vts/functional/GeneratedTestHarness.cpp
@@ -0,0 +1,452 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "GeneratedTestHarness.h"
+
+#include <android-base/logging.h>
+#include <android/hardware/neuralnetworks/1.0/IDevice.h>
+#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
+#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
+#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
+#include <android/hardware/neuralnetworks/1.0/types.h>
+#include <android/hardware/neuralnetworks/1.1/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/IDevice.h>
+#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
+#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
+#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
+#include <android/hidl/allocator/1.0/IAllocator.h>
+#include <android/hidl/memory/1.0/IMemory.h>
+#include <hidlmemory/mapping.h>
+
+#include <iostream>
+
+#include "1.0/Utils.h"
+#include "1.2/Callbacks.h"
+#include "ExecutionBurstController.h"
+#include "MemoryUtils.h"
+#include "TestHarness.h"
+#include "Utils.h"
+
+namespace android {
+namespace hardware {
+namespace neuralnetworks {
+namespace generated_tests {
+
+using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
+using ::android::hardware::neuralnetworks::V1_0::Request;
+using ::android::hardware::neuralnetworks::V1_0::RequestArgument;
+using ::android::hardware::neuralnetworks::V1_1::ExecutionPreference;
+using ::android::hardware::neuralnetworks::V1_2::IDevice;
+using ::android::hardware::neuralnetworks::V1_2::IPreparedModel;
+using ::android::hardware::neuralnetworks::V1_2::Model;
+using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
+using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
+using ::android::hidl::memory::V1_0::IMemory;
+using ::test_helper::compare;
+using ::test_helper::expectMultinomialDistributionWithinTolerance;
+using ::test_helper::filter;
+using ::test_helper::for_all;
+using ::test_helper::for_each;
+using ::test_helper::MixedTyped;
+using ::test_helper::MixedTypedExample;
+using ::test_helper::resize_accordingly;
+using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
+
+static bool isZeroSized(const MixedTyped& example, uint32_t index) {
+    for (auto i : example.operandDimensions.at(index)) {
+        if (i == 0) return true;
+    }
+    return false;
+}
+
+static Return<ErrorStatus> ExecutePreparedModel(sp<IPreparedModel>& preparedModel,
+                                                const Request& request, MeasureTiming measure,
+                                                sp<ExecutionCallback>& callback) {
+    return preparedModel->execute_1_2(request, measure, callback);
+}
+static Return<ErrorStatus> ExecutePreparedModel(sp<IPreparedModel>& preparedModel,
+                                                const Request& request, MeasureTiming measure,
+                                                hidl_vec<OutputShape>* outputShapes,
+                                                Timing* timing) {
+    ErrorStatus result;
+    Return<void> ret = preparedModel->executeSynchronously(
+            request, measure,
+            [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
+                                            const Timing& time) {
+                result = error;
+                *outputShapes = shapes;
+                *timing = time;
+            });
+    if (!ret.isOk()) {
+        return ErrorStatus::GENERAL_FAILURE;
+    }
+    return result;
+}
+static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
+        const sp<IPreparedModel>& preparedModel) {
+    return ::android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
+}
+enum class Executor { ASYNC, SYNC, BURST };
+enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
+const float kDefaultAtol = 1e-5f;
+const float kDefaultRtol = 1e-5f;
+void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
+                           const std::vector<MixedTypedExample>& examples,
+                           bool hasRelaxedFloat32Model, float fpAtol, float fpRtol,
+                           Executor executor, MeasureTiming measure, OutputType outputType) {
+    const uint32_t INPUT = 0;
+    const uint32_t OUTPUT = 1;
+
+    int example_no = 1;
+    for (auto& example : examples) {
+        SCOPED_TRACE(example_no++);
+        const MixedTyped& inputs = example.operands.first;
+        const MixedTyped& golden = example.operands.second;
+
+        const bool hasFloat16Inputs = !inputs.float16Operands.empty();
+        if (hasRelaxedFloat32Model || hasFloat16Inputs) {
+            // TODO: Adjust the error limit based on testing.
+            // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
+            fpAtol = 5.0f * 0.0009765625f;
+            // Set the relative tolerance to be 5ULP of the corresponding FP precision.
+            fpRtol = 5.0f * 0.0009765625f;
+        }
+
+        std::vector<RequestArgument> inputs_info, outputs_info;
+        uint32_t inputSize = 0, outputSize = 0;
+        // This function only partially specifies the metadata (vector of RequestArguments).
+        // The contents are copied over below.
+        for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
+            if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
+            RequestArgument arg = {
+                    .location = {.poolIndex = INPUT,
+                                 .offset = 0,
+                                 .length = static_cast<uint32_t>(s)},
+                    .dimensions = {},
+            };
+            RequestArgument arg_empty = {
+                    .hasNoValue = true,
+            };
+            inputs_info[index] = s ? arg : arg_empty;
+            inputSize += s;
+        });
+        // Compute offset for inputs 1 and so on
+        {
+            size_t offset = 0;
+            for (auto& i : inputs_info) {
+                if (!i.hasNoValue) i.location.offset = offset;
+                offset += i.location.length;
+            }
+        }
+
+        MixedTyped test;  // holding test results
+
+        // Go through all outputs, initialize RequestArgument descriptors
+        resize_accordingly(golden, test);
+        bool sizeLargerThanOne = true;
+        for_all(golden, [&golden, &outputs_info, &outputSize, &outputType, &sizeLargerThanOne](
+                                int index, auto, auto s) {
+            if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
+            if (index == 0) {
+                // On OutputType::INSUFFICIENT, set the output operand with index 0 with
+                // buffer size one byte less than needed.
+                if (outputType == OutputType::INSUFFICIENT) {
+                    if (s > 1 && !isZeroSized(golden, index)) {
+                        s -= 1;
+                    } else {
+                        sizeLargerThanOne = false;
+                    }
+                }
+            }
+            RequestArgument arg = {
+                    .location = {.poolIndex = OUTPUT,
+                                 .offset = 0,
+                                 .length = static_cast<uint32_t>(s)},
+                    .dimensions = {},
+            };
+            outputs_info[index] = arg;
+            outputSize += s;
+        });
+        // If output0 does not have size larger than one byte,
+        // we can not provide an insufficient buffer
+        if (!sizeLargerThanOne && outputType == OutputType::INSUFFICIENT) return;
+        // Compute offset for outputs 1 and so on
+        {
+            size_t offset = 0;
+            for (auto& i : outputs_info) {
+                i.location.offset = offset;
+                offset += i.location.length;
+            }
+        }
+        std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
+                                          nn::allocateSharedMemory(outputSize)};
+        ASSERT_NE(0ull, pools[INPUT].size());
+        ASSERT_NE(0ull, pools[OUTPUT].size());
+
+        // load data
+        sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
+        sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
+        ASSERT_NE(nullptr, inputMemory.get());
+        ASSERT_NE(nullptr, outputMemory.get());
+        char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
+        char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
+        ASSERT_NE(nullptr, inputPtr);
+        ASSERT_NE(nullptr, outputPtr);
+        inputMemory->update();
+        outputMemory->update();
+
+        // Go through all inputs, copy the values
+        for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
+            char* begin = (char*)p;
+            char* end = begin + s;
+            // TODO: handle more than one input
+            std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
+        });
+
+        inputMemory->commit();
+        outputMemory->commit();
+
+        const Request request = {.inputs = inputs_info, .outputs = outputs_info, .pools = pools};
+
+        ErrorStatus executionStatus;
+        hidl_vec<OutputShape> outputShapes;
+        Timing timing;
+        switch (executor) {
+            case Executor::ASYNC: {
+                SCOPED_TRACE("asynchronous");
+
+                // launch execution
+                sp<ExecutionCallback> executionCallback = new ExecutionCallback();
+                ASSERT_NE(nullptr, executionCallback.get());
+                Return<ErrorStatus> executionLaunchStatus =
+                        ExecutePreparedModel(preparedModel, request, measure, executionCallback);
+                ASSERT_TRUE(executionLaunchStatus.isOk());
+                EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
+
+                // retrieve execution status
+                executionCallback->wait();
+                executionStatus = executionCallback->getStatus();
+                outputShapes = executionCallback->getOutputShapes();
+                timing = executionCallback->getTiming();
+
+                break;
+            }
+            case Executor::SYNC: {
+                SCOPED_TRACE("synchronous");
+
+                // execute
+                Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel(
+                        preparedModel, request, measure, &outputShapes, &timing);
+                ASSERT_TRUE(executionReturnStatus.isOk());
+                executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
+
+                break;
+            }
+            case Executor::BURST: {
+                SCOPED_TRACE("burst");
+
+                // create burst
+                const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
+                        CreateBurst(preparedModel);
+                ASSERT_NE(nullptr, controller.get());
+
+                // create memory keys
+                std::vector<intptr_t> keys(request.pools.size());
+                for (size_t i = 0; i < keys.size(); ++i) {
+                    keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
+                }
+
+                // execute burst
+                std::tie(executionStatus, outputShapes, timing) =
+                        controller->compute(request, measure, keys);
+
+                break;
+            }
+        }
+
+        if (outputType != OutputType::FULLY_SPECIFIED &&
+            executionStatus == ErrorStatus::GENERAL_FAILURE) {
+            LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+                         "execute model that it does not support.";
+            std::cout << "[          ]   Early termination of test because vendor service cannot "
+                         "execute model that it does not support."
+                      << std::endl;
+            GTEST_SKIP();
+        }
+        if (measure == MeasureTiming::NO) {
+            EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
+            EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
+        } else {
+            if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
+                EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
+            }
+        }
+
+        switch (outputType) {
+            case OutputType::FULLY_SPECIFIED:
+                // If the model output operands are fully specified, outputShapes must be either
+                // either empty, or have the same number of elements as the number of outputs.
+                ASSERT_EQ(ErrorStatus::NONE, executionStatus);
+                ASSERT_TRUE(outputShapes.size() == 0 ||
+                            outputShapes.size() == test.operandDimensions.size());
+                break;
+            case OutputType::UNSPECIFIED:
+                // If the model output operands are not fully specified, outputShapes must have
+                // the same number of elements as the number of outputs.
+                ASSERT_EQ(ErrorStatus::NONE, executionStatus);
+                ASSERT_EQ(outputShapes.size(), test.operandDimensions.size());
+                break;
+            case OutputType::INSUFFICIENT:
+                ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
+                ASSERT_EQ(outputShapes.size(), test.operandDimensions.size());
+                ASSERT_FALSE(outputShapes[0].isSufficient);
+                return;
+        }
+        // Go through all outputs, overwrite output dimensions with returned output shapes
+        if (outputShapes.size() > 0) {
+            for_each<uint32_t>(test.operandDimensions,
+                               [&outputShapes](int idx, std::vector<uint32_t>& dim) {
+                                   dim = outputShapes[idx].dimensions;
+                               });
+        }
+
+        // validate results
+        outputMemory->read();
+        copy_back(&test, outputs_info, outputPtr);
+        outputMemory->commit();
+        // Filter out don't cares
+        MixedTyped filtered_golden = filter(golden, is_ignored);
+        MixedTyped filtered_test = filter(test, is_ignored);
+
+        // We want "close-enough" results for float
+        compare(filtered_golden, filtered_test, fpAtol, fpRtol);
+
+        if (example.expectedMultinomialDistributionTolerance > 0) {
+            expectMultinomialDistributionWithinTolerance(test, example);
+        }
+    }
+}
+void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
+                           const std::vector<MixedTypedExample>& examples,
+                           bool hasRelaxedFloat32Model, Executor executor, MeasureTiming measure,
+                           OutputType outputType) {
+    EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol,
+                          kDefaultRtol, executor, measure, outputType);
+}
+
+void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
+                           const std::vector<MixedTypedExample>& examples,
+                           bool hasRelaxedFloat32Model, bool testDynamicOutputShape) {
+    if (testDynamicOutputShape) {
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::ASYNC, MeasureTiming::NO, OutputType::UNSPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::SYNC, MeasureTiming::NO, OutputType::UNSPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::BURST, MeasureTiming::NO, OutputType::UNSPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::ASYNC, MeasureTiming::YES, OutputType::UNSPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::SYNC, MeasureTiming::YES, OutputType::UNSPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::BURST, MeasureTiming::YES, OutputType::UNSPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::ASYNC, MeasureTiming::NO, OutputType::INSUFFICIENT);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::SYNC, MeasureTiming::NO, OutputType::INSUFFICIENT);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::BURST, MeasureTiming::NO, OutputType::INSUFFICIENT);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::ASYNC, MeasureTiming::YES, OutputType::INSUFFICIENT);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::SYNC, MeasureTiming::YES, OutputType::INSUFFICIENT);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::BURST, MeasureTiming::YES, OutputType::INSUFFICIENT);
+    } else {
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::ASYNC, MeasureTiming::NO, OutputType::FULLY_SPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::SYNC, MeasureTiming::NO, OutputType::FULLY_SPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::BURST, MeasureTiming::NO, OutputType::FULLY_SPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::ASYNC, MeasureTiming::YES, OutputType::FULLY_SPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::SYNC, MeasureTiming::YES, OutputType::FULLY_SPECIFIED);
+        EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model,
+                              Executor::BURST, MeasureTiming::YES, OutputType::FULLY_SPECIFIED);
+    }
+}
+
+void PrepareModel(const sp<IDevice>& device, const Model& model,
+                  sp<IPreparedModel>* preparedModel) {
+    // see if service can handle model
+    bool fullySupportsModel = false;
+    Return<void> supportedCall = device->getSupportedOperations_1_2(
+            model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
+                ASSERT_EQ(ErrorStatus::NONE, status);
+                ASSERT_NE(0ul, supported.size());
+                fullySupportsModel = std::all_of(supported.begin(), supported.end(),
+                                                 [](bool valid) { return valid; });
+            });
+    ASSERT_TRUE(supportedCall.isOk());
+
+    // launch prepare model
+    sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
+    ASSERT_NE(nullptr, preparedModelCallback.get());
+    Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
+            model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(),
+            hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
+    ASSERT_TRUE(prepareLaunchStatus.isOk());
+    ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
+
+    // retrieve prepared model
+    preparedModelCallback->wait();
+    ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
+    sp<V1_0::IPreparedModel> preparedModelV1_0 = preparedModelCallback->getPreparedModel();
+    *preparedModel = IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
+
+    // early termination if vendor service cannot fully prepare model
+    if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
+        ASSERT_EQ(nullptr, preparedModel->get());
+        LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
+                     "prepare model that it does not support.";
+        std::cout << "[          ]   Early termination of test because vendor service cannot "
+                     "prepare model that it does not support."
+                  << std::endl;
+        return;
+    }
+    EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
+    ASSERT_NE(nullptr, preparedModel->get());
+}
+
+void Execute(const sp<IDevice>& device, std::function<Model(void)> create_model,
+             std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples,
+             bool testDynamicOutputShape) {
+    Model model = create_model();
+    sp<IPreparedModel> preparedModel = nullptr;
+    PrepareModel(device, model, &preparedModel);
+    if (preparedModel == nullptr) {
+        GTEST_SKIP();
+    }
+    EvaluatePreparedModel(preparedModel, is_ignored, examples,
+                          model.relaxComputationFloat32toFloat16, testDynamicOutputShape);
+}
+
+}  // namespace generated_tests
+}  // namespace neuralnetworks
+}  // namespace hardware
+}  // namespace android