Slava Shklyaev | 73ee79d | 2019-05-14 14:15:14 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2017 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "GeneratedTestHarness.h" |
| 18 | |
| 19 | #include <android-base/logging.h> |
| 20 | #include <android/hardware/neuralnetworks/1.0/IPreparedModel.h> |
| 21 | #include <android/hardware/neuralnetworks/1.0/types.h> |
| 22 | #include <android/hardware/neuralnetworks/1.1/IDevice.h> |
| 23 | #include <android/hidl/allocator/1.0/IAllocator.h> |
| 24 | #include <android/hidl/memory/1.0/IMemory.h> |
| 25 | #include <hidlmemory/mapping.h> |
| 26 | |
| 27 | #include <iostream> |
| 28 | |
| 29 | #include "1.0/Callbacks.h" |
| 30 | #include "1.0/Utils.h" |
| 31 | #include "MemoryUtils.h" |
| 32 | #include "TestHarness.h" |
| 33 | |
| 34 | namespace android { |
| 35 | namespace hardware { |
| 36 | namespace neuralnetworks { |
| 37 | namespace generated_tests { |
| 38 | |
| 39 | using ::android::hardware::neuralnetworks::V1_0::ErrorStatus; |
| 40 | using ::android::hardware::neuralnetworks::V1_0::IPreparedModel; |
| 41 | using ::android::hardware::neuralnetworks::V1_0::Request; |
| 42 | using ::android::hardware::neuralnetworks::V1_0::RequestArgument; |
| 43 | using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback; |
| 44 | using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback; |
| 45 | using ::android::hardware::neuralnetworks::V1_1::ExecutionPreference; |
| 46 | using ::android::hardware::neuralnetworks::V1_1::IDevice; |
| 47 | using ::android::hardware::neuralnetworks::V1_1::Model; |
| 48 | using ::android::hidl::memory::V1_0::IMemory; |
| 49 | using ::test_helper::compare; |
| 50 | using ::test_helper::filter; |
| 51 | using ::test_helper::for_all; |
| 52 | using ::test_helper::MixedTyped; |
| 53 | using ::test_helper::MixedTypedExample; |
| 54 | using ::test_helper::resize_accordingly; |
| 55 | |
| 56 | // Top level driver for models and examples generated by test_generator.py |
| 57 | // Test driver for those generated from ml/nn/runtime/test/spec |
| 58 | void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored, |
| 59 | const std::vector<MixedTypedExample>& examples, |
| 60 | bool hasRelaxedFloat32Model, float fpAtol, float fpRtol) { |
| 61 | const uint32_t INPUT = 0; |
| 62 | const uint32_t OUTPUT = 1; |
| 63 | |
| 64 | int example_no = 1; |
| 65 | for (auto& example : examples) { |
| 66 | SCOPED_TRACE(example_no++); |
| 67 | const MixedTyped& inputs = example.operands.first; |
| 68 | const MixedTyped& golden = example.operands.second; |
| 69 | |
| 70 | const bool hasFloat16Inputs = !inputs.float16Operands.empty(); |
| 71 | if (hasRelaxedFloat32Model || hasFloat16Inputs) { |
| 72 | // TODO: Adjust the error limit based on testing. |
| 73 | // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16. |
| 74 | fpAtol = 5.0f * 0.0009765625f; |
| 75 | // Set the relative tolerance to be 5ULP of the corresponding FP precision. |
| 76 | fpRtol = 5.0f * 0.0009765625f; |
| 77 | } |
| 78 | |
| 79 | std::vector<RequestArgument> inputs_info, outputs_info; |
| 80 | uint32_t inputSize = 0, outputSize = 0; |
| 81 | // This function only partially specifies the metadata (vector of RequestArguments). |
| 82 | // The contents are copied over below. |
| 83 | for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) { |
| 84 | if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1); |
| 85 | RequestArgument arg = { |
| 86 | .location = {.poolIndex = INPUT, |
| 87 | .offset = 0, |
| 88 | .length = static_cast<uint32_t>(s)}, |
| 89 | .dimensions = {}, |
| 90 | }; |
| 91 | RequestArgument arg_empty = { |
| 92 | .hasNoValue = true, |
| 93 | }; |
| 94 | inputs_info[index] = s ? arg : arg_empty; |
| 95 | inputSize += s; |
| 96 | }); |
| 97 | // Compute offset for inputs 1 and so on |
| 98 | { |
| 99 | size_t offset = 0; |
| 100 | for (auto& i : inputs_info) { |
| 101 | if (!i.hasNoValue) i.location.offset = offset; |
| 102 | offset += i.location.length; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | MixedTyped test; // holding test results |
| 107 | |
| 108 | // Go through all outputs, initialize RequestArgument descriptors |
| 109 | resize_accordingly(golden, test); |
| 110 | for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) { |
| 111 | if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1); |
| 112 | RequestArgument arg = { |
| 113 | .location = {.poolIndex = OUTPUT, |
| 114 | .offset = 0, |
| 115 | .length = static_cast<uint32_t>(s)}, |
| 116 | .dimensions = {}, |
| 117 | }; |
| 118 | outputs_info[index] = arg; |
| 119 | outputSize += s; |
| 120 | }); |
| 121 | // Compute offset for outputs 1 and so on |
| 122 | { |
| 123 | size_t offset = 0; |
| 124 | for (auto& i : outputs_info) { |
| 125 | i.location.offset = offset; |
| 126 | offset += i.location.length; |
| 127 | } |
| 128 | } |
| 129 | std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize), |
| 130 | nn::allocateSharedMemory(outputSize)}; |
| 131 | ASSERT_NE(0ull, pools[INPUT].size()); |
| 132 | ASSERT_NE(0ull, pools[OUTPUT].size()); |
| 133 | |
| 134 | // load data |
| 135 | sp<IMemory> inputMemory = mapMemory(pools[INPUT]); |
| 136 | sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]); |
| 137 | ASSERT_NE(nullptr, inputMemory.get()); |
| 138 | ASSERT_NE(nullptr, outputMemory.get()); |
| 139 | char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer())); |
| 140 | char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer())); |
| 141 | ASSERT_NE(nullptr, inputPtr); |
| 142 | ASSERT_NE(nullptr, outputPtr); |
| 143 | inputMemory->update(); |
| 144 | outputMemory->update(); |
| 145 | |
| 146 | // Go through all inputs, copy the values |
| 147 | for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) { |
| 148 | char* begin = (char*)p; |
| 149 | char* end = begin + s; |
| 150 | // TODO: handle more than one input |
| 151 | std::copy(begin, end, inputPtr + inputs_info[index].location.offset); |
| 152 | }); |
| 153 | |
| 154 | inputMemory->commit(); |
| 155 | outputMemory->commit(); |
| 156 | |
| 157 | const Request request = {.inputs = inputs_info, .outputs = outputs_info, .pools = pools}; |
| 158 | |
| 159 | // launch execution |
| 160 | sp<ExecutionCallback> executionCallback = new ExecutionCallback(); |
| 161 | ASSERT_NE(nullptr, executionCallback.get()); |
| 162 | Return<ErrorStatus> executionLaunchStatus = |
| 163 | preparedModel->execute(request, executionCallback); |
| 164 | ASSERT_TRUE(executionLaunchStatus.isOk()); |
| 165 | EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus)); |
| 166 | |
| 167 | // retrieve execution status |
| 168 | executionCallback->wait(); |
| 169 | ASSERT_EQ(ErrorStatus::NONE, executionCallback->getStatus()); |
| 170 | |
| 171 | // validate results |
| 172 | outputMemory->read(); |
| 173 | copy_back(&test, outputs_info, outputPtr); |
| 174 | outputMemory->commit(); |
| 175 | // Filter out don't cares |
| 176 | MixedTyped filtered_golden = filter(golden, is_ignored); |
| 177 | MixedTyped filtered_test = filter(test, is_ignored); |
| 178 | |
| 179 | // We want "close-enough" results for float |
| 180 | compare(filtered_golden, filtered_test, fpAtol, fpRtol); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | void Execute(const sp<IDevice>& device, std::function<Model(void)> create_model, |
| 185 | std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) { |
| 186 | Model model = create_model(); |
| 187 | |
| 188 | // see if service can handle model |
| 189 | bool fullySupportsModel = false; |
| 190 | Return<void> supportedCall = device->getSupportedOperations_1_1( |
| 191 | model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) { |
| 192 | ASSERT_EQ(ErrorStatus::NONE, status); |
| 193 | ASSERT_NE(0ul, supported.size()); |
| 194 | fullySupportsModel = std::all_of(supported.begin(), supported.end(), |
| 195 | [](bool valid) { return valid; }); |
| 196 | }); |
| 197 | ASSERT_TRUE(supportedCall.isOk()); |
| 198 | |
| 199 | // launch prepare model |
| 200 | sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback(); |
| 201 | ASSERT_NE(nullptr, preparedModelCallback.get()); |
| 202 | Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1( |
| 203 | model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback); |
| 204 | ASSERT_TRUE(prepareLaunchStatus.isOk()); |
| 205 | ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus)); |
| 206 | |
| 207 | // retrieve prepared model |
| 208 | preparedModelCallback->wait(); |
| 209 | ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus(); |
| 210 | sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel(); |
| 211 | |
| 212 | // early termination if vendor service cannot fully prepare model |
| 213 | if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) { |
| 214 | ASSERT_EQ(nullptr, preparedModel.get()); |
| 215 | LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " |
| 216 | "prepare model that it does not support."; |
| 217 | std::cout << "[ ] Early termination of test because vendor service cannot " |
| 218 | "prepare model that it does not support." |
| 219 | << std::endl; |
| 220 | GTEST_SKIP(); |
| 221 | } |
| 222 | EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus); |
| 223 | ASSERT_NE(nullptr, preparedModel.get()); |
| 224 | |
| 225 | EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| 226 | model.relaxComputationFloat32toFloat16, 1e-5f, 1e-5f); |
| 227 | } |
| 228 | |
| 229 | } // namespace generated_tests |
| 230 | } // namespace neuralnetworks |
| 231 | } // namespace hardware |
| 232 | } // namespace android |