Lev Proleev | c185e88 | 2020-12-15 19:25:32 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2021 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "neuralnetworks_aidl_hal_test" |
| 18 | |
| 19 | #include <aidl/android/hardware/neuralnetworks/Capabilities.h> |
| 20 | #include <aidl/android/hardware/neuralnetworks/IDevice.h> |
| 21 | #include <aidl/android/hardware/neuralnetworks/Operand.h> |
| 22 | #include <aidl/android/hardware/neuralnetworks/OperandType.h> |
| 23 | #include <aidl/android/hardware/neuralnetworks/Priority.h> |
| 24 | #include <android/binder_interface_utils.h> |
| 25 | |
| 26 | #include "Utils.h" |
| 27 | #include "VtsHalNeuralnetworks.h" |
| 28 | |
| 29 | namespace aidl::android::hardware::neuralnetworks::vts::functional { |
| 30 | |
| 31 | using implementation::PreparedModelCallback; |
| 32 | |
| 33 | // create device test |
| 34 | TEST_P(NeuralNetworksAidlTest, CreateDevice) {} |
| 35 | |
| 36 | // initialization |
| 37 | TEST_P(NeuralNetworksAidlTest, GetCapabilitiesTest) { |
| 38 | Capabilities capabilities; |
| 39 | const auto retStatus = kDevice->getCapabilities(&capabilities); |
| 40 | ASSERT_TRUE(retStatus.isOk()); |
| 41 | |
| 42 | auto isPositive = [](const PerformanceInfo& perf) { |
| 43 | return perf.execTime > 0.0f && perf.powerUsage > 0.0f; |
| 44 | }; |
| 45 | |
| 46 | EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceScalar)); |
| 47 | EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceTensor)); |
| 48 | const auto& opPerf = capabilities.operandPerformance; |
| 49 | EXPECT_TRUE( |
| 50 | std::all_of(opPerf.begin(), opPerf.end(), |
| 51 | [isPositive](const OperandPerformance& a) { return isPositive(a.info); })); |
| 52 | EXPECT_TRUE(std::is_sorted(opPerf.begin(), opPerf.end(), |
| 53 | [](const OperandPerformance& a, const OperandPerformance& b) { |
| 54 | return a.type < b.type; |
| 55 | })); |
| 56 | EXPECT_TRUE(std::all_of(opPerf.begin(), opPerf.end(), [](const OperandPerformance& a) { |
| 57 | return a.type != OperandType::SUBGRAPH; |
| 58 | })); |
| 59 | EXPECT_TRUE(isPositive(capabilities.ifPerformance)); |
| 60 | EXPECT_TRUE(isPositive(capabilities.whilePerformance)); |
| 61 | } |
| 62 | |
| 63 | // detect cycle |
| 64 | TEST_P(NeuralNetworksAidlTest, CycleTest) { |
| 65 | // opnd0 = TENSOR_FLOAT32 // model input |
| 66 | // opnd1 = TENSOR_FLOAT32 // model input |
| 67 | // opnd2 = INT32 // model input |
| 68 | // opnd3 = ADD(opnd0, opnd4, opnd2) |
| 69 | // opnd4 = ADD(opnd1, opnd3, opnd2) |
| 70 | // opnd5 = ADD(opnd4, opnd0, opnd2) // model output |
| 71 | // |
| 72 | // +-----+ |
| 73 | // | | |
| 74 | // v | |
| 75 | // 3 = ADD(0, 4, 2) | |
| 76 | // | | |
| 77 | // +----------+ | |
| 78 | // | | |
| 79 | // v | |
| 80 | // 4 = ADD(1, 3, 2) | |
| 81 | // | | |
| 82 | // +----------------+ |
| 83 | // | |
| 84 | // | |
| 85 | // +-------+ |
| 86 | // | |
| 87 | // v |
| 88 | // 5 = ADD(4, 0, 2) |
| 89 | |
| 90 | const std::vector<Operand> operands = { |
| 91 | { |
| 92 | // operands[0] |
| 93 | .type = OperandType::TENSOR_FLOAT32, |
| 94 | .dimensions = {1}, |
| 95 | .scale = 0.0f, |
| 96 | .zeroPoint = 0, |
| 97 | .lifetime = OperandLifeTime::SUBGRAPH_INPUT, |
| 98 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 99 | }, |
| 100 | { |
| 101 | // operands[1] |
| 102 | .type = OperandType::TENSOR_FLOAT32, |
| 103 | .dimensions = {1}, |
| 104 | .scale = 0.0f, |
| 105 | .zeroPoint = 0, |
| 106 | .lifetime = OperandLifeTime::SUBGRAPH_INPUT, |
| 107 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 108 | }, |
| 109 | { |
| 110 | // operands[2] |
| 111 | .type = OperandType::INT32, |
| 112 | .dimensions = {}, |
| 113 | .scale = 0.0f, |
| 114 | .zeroPoint = 0, |
| 115 | .lifetime = OperandLifeTime::SUBGRAPH_INPUT, |
| 116 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 117 | }, |
| 118 | { |
| 119 | // operands[3] |
| 120 | .type = OperandType::TENSOR_FLOAT32, |
| 121 | .dimensions = {1}, |
| 122 | .scale = 0.0f, |
| 123 | .zeroPoint = 0, |
| 124 | .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, |
| 125 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 126 | }, |
| 127 | { |
| 128 | // operands[4] |
| 129 | .type = OperandType::TENSOR_FLOAT32, |
| 130 | .dimensions = {1}, |
| 131 | .scale = 0.0f, |
| 132 | .zeroPoint = 0, |
| 133 | .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, |
| 134 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 135 | }, |
| 136 | { |
| 137 | // operands[5] |
| 138 | .type = OperandType::TENSOR_FLOAT32, |
| 139 | .dimensions = {1}, |
| 140 | .scale = 0.0f, |
| 141 | .zeroPoint = 0, |
| 142 | .lifetime = OperandLifeTime::SUBGRAPH_OUTPUT, |
| 143 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 144 | }, |
| 145 | }; |
| 146 | |
| 147 | const std::vector<Operation> operations = { |
| 148 | {.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}}, |
| 149 | {.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}}, |
| 150 | {.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}}, |
| 151 | }; |
| 152 | |
| 153 | Subgraph subgraph = { |
| 154 | .operands = operands, |
| 155 | .operations = operations, |
| 156 | .inputIndexes = {0, 1, 2}, |
| 157 | .outputIndexes = {5}, |
| 158 | }; |
| 159 | const Model model = { |
| 160 | .main = std::move(subgraph), |
| 161 | .referenced = {}, |
| 162 | .operandValues = {}, |
| 163 | .pools = {}, |
| 164 | }; |
| 165 | |
| 166 | // ensure that getSupportedOperations() checks model validity |
| 167 | std::vector<bool> supportedOps; |
| 168 | const auto supportedOpsStatus = kDevice->getSupportedOperations(model, &supportedOps); |
| 169 | ASSERT_FALSE(supportedOpsStatus.isOk()); |
| 170 | ASSERT_EQ(supportedOpsStatus.getExceptionCode(), EX_SERVICE_SPECIFIC); |
| 171 | ASSERT_EQ(static_cast<ErrorStatus>(supportedOpsStatus.getServiceSpecificError()), |
| 172 | ErrorStatus::INVALID_ARGUMENT); |
| 173 | |
| 174 | // ensure that prepareModel() checks model validity |
| 175 | auto preparedModelCallback = ndk::SharedRefBase::make<PreparedModelCallback>(); |
| 176 | auto prepareLaunchStatus = |
| 177 | kDevice->prepareModel(model, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority, |
| 178 | kNoDeadline, {}, {}, kEmptyCacheToken, preparedModelCallback); |
| 179 | // Note that preparation can fail for reasons other than an |
| 180 | // invalid model (invalid model should result in |
| 181 | // INVALID_ARGUMENT) -- for example, perhaps not all |
| 182 | // operations are supported, or perhaps the device hit some |
| 183 | // kind of capacity limit. |
| 184 | ASSERT_FALSE(prepareLaunchStatus.isOk()); |
| 185 | EXPECT_EQ(prepareLaunchStatus.getExceptionCode(), EX_SERVICE_SPECIFIC); |
| 186 | EXPECT_NE(static_cast<ErrorStatus>(prepareLaunchStatus.getServiceSpecificError()), |
| 187 | ErrorStatus::NONE); |
| 188 | |
| 189 | EXPECT_NE(preparedModelCallback->getStatus(), ErrorStatus::NONE); |
| 190 | EXPECT_EQ(preparedModelCallback->getPreparedModel(), nullptr); |
| 191 | } |
| 192 | |
| 193 | } // namespace aidl::android::hardware::neuralnetworks::vts::functional |