blob: 16a7d70fb53f730f97f7f10ecc58b1ca701bb1b4 [file] [log] [blame]
Lev Proleev3b13b552019-08-30 11:35:34 +01001/*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "GeneratedTestHarness.h"
18
19#include <android-base/logging.h>
20#include <android/hardware/neuralnetworks/1.0/IDevice.h>
21#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
22#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
23#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
24#include <android/hardware/neuralnetworks/1.0/types.h>
25#include <android/hardware/neuralnetworks/1.1/IDevice.h>
26#include <android/hardware/neuralnetworks/1.2/IDevice.h>
27#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
28#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
29#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
Lev Proleevb49dadf2019-08-30 11:57:18 +010030#include <android/hardware/neuralnetworks/1.2/types.h>
31#include <android/hardware/neuralnetworks/1.3/IDevice.h>
32#include <android/hardware/neuralnetworks/1.3/types.h>
Lev Proleev3b13b552019-08-30 11:35:34 +010033#include <android/hidl/allocator/1.0/IAllocator.h>
34#include <android/hidl/memory/1.0/IMemory.h>
35#include <hidlmemory/mapping.h>
36
37#include <gtest/gtest.h>
38#include <algorithm>
39#include <iostream>
40#include <numeric>
41
42#include "1.0/Utils.h"
43#include "1.2/Callbacks.h"
44#include "ExecutionBurstController.h"
45#include "MemoryUtils.h"
46#include "TestHarness.h"
47#include "Utils.h"
48#include "VtsHalNeuralnetworks.h"
49
Lev Proleevb49dadf2019-08-30 11:57:18 +010050namespace android::hardware::neuralnetworks::V1_3::vts::functional {
Lev Proleev3b13b552019-08-30 11:35:34 +010051
52using namespace test_helper;
53using hidl::memory::V1_0::IMemory;
Lev Proleev3b13b552019-08-30 11:35:34 +010054using V1_0::DataLocation;
55using V1_0::ErrorStatus;
56using V1_0::OperandLifeTime;
57using V1_0::Request;
58using V1_1::ExecutionPreference;
Lev Proleevb49dadf2019-08-30 11:57:18 +010059using V1_2::Constant;
60using V1_2::IPreparedModel;
61using V1_2::MeasureTiming;
62using V1_2::OperationType;
63using V1_2::OutputShape;
64using V1_2::SymmPerChannelQuantParams;
65using V1_2::Timing;
66using V1_2::implementation::ExecutionCallback;
67using V1_2::implementation::PreparedModelCallback;
Lev Proleev3b13b552019-08-30 11:35:34 +010068using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
69
70enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
71
72Model createModel(const TestModel& testModel) {
73 // Model operands.
74 hidl_vec<Operand> operands(testModel.operands.size());
75 size_t constCopySize = 0, constRefSize = 0;
76 for (uint32_t i = 0; i < testModel.operands.size(); i++) {
77 const auto& op = testModel.operands[i];
78
79 DataLocation loc = {};
80 if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
81 loc = {.poolIndex = 0,
82 .offset = static_cast<uint32_t>(constCopySize),
83 .length = static_cast<uint32_t>(op.data.size())};
84 constCopySize += op.data.alignedSize();
85 } else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
86 loc = {.poolIndex = 0,
87 .offset = static_cast<uint32_t>(constRefSize),
88 .length = static_cast<uint32_t>(op.data.size())};
89 constRefSize += op.data.alignedSize();
90 }
91
92 Operand::ExtraParams extraParams;
93 if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
94 extraParams.channelQuant(SymmPerChannelQuantParams{
95 .scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
96 }
97
98 operands[i] = {.type = static_cast<OperandType>(op.type),
99 .dimensions = op.dimensions,
100 .numberOfConsumers = op.numberOfConsumers,
101 .scale = op.scale,
102 .zeroPoint = op.zeroPoint,
103 .lifetime = static_cast<OperandLifeTime>(op.lifetime),
104 .location = loc,
105 .extraParams = std::move(extraParams)};
106 }
107
108 // Model operations.
109 hidl_vec<Operation> operations(testModel.operations.size());
110 std::transform(testModel.operations.begin(), testModel.operations.end(), operations.begin(),
111 [](const TestOperation& op) -> Operation {
112 return {.type = static_cast<OperationType>(op.type),
113 .inputs = op.inputs,
114 .outputs = op.outputs};
115 });
116
117 // Constant copies.
118 hidl_vec<uint8_t> operandValues(constCopySize);
119 for (uint32_t i = 0; i < testModel.operands.size(); i++) {
120 const auto& op = testModel.operands[i];
121 if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
122 const uint8_t* begin = op.data.get<uint8_t>();
123 const uint8_t* end = begin + op.data.size();
124 std::copy(begin, end, operandValues.data() + operands[i].location.offset);
125 }
126 }
127
128 // Shared memory.
129 hidl_vec<hidl_memory> pools = {};
130 if (constRefSize > 0) {
131 hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
132 CHECK_NE(pools[0].size(), 0u);
133
134 // load data
135 sp<IMemory> mappedMemory = mapMemory(pools[0]);
136 CHECK(mappedMemory.get() != nullptr);
137 uint8_t* mappedPtr =
138 reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
139 CHECK(mappedPtr != nullptr);
140
141 for (uint32_t i = 0; i < testModel.operands.size(); i++) {
142 const auto& op = testModel.operands[i];
143 if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
144 const uint8_t* begin = op.data.get<uint8_t>();
145 const uint8_t* end = begin + op.data.size();
146 std::copy(begin, end, mappedPtr + operands[i].location.offset);
147 }
148 }
149 }
150
151 return {.operands = std::move(operands),
152 .operations = std::move(operations),
153 .inputIndexes = testModel.inputIndexes,
154 .outputIndexes = testModel.outputIndexes,
155 .operandValues = std::move(operandValues),
156 .pools = std::move(pools),
157 .relaxComputationFloat32toFloat16 = testModel.isRelaxed};
158}
159
160static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
161 const auto byteSize = testModel.operands[testModel.outputIndexes[index]].data.size();
162 return byteSize > 1u;
163}
164
165static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
166 auto& length = request->outputs[outputIndex].location.length;
167 ASSERT_GT(length, 1u);
168 length -= 1u;
169}
170
171static void makeOutputDimensionsUnspecified(Model* model) {
172 for (auto i : model->outputIndexes) {
173 auto& dims = model->operands[i].dimensions;
174 std::fill(dims.begin(), dims.end(), 0);
175 }
176}
177
178static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
179 const Request& request, MeasureTiming measure,
180 sp<ExecutionCallback>& callback) {
181 return preparedModel->execute_1_2(request, measure, callback);
182}
183static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
184 const Request& request, MeasureTiming measure,
185 hidl_vec<OutputShape>* outputShapes,
186 Timing* timing) {
187 ErrorStatus result;
188 Return<void> ret = preparedModel->executeSynchronously(
189 request, measure,
190 [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
191 const Timing& time) {
192 result = error;
193 *outputShapes = shapes;
194 *timing = time;
195 });
196 if (!ret.isOk()) {
197 return ErrorStatus::GENERAL_FAILURE;
198 }
199 return result;
200}
201static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
202 const sp<IPreparedModel>& preparedModel) {
203 return android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
204}
205enum class Executor { ASYNC, SYNC, BURST };
206
207void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
208 Executor executor, MeasureTiming measure, OutputType outputType) {
209 // If output0 does not have size larger than one byte, we can not test with insufficient buffer.
210 if (outputType == OutputType::INSUFFICIENT && !isOutputSizeGreaterThanOne(testModel, 0)) {
211 return;
212 }
213
214 Request request = createRequest(testModel);
215 if (outputType == OutputType::INSUFFICIENT) {
216 makeOutputInsufficientSize(/*outputIndex=*/0, &request);
217 }
218
219 ErrorStatus executionStatus;
220 hidl_vec<OutputShape> outputShapes;
221 Timing timing;
222 switch (executor) {
223 case Executor::ASYNC: {
224 SCOPED_TRACE("asynchronous");
225
226 // launch execution
227 sp<ExecutionCallback> executionCallback = new ExecutionCallback();
228 Return<ErrorStatus> executionLaunchStatus =
229 ExecutePreparedModel(preparedModel, request, measure, executionCallback);
230 ASSERT_TRUE(executionLaunchStatus.isOk());
231 EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
232
233 // retrieve execution status
234 executionCallback->wait();
235 executionStatus = executionCallback->getStatus();
236 outputShapes = executionCallback->getOutputShapes();
237 timing = executionCallback->getTiming();
238
239 break;
240 }
241 case Executor::SYNC: {
242 SCOPED_TRACE("synchronous");
243
244 // execute
245 Return<ErrorStatus> executionReturnStatus =
246 ExecutePreparedModel(preparedModel, request, measure, &outputShapes, &timing);
247 ASSERT_TRUE(executionReturnStatus.isOk());
248 executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
249
250 break;
251 }
252 case Executor::BURST: {
253 SCOPED_TRACE("burst");
254
255 // create burst
256 const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
257 CreateBurst(preparedModel);
258 ASSERT_NE(nullptr, controller.get());
259
260 // create memory keys
261 std::vector<intptr_t> keys(request.pools.size());
262 for (size_t i = 0; i < keys.size(); ++i) {
263 keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
264 }
265
266 // execute burst
267 std::tie(executionStatus, outputShapes, timing) =
268 controller->compute(request, measure, keys);
269
270 break;
271 }
272 }
273
274 if (outputType != OutputType::FULLY_SPECIFIED &&
275 executionStatus == ErrorStatus::GENERAL_FAILURE) {
276 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
277 "execute model that it does not support.";
278 std::cout << "[ ] Early termination of test because vendor service cannot "
279 "execute model that it does not support."
280 << std::endl;
281 GTEST_SKIP();
282 }
283 if (measure == MeasureTiming::NO) {
284 EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
285 EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
286 } else {
287 if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
288 EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
289 }
290 }
291
292 switch (outputType) {
293 case OutputType::FULLY_SPECIFIED:
294 // If the model output operands are fully specified, outputShapes must be either
295 // either empty, or have the same number of elements as the number of outputs.
296 ASSERT_EQ(ErrorStatus::NONE, executionStatus);
297 ASSERT_TRUE(outputShapes.size() == 0 ||
298 outputShapes.size() == testModel.outputIndexes.size());
299 break;
300 case OutputType::UNSPECIFIED:
301 // If the model output operands are not fully specified, outputShapes must have
302 // the same number of elements as the number of outputs.
303 ASSERT_EQ(ErrorStatus::NONE, executionStatus);
304 ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
305 break;
306 case OutputType::INSUFFICIENT:
307 ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
308 ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
309 ASSERT_FALSE(outputShapes[0].isSufficient);
310 return;
311 }
312
313 // Go through all outputs, check returned output shapes.
314 for (uint32_t i = 0; i < outputShapes.size(); i++) {
315 EXPECT_TRUE(outputShapes[i].isSufficient);
316 const auto& expect = testModel.operands[testModel.outputIndexes[i]].dimensions;
317 const std::vector<uint32_t> actual = outputShapes[i].dimensions;
318 EXPECT_EQ(expect, actual);
319 }
320
321 // Retrieve execution results.
322 const std::vector<TestBuffer> outputs = getOutputBuffers(request);
323
324 // We want "close-enough" results.
325 checkResults(testModel, outputs);
326}
327
328void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
329 bool testDynamicOutputShape) {
330 if (testDynamicOutputShape) {
331 EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
332 OutputType::UNSPECIFIED);
333 EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
334 OutputType::UNSPECIFIED);
335 EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
336 OutputType::UNSPECIFIED);
337 EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
338 OutputType::UNSPECIFIED);
339 EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
340 OutputType::UNSPECIFIED);
341 EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
342 OutputType::UNSPECIFIED);
343 EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
344 OutputType::INSUFFICIENT);
345 EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
346 OutputType::INSUFFICIENT);
347 EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
348 OutputType::INSUFFICIENT);
349 EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
350 OutputType::INSUFFICIENT);
351 EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
352 OutputType::INSUFFICIENT);
353 EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
354 OutputType::INSUFFICIENT);
355 } else {
356 EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::NO,
357 OutputType::FULLY_SPECIFIED);
358 EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::NO,
359 OutputType::FULLY_SPECIFIED);
360 EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::NO,
361 OutputType::FULLY_SPECIFIED);
362 EvaluatePreparedModel(preparedModel, testModel, Executor::ASYNC, MeasureTiming::YES,
363 OutputType::FULLY_SPECIFIED);
364 EvaluatePreparedModel(preparedModel, testModel, Executor::SYNC, MeasureTiming::YES,
365 OutputType::FULLY_SPECIFIED);
366 EvaluatePreparedModel(preparedModel, testModel, Executor::BURST, MeasureTiming::YES,
367 OutputType::FULLY_SPECIFIED);
368 }
369}
370
371void Execute(const sp<IDevice>& device, const TestModel& testModel, bool testDynamicOutputShape) {
372 Model model = createModel(testModel);
373 if (testDynamicOutputShape) {
374 makeOutputDimensionsUnspecified(&model);
375 }
376
377 sp<IPreparedModel> preparedModel;
378 createPreparedModel(device, model, &preparedModel);
379 if (preparedModel == nullptr) return;
380
381 EvaluatePreparedModel(preparedModel, testModel, testDynamicOutputShape);
382}
383
384void GeneratedTestBase::SetUp() {
385 testing::TestWithParam<GeneratedTestParam>::SetUp();
386 ASSERT_NE(kDevice, nullptr);
387}
388
389std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
390 return TestModelManager::get().getTestModels(filter);
391}
392
393std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
394 const auto& [namedDevice, namedModel] = info.param;
395 return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
396}
397
398// Tag for the generated tests
399class GeneratedTest : public GeneratedTestBase {};
400
401// Tag for the dynamic output shape tests
402class DynamicOutputShapeTest : public GeneratedTest {};
403
404TEST_P(GeneratedTest, Test) {
405 Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/false);
406}
407
408TEST_P(DynamicOutputShapeTest, Test) {
409 Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/true);
410}
411
412INSTANTIATE_GENERATED_TEST(GeneratedTest,
413 [](const TestModel& testModel) { return !testModel.expectFailure; });
414
415INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
416 [](const TestModel& testModel) { return !testModel.expectFailure; });
417
Lev Proleevb49dadf2019-08-30 11:57:18 +0100418} // namespace android::hardware::neuralnetworks::V1_3::vts::functional