blob: 88f897f0cfc444a0cc9d591f2a9f15245db7a1d2 [file] [log] [blame]
Michael Butler3670c382020-08-06 23:22:35 -07001/*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "PreparedModel.h"
18
19#include "Callbacks.h"
20#include "Conversions.h"
21#include "Utils.h"
22
23#include <android/hardware/neuralnetworks/1.0/types.h>
24#include <android/hardware/neuralnetworks/1.1/types.h>
25#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
26#include <android/hardware/neuralnetworks/1.2/types.h>
27#include <nnapi/IPreparedModel.h>
28#include <nnapi/Result.h>
29#include <nnapi/Types.h>
30#include <nnapi/hal/1.0/Conversions.h>
31#include <nnapi/hal/CommonUtils.h>
32#include <nnapi/hal/HandleError.h>
33#include <nnapi/hal/ProtectCallback.h>
34
35#include <memory>
36#include <tuple>
37#include <utility>
38#include <vector>
39
Michael Butler7a655bb2020-12-13 23:06:06 -080040// See hardware/interfaces/neuralnetworks/utils/README.md for more information on HIDL interface
41// lifetimes across processes and for protecting asynchronous calls across HIDL.
42
Michael Butler3670c382020-08-06 23:22:35 -070043namespace android::hardware::neuralnetworks::V1_2::utils {
44namespace {
45
46nn::GeneralResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
47convertExecutionResultsHelper(const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
Michael Butler32acc062020-11-22 19:36:30 -080048 return std::make_pair(NN_TRY(nn::convert(outputShapes)), NN_TRY(nn::convert(timing)));
Michael Butler3670c382020-08-06 23:22:35 -070049}
50
51nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> convertExecutionResults(
52 const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
53 return hal::utils::makeExecutionFailure(convertExecutionResultsHelper(outputShapes, timing));
54}
55
56} // namespace
57
58nn::GeneralResult<std::shared_ptr<const PreparedModel>> PreparedModel::create(
59 sp<V1_2::IPreparedModel> preparedModel) {
60 if (preparedModel == nullptr) {
61 return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
62 << "V1_2::utils::PreparedModel::create must have non-null preparedModel";
63 }
64
65 auto deathHandler = NN_TRY(hal::utils::DeathHandler::create(preparedModel));
66 return std::make_shared<const PreparedModel>(PrivateConstructorTag{}, std::move(preparedModel),
67 std::move(deathHandler));
68}
69
70PreparedModel::PreparedModel(PrivateConstructorTag /*tag*/, sp<V1_2::IPreparedModel> preparedModel,
71 hal::utils::DeathHandler deathHandler)
72 : kPreparedModel(std::move(preparedModel)), kDeathHandler(std::move(deathHandler)) {}
73
74nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
75PreparedModel::executeSynchronously(const V1_0::Request& request, MeasureTiming measure) const {
76 nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> result =
77 NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "uninitialized";
78 const auto cb = [&result](V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
79 const Timing& timing) {
80 if (status != V1_0::ErrorStatus::NONE) {
Michael Butler32acc062020-11-22 19:36:30 -080081 const auto canonical = nn::convert(status).value_or(nn::ErrorStatus::GENERAL_FAILURE);
Michael Butler3670c382020-08-06 23:22:35 -070082 result = NN_ERROR(canonical) << "executeSynchronously failed with " << toString(status);
83 } else {
84 result = convertExecutionResults(outputShapes, timing);
85 }
86 };
87
88 const auto ret = kPreparedModel->executeSynchronously(request, measure, cb);
Michael Butler61f508e2020-11-22 20:25:34 -080089 HANDLE_TRANSPORT_FAILURE(ret);
Michael Butler3670c382020-08-06 23:22:35 -070090
91 return result;
92}
93
94nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
95PreparedModel::executeAsynchronously(const V1_0::Request& request, MeasureTiming measure) const {
96 const auto cb = sp<ExecutionCallback>::make();
97 const auto scoped = kDeathHandler.protectCallback(cb.get());
98
99 const auto ret = kPreparedModel->execute_1_2(request, measure, cb);
Michael Butler61f508e2020-11-22 20:25:34 -0800100 const auto status = HANDLE_TRANSPORT_FAILURE(ret);
Michael Butler3670c382020-08-06 23:22:35 -0700101 if (status != V1_0::ErrorStatus::NONE) {
Michael Butler32acc062020-11-22 19:36:30 -0800102 const auto canonical = nn::convert(status).value_or(nn::ErrorStatus::GENERAL_FAILURE);
Michael Butler3670c382020-08-06 23:22:35 -0700103 return NN_ERROR(canonical) << "execute failed with " << toString(status);
104 }
105
106 return cb->get();
107}
108
109nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> PreparedModel::execute(
110 const nn::Request& request, nn::MeasureTiming measure,
111 const nn::OptionalTimePoint& /*deadline*/,
112 const nn::OptionalTimeoutDuration& /*loopTimeoutDuration*/) const {
113 // Ensure that request is ready for IPC.
114 std::optional<nn::Request> maybeRequestInShared;
115 const nn::Request& requestInShared = NN_TRY(hal::utils::makeExecutionFailure(
116 hal::utils::flushDataFromPointerToShared(&request, &maybeRequestInShared)));
117
118 const auto hidlRequest =
119 NN_TRY(hal::utils::makeExecutionFailure(V1_0::utils::convert(requestInShared)));
120 const auto hidlMeasure = NN_TRY(hal::utils::makeExecutionFailure(convert(measure)));
121
122 nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> result =
123 NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "uninitialized";
124 const bool preferSynchronous = true;
125
126 // Execute synchronously if allowed.
127 if (preferSynchronous) {
128 result = executeSynchronously(hidlRequest, hidlMeasure);
129 }
130
131 // Run asymchronous execution if execution has not already completed.
132 if (!result.has_value()) {
133 result = executeAsynchronously(hidlRequest, hidlMeasure);
134 }
135
136 // Flush output buffers if suxcessful execution.
137 if (result.has_value()) {
138 NN_TRY(hal::utils::makeExecutionFailure(
139 hal::utils::unflushDataFromSharedToPointer(request, maybeRequestInShared)));
140 }
141
142 return result;
143}
144
145nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>>
146PreparedModel::executeFenced(
147 const nn::Request& /*request*/, const std::vector<nn::SyncFence>& /*waitFor*/,
148 nn::MeasureTiming /*measure*/, const nn::OptionalTimePoint& /*deadline*/,
149 const nn::OptionalTimeoutDuration& /*loopTimeoutDuration*/,
150 const nn::OptionalTimeoutDuration& /*timeoutDurationAfterFence*/) const {
151 return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
152 << "IPreparedModel::executeFenced is not supported on 1.2 HAL service";
153}
154
155std::any PreparedModel::getUnderlyingResource() const {
156 sp<V1_0::IPreparedModel> resource = kPreparedModel;
157 return resource;
158}
159
160} // namespace android::hardware::neuralnetworks::V1_2::utils