blob: 35220a2d31ec82aec8705e1fa93d9b0067e79249 [file] [log] [blame]
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +00001/*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include <aidl/Gtest.h>
17#include <aidl/Vintf.h>
18
19#include <aidl/android/hardware/sensors/BnSensors.h>
20#include <aidl/android/hardware/sensors/ISensors.h>
21#include <android/binder_manager.h>
22#include <binder/IServiceManager.h>
23#include <binder/ProcessState.h>
24#include <hardware/sensors.h>
25#include <log/log.h>
26#include <utils/SystemClock.h>
27
28#include "SensorsAidlEnvironment.h"
Grace Cheng629b3a42022-01-06 12:19:17 +000029#include "SensorsAidlTestSharedMemory.h"
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +000030#include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
31
32#include <cinttypes>
33#include <condition_variable>
34#include <map>
35#include <unordered_map>
36#include <unordered_set>
37#include <vector>
38
39using aidl::android::hardware::sensors::Event;
40using aidl::android::hardware::sensors::ISensors;
41using aidl::android::hardware::sensors::SensorInfo;
42using aidl::android::hardware::sensors::SensorStatus;
43using aidl::android::hardware::sensors::SensorType;
44using android::ProcessState;
45using std::chrono::duration_cast;
46
Grace Cheng629b3a42022-01-06 12:19:17 +000047constexpr size_t kEventSize =
48 static_cast<size_t>(ISensors::DIRECT_REPORT_SENSOR_EVENT_TOTAL_LENGTH);
49
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +000050namespace {
51
52static void assertTypeMatchStringType(SensorType type, const std::string& stringType) {
53 if (type >= SensorType::DEVICE_PRIVATE_BASE) {
54 return;
55 }
56
57 switch (type) {
58#define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type) \
59 case SensorType::type: \
60 ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
61 break;
62 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
Tyler Trephan38e65b12022-01-25 23:04:55 +000063 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES);
64 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES_UNCALIBRATED);
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +000065 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
66 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
67 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
68 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
69 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
70 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
71 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
72 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
73 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
74 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
Tyler Trephan38e65b12022-01-25 23:04:55 +000075 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES);
76 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES_UNCALIBRATED);
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +000077 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
Tyler Trephan12cf91d2022-01-28 21:09:35 +000078 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEADING);
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +000079 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
80 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
81 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
82 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
83 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
84 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
85 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
86 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
87 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
88 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
89 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
90 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
91 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
92 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
93 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
94 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
95 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
96 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
97 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
98 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
99 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
100 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
Dezhi Huangb5425cb2023-03-13 16:38:46 +0800101 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HINGE_ANGLE);
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000102 default:
103 FAIL() << "Type " << static_cast<int>(type)
104 << " in android defined range is not checked, "
105 << "stringType = " << stringType;
106#undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
107 }
108}
109
Grace Cheng629b3a42022-01-06 12:19:17 +0000110bool isDirectChannelTypeSupported(SensorInfo sensor, ISensors::SharedMemInfo::SharedMemType type) {
111 switch (type) {
112 case ISensors::SharedMemInfo::SharedMemType::ASHMEM:
113 return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_ASHMEM) != 0;
114 case ISensors::SharedMemInfo::SharedMemType::GRALLOC:
115 return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_GRALLOC) != 0;
116 default:
117 return false;
118 }
119}
120
121bool isDirectReportRateSupported(SensorInfo sensor, ISensors::RateLevel rate) {
122 unsigned int r = static_cast<unsigned int>(sensor.flags &
123 SensorInfo::SENSOR_FLAG_BITS_MASK_DIRECT_REPORT) >>
124 static_cast<unsigned int>(SensorInfo::SENSOR_FLAG_SHIFT_DIRECT_REPORT);
125 return r >= static_cast<unsigned int>(rate);
126}
127
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000128int expectedReportModeForType(SensorType type) {
129 switch (type) {
130 case SensorType::ACCELEROMETER:
Tyler Trephan38e65b12022-01-25 23:04:55 +0000131 case SensorType::ACCELEROMETER_LIMITED_AXES:
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000132 case SensorType::ACCELEROMETER_UNCALIBRATED:
Tyler Trephan38e65b12022-01-25 23:04:55 +0000133 case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000134 case SensorType::GYROSCOPE:
Tyler Trephan38e65b12022-01-25 23:04:55 +0000135 case SensorType::GYROSCOPE_LIMITED_AXES:
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000136 case SensorType::MAGNETIC_FIELD:
137 case SensorType::ORIENTATION:
138 case SensorType::PRESSURE:
139 case SensorType::GRAVITY:
140 case SensorType::LINEAR_ACCELERATION:
141 case SensorType::ROTATION_VECTOR:
142 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
143 case SensorType::GAME_ROTATION_VECTOR:
144 case SensorType::GYROSCOPE_UNCALIBRATED:
Tyler Trephan38e65b12022-01-25 23:04:55 +0000145 case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000146 case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
147 case SensorType::POSE_6DOF:
148 case SensorType::HEART_BEAT:
Tyler Trephan12cf91d2022-01-28 21:09:35 +0000149 case SensorType::HEADING:
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000150 return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE;
151
152 case SensorType::LIGHT:
153 case SensorType::PROXIMITY:
154 case SensorType::RELATIVE_HUMIDITY:
155 case SensorType::AMBIENT_TEMPERATURE:
156 case SensorType::HEART_RATE:
157 case SensorType::DEVICE_ORIENTATION:
158 case SensorType::STEP_COUNTER:
159 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
160 return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE;
161
162 case SensorType::SIGNIFICANT_MOTION:
163 case SensorType::WAKE_GESTURE:
164 case SensorType::GLANCE_GESTURE:
165 case SensorType::PICK_UP_GESTURE:
166 case SensorType::MOTION_DETECT:
167 case SensorType::STATIONARY_DETECT:
168 return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE;
169
170 case SensorType::STEP_DETECTOR:
171 case SensorType::TILT_DETECTOR:
172 case SensorType::WRIST_TILT_GESTURE:
173 case SensorType::DYNAMIC_SENSOR_META:
174 return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE;
175
176 default:
177 ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
178 return INT32_MAX;
179 }
180}
181
182void assertTypeMatchReportMode(SensorType type, int reportMode) {
183 if (type >= SensorType::DEVICE_PRIVATE_BASE) {
184 return;
185 }
186
187 int expected = expectedReportModeForType(type);
188
189 ASSERT_TRUE(expected == INT32_MAX || expected == reportMode)
190 << "reportMode=" << static_cast<int>(reportMode)
191 << "expected=" << static_cast<int>(expected);
192}
193
194void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) {
195 switch (reportMode) {
196 case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE:
197 ASSERT_LT(0, minDelayUs);
198 ASSERT_LE(0, maxDelayUs);
199 break;
200 case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE:
201 ASSERT_LE(0, minDelayUs);
202 ASSERT_LE(0, maxDelayUs);
203 break;
204 case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE:
205 ASSERT_EQ(-1, minDelayUs);
206 ASSERT_EQ(0, maxDelayUs);
207 break;
208 case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE:
209 // do not enforce anything for special reporting mode
210 break;
211 default:
212 FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
213 }
214}
215
216void checkIsOk(ndk::ScopedAStatus status) {
217 ASSERT_TRUE(status.isOk());
218}
219
220} // namespace
221
222class EventCallback : public IEventCallback<Event> {
223 public:
224 void reset() {
225 mFlushMap.clear();
226 mEventMap.clear();
227 }
228
229 void onEvent(const Event& event) override {
230 if (event.sensorType == SensorType::META_DATA &&
231 event.payload.get<Event::EventPayload::Tag::meta>().what ==
232 Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
233 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
234 mFlushMap[event.sensorHandle]++;
235 mFlushCV.notify_all();
236 } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
237 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
238 mEventMap[event.sensorHandle].push_back(event);
239 mEventCV.notify_all();
240 }
241 }
242
243 int32_t getFlushCount(int32_t sensorHandle) {
244 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
245 return mFlushMap[sensorHandle];
246 }
247
248 void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
249 int32_t numCallsToFlush, std::chrono::milliseconds timeout) {
250 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
251 mFlushCV.wait_for(lock, timeout,
252 [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
253 }
254
255 const std::vector<Event> getEvents(int32_t sensorHandle) {
256 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
257 return mEventMap[sensorHandle];
258 }
259
260 void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
261 std::chrono::milliseconds timeout) {
262 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
263 mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
264 }
265
266 protected:
267 bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
268 for (const SensorInfo& sensor : sensorsToWaitFor) {
269 if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
270 return false;
271 }
272 }
273 return true;
274 }
275
276 bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
277 for (const SensorInfo& sensor : sensorsToWaitFor) {
278 if (getEvents(sensor.sensorHandle).size() == 0) {
279 return false;
280 }
281 }
282 return true;
283 }
284
285 std::map<int32_t, int32_t> mFlushMap;
286 std::recursive_mutex mFlushMutex;
287 std::condition_variable_any mFlushCV;
288
289 std::map<int32_t, std::vector<Event>> mEventMap;
290 std::recursive_mutex mEventMutex;
291 std::condition_variable_any mEventCV;
292};
293
294class SensorsAidlTest : public testing::TestWithParam<std::string> {
295 public:
296 virtual void SetUp() override {
297 mEnvironment = new SensorsAidlEnvironment(GetParam());
298 mEnvironment->SetUp();
299
300 // Ensure that we have a valid environment before performing tests
301 ASSERT_NE(getSensors(), nullptr);
302 }
303
304 virtual void TearDown() override {
305 for (int32_t handle : mSensorHandles) {
306 activate(handle, false);
307 }
308 mSensorHandles.clear();
309
310 mEnvironment->TearDown();
311 delete mEnvironment;
312 mEnvironment = nullptr;
313 }
314
315 protected:
316 std::vector<SensorInfo> getNonOneShotSensors();
317 std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
318 std::vector<SensorInfo> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
319 std::vector<SensorInfo> getOneShotSensors();
320 std::vector<SensorInfo> getInjectEventSensors();
321
Grace Cheng629b3a42022-01-06 12:19:17 +0000322 void verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType);
323
324 void verifyRegisterDirectChannel(
325 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
326 int32_t* directChannelHandle, bool supportsSharedMemType,
327 bool supportsAnyDirectChannel);
328
329 void verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType,
330 int32_t directChannelHandle, bool directChannelSupported);
331
332 void queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
333 bool* supportsSharedMemType, bool* supportsAnyDirectChannel);
334
335 void verifyUnregisterDirectChannel(int32_t* directChannelHandle, bool supportsAnyDirectChannel);
336
337 void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
338 ISensors::RateLevel rateLevel, int32_t* reportToken);
339
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000340 inline std::shared_ptr<ISensors>& getSensors() { return mEnvironment->mSensors; }
341
342 inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; }
343
344 inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; }
345
346 std::vector<SensorInfo> getSensorsList();
347
348 int32_t getInvalidSensorHandle() {
349 // Find a sensor handle that does not exist in the sensor list
350 int32_t maxHandle = 0;
351 for (const SensorInfo& sensor : getSensorsList()) {
352 maxHandle = std::max(maxHandle, sensor.sensorHandle);
353 }
354 return maxHandle + 1;
355 }
356
357 ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable);
358 void activateAllSensors(bool enable);
359
360 ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs,
361 int64_t maxReportLatencyNs) {
362 return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
363 }
364
365 ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); }
366
Grace Cheng629b3a42022-01-06 12:19:17 +0000367 ndk::ScopedAStatus registerDirectChannel(const ISensors::SharedMemInfo& mem,
368 int32_t* aidlReturn);
369
370 ndk::ScopedAStatus unregisterDirectChannel(int32_t* channelHandle) {
371 return getSensors()->unregisterDirectChannel(*channelHandle);
372 }
373
374 ndk::ScopedAStatus configDirectReport(int32_t sensorHandle, int32_t channelHandle,
375 ISensors::RateLevel rate, int32_t* reportToken) {
376 return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, reportToken);
377 }
378
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000379 void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
380 int32_t expectedFlushCount, bool expectedResult);
381
382 void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
383 int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult);
384
385 inline static int32_t extractReportMode(int32_t flag) {
386 return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE |
387 SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
388 SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE |
389 SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE));
390 }
391
392 // All sensors and direct channnels used
393 std::unordered_set<int32_t> mSensorHandles;
394 std::unordered_set<int32_t> mDirectChannelHandles;
395
396 private:
397 SensorsAidlEnvironment* mEnvironment;
398};
399
Grace Cheng629b3a42022-01-06 12:19:17 +0000400ndk::ScopedAStatus SensorsAidlTest::registerDirectChannel(const ISensors::SharedMemInfo& mem,
401 int32_t* aidlReturn) {
402 // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
403 // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
404 // Unregistering a channel more than once should not have negative effect.
405
406 ndk::ScopedAStatus status = getSensors()->registerDirectChannel(mem, aidlReturn);
407 if (status.isOk()) {
408 mDirectChannelHandles.insert(*aidlReturn);
409 }
410 return status;
411}
412
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000413std::vector<SensorInfo> SensorsAidlTest::getSensorsList() {
414 std::vector<SensorInfo> sensorInfoList;
415 checkIsOk(getSensors()->getSensorsList(&sensorInfoList));
416 return sensorInfoList;
417}
418
419ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) {
420 // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
421 // The handle is not removed when it is deactivating on purpose so that it is not necessary to
422 // check the return value of deactivation. Deactivating a sensor more than once does not have
423 // negative effect.
424 if (enable) {
425 mSensorHandles.insert(sensorHandle);
426 }
427 return getSensors()->activate(sensorHandle, enable);
428}
429
430void SensorsAidlTest::activateAllSensors(bool enable) {
431 for (const SensorInfo& sensorInfo : getSensorsList()) {
432 if (isValidType(sensorInfo.type)) {
433 checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs,
434 0 /* maxReportLatencyNs */));
435 checkIsOk(activate(sensorInfo.sensorHandle, enable));
436 }
437 }
438}
439
440std::vector<SensorInfo> SensorsAidlTest::getNonOneShotSensors() {
441 std::vector<SensorInfo> sensors;
442 for (const SensorInfo& info : getSensorsList()) {
443 if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
444 sensors.push_back(info);
445 }
446 }
447 return sensors;
448}
449
450std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonSpecialSensors() {
451 std::vector<SensorInfo> sensors;
452 for (const SensorInfo& info : getSensorsList()) {
453 int reportMode = extractReportMode(info.flags);
454 if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
455 reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
456 sensors.push_back(info);
457 }
458 }
459 return sensors;
460}
461
462std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
463 std::vector<SensorInfo> sensors;
464 for (const SensorInfo& info : getSensorsList()) {
465 int reportMode = extractReportMode(info.flags);
466 if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
467 reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE &&
468 reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
469 sensors.push_back(info);
470 }
471 }
472 return sensors;
473}
474
475std::vector<SensorInfo> SensorsAidlTest::getOneShotSensors() {
476 std::vector<SensorInfo> sensors;
477 for (const SensorInfo& info : getSensorsList()) {
478 if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
479 sensors.push_back(info);
480 }
481 }
482 return sensors;
483}
484
485std::vector<SensorInfo> SensorsAidlTest::getInjectEventSensors() {
486 std::vector<SensorInfo> out;
487 std::vector<SensorInfo> sensorInfoList = getSensorsList();
488 for (const SensorInfo& info : sensorInfoList) {
489 if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) {
490 out.push_back(info);
491 }
492 }
493 return out;
494}
495
496void SensorsAidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
497 bool activateSensor, int32_t expectedFlushCount,
498 bool expectedResult) {
499 runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult);
500}
501
502void SensorsAidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
503 int32_t flushCalls, int32_t expectedFlushCount,
504 bool expectedResult) {
505 EventCallback callback;
506 getEnvironment()->registerCallback(&callback);
507
508 for (const SensorInfo& sensor : sensors) {
509 // Configure and activate the sensor
510 batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */);
511 activate(sensor.sensorHandle, activateSensor);
512
513 // Flush the sensor
514 for (int32_t i = 0; i < flushCalls; i++) {
515 SCOPED_TRACE(::testing::Message()
516 << "Flush " << i << "/" << flushCalls << ": "
517 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
518 << sensor.sensorHandle << std::dec
519 << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);
520
521 EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult);
522 }
523 }
524
525 // Wait up to one second for the flush events
526 callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */);
527
528 // Deactivate all sensors after waiting for flush events so pending flush events are not
529 // abandoned by the HAL.
530 for (const SensorInfo& sensor : sensors) {
531 activate(sensor.sensorHandle, false);
532 }
533 getEnvironment()->unregisterCallback();
534
535 // Check that the correct number of flushes are present for each sensor
536 for (const SensorInfo& sensor : sensors) {
537 SCOPED_TRACE(::testing::Message()
538 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
539 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
540 << " name=" << sensor.name);
541 ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
542 }
543}
544
545TEST_P(SensorsAidlTest, SensorListValid) {
546 std::vector<SensorInfo> sensorInfoList = getSensorsList();
547 std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
548 for (size_t i = 0; i < sensorInfoList.size(); ++i) {
549 const SensorInfo& info = sensorInfoList[i];
550 SCOPED_TRACE(::testing::Message()
551 << i << "/" << sensorInfoList.size() << ": "
552 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
553 << info.sensorHandle << std::dec << " type=" << static_cast<int>(info.type)
554 << " name=" << info.name);
555
556 // Test type string non-empty only for private sensor typeinfo.
557 if (info.type >= SensorType::DEVICE_PRIVATE_BASE) {
558 EXPECT_FALSE(info.typeAsString.empty());
559 } else if (!info.typeAsString.empty()) {
560 // Test type string matches framework string if specified for non-private typeinfo.
561 EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString));
562 }
563
564 // Test if all sensor has name and vendor
565 EXPECT_FALSE(info.name.empty());
566 EXPECT_FALSE(info.vendor.empty());
567
568 // Make sure that sensors of the same type have a unique name.
569 std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(info.type)];
570 bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end();
571 EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name;
572 if (isUniqueName) {
573 v.push_back(info.name);
574 }
575
576 EXPECT_LE(0, info.power);
577 EXPECT_LT(0, info.maxRange);
578
579 // Info type, should have no sensor
580 EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO ||
581 info.type == SensorType::META_DATA);
582
583 EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount);
584
585 // Test Reporting mode valid
586 EXPECT_NO_FATAL_FAILURE(
587 assertTypeMatchReportMode(info.type, extractReportMode(info.flags)));
588
589 // Test min max are in the right order
590 EXPECT_LE(info.minDelayUs, info.maxDelayUs);
591 // Test min/max delay matches reporting mode
592 EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs,
593 extractReportMode(info.flags)));
594 }
595}
596
597TEST_P(SensorsAidlTest, SetOperationMode) {
598 if (getInjectEventSensors().size() > 0) {
599 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
600 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
601 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
602 } else {
Arthur Ishiguroe9cb2932022-04-12 15:43:51 +0000603 int errorCode =
604 getSensors()
605 ->setOperationMode(ISensors::OperationMode::DATA_INJECTION)
606 .getExceptionCode();
607 ASSERT_TRUE((errorCode == EX_UNSUPPORTED_OPERATION) ||
608 (errorCode == EX_ILLEGAL_ARGUMENT));
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +0000609 }
610}
611
612TEST_P(SensorsAidlTest, InjectSensorEventData) {
613 std::vector<SensorInfo> sensors = getInjectEventSensors();
614 if (sensors.size() == 0) {
615 return;
616 }
617
618 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
619
620 EventCallback callback;
621 getEnvironment()->registerCallback(&callback);
622
623 // AdditionalInfo event should not be sent to Event FMQ
624 Event additionalInfoEvent;
625 additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
626 additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
627
628 Event injectedEvent;
629 injectedEvent.timestamp = android::elapsedRealtimeNano();
630 Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
631 injectedEvent.payload.set<Event::EventPayload::Tag::vec3>(data);
632
633 for (const auto& s : sensors) {
634 additionalInfoEvent.sensorHandle = s.sensorHandle;
635 ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk());
636
637 injectedEvent.sensorType = s.type;
638 injectedEvent.sensorHandle = s.sensorHandle;
639 ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk());
640 }
641
642 // Wait for events to be written back to the Event FMQ
643 callback.waitForEvents(sensors, std::chrono::milliseconds(1000) /* timeout */);
644 getEnvironment()->unregisterCallback();
645
646 for (const auto& s : sensors) {
647 auto events = callback.getEvents(s.sensorHandle);
648 if (events.empty()) {
649 FAIL() << "Received no events";
650 } else {
651 auto lastEvent = events.back();
652 SCOPED_TRACE(::testing::Message()
653 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
654 << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
655 << " name=" << s.name);
656
657 // Verify that only a single event has been received
658 ASSERT_EQ(events.size(), 1);
659
660 // Verify that the event received matches the event injected and is not the additional
661 // info event
662 ASSERT_EQ(lastEvent.sensorType, s.type);
663 ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
664 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().x,
665 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().x);
666 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().y,
667 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().y);
668 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().z,
669 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().z);
670 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().status,
671 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().status);
672 }
673 }
674
675 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
676}
677
678TEST_P(SensorsAidlTest, CallInitializeTwice) {
679 // Create a helper class so that a second environment is able to be instantiated
680 class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment {
681 public:
682 SensorsAidlEnvironmentTest(const std::string& service_name)
683 : SensorsAidlEnvironment(service_name) {}
684 };
685
686 if (getSensorsList().size() == 0) {
687 // No sensors
688 return;
689 }
690
691 constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s
692 constexpr int32_t kNumEvents = 1;
693
694 // Create a new environment that calls initialize()
695 std::unique_ptr<SensorsAidlEnvironmentTest> newEnv =
696 std::make_unique<SensorsAidlEnvironmentTest>(GetParam());
697 newEnv->SetUp();
698 if (HasFatalFailure()) {
699 return; // Exit early if setting up the new environment failed
700 }
701
702 activateAllSensors(true);
703 // Verify that the old environment does not receive any events
704 EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
705 // Verify that the new event queue receives sensor events
706 EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
707 activateAllSensors(false);
708
709 // Cleanup the test environment
710 newEnv->TearDown();
711
712 // Restore the test environment for future tests
713 getEnvironment()->TearDown();
714 getEnvironment()->SetUp();
715 if (HasFatalFailure()) {
716 return; // Exit early if resetting the environment failed
717 }
718
719 // Ensure that the original environment is receiving events
720 activateAllSensors(true);
721 EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
722 activateAllSensors(false);
723}
724
725TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) {
726 activateAllSensors(true);
727
728 // Verify that events are received
729 constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s
730 constexpr int32_t kNumEvents = 1;
731 ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
732
733 // Clear the active sensor handles so they are not disabled during TearDown
734 auto handles = mSensorHandles;
735 mSensorHandles.clear();
736 getEnvironment()->TearDown();
737 getEnvironment()->SetUp();
738 if (HasFatalFailure()) {
739 return; // Exit early if resetting the environment failed
740 }
741
742 // Verify no events are received until sensors are re-activated
743 ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
744 activateAllSensors(true);
745 ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
746
747 // Disable sensors
748 activateAllSensors(false);
749
750 // Restore active sensors prior to clearing the environment
751 mSensorHandles = handles;
752}
753
754TEST_P(SensorsAidlTest, FlushSensor) {
755 std::vector<SensorInfo> sensors = getNonOneShotSensors();
756 if (sensors.size() == 0) {
757 return;
758 }
759
760 constexpr int32_t kFlushes = 5;
761 runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */,
762 true /* expectedResult */);
763 runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */);
764}
765
766TEST_P(SensorsAidlTest, FlushOneShotSensor) {
767 // Find a sensor that is a one-shot sensor
768 std::vector<SensorInfo> sensors = getOneShotSensors();
769 if (sensors.size() == 0) {
770 return;
771 }
772
773 runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
774 false /* expectedResult */);
775}
776
777TEST_P(SensorsAidlTest, FlushInactiveSensor) {
778 // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
779 std::vector<SensorInfo> sensors = getNonOneShotSensors();
780 if (sensors.size() == 0) {
781 sensors = getOneShotSensors();
782 if (sensors.size() == 0) {
783 return;
784 }
785 }
786
787 runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
788 false /* expectedResult */);
789}
790
791TEST_P(SensorsAidlTest, Batch) {
792 if (getSensorsList().size() == 0) {
793 return;
794 }
795
796 activateAllSensors(false /* enable */);
797 for (const SensorInfo& sensor : getSensorsList()) {
798 SCOPED_TRACE(::testing::Message()
799 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
800 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
801 << " name=" << sensor.name);
802
803 // Call batch on inactive sensor
804 // One shot sensors have minDelay set to -1 which is an invalid
805 // parameter. Use 0 instead to avoid errors.
806 int64_t samplingPeriodNs =
807 extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE
808 ? 0
809 : sensor.minDelayUs;
810 checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */));
811
812 // Activate the sensor
813 activate(sensor.sensorHandle, true /* enabled */);
814
815 // Call batch on an active sensor
816 checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */));
817 }
818 activateAllSensors(false /* enable */);
819
820 // Call batch on an invalid sensor
821 SensorInfo sensor = getSensorsList().front();
822 sensor.sensorHandle = getInvalidSensorHandle();
823 ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)
824 .getExceptionCode(),
825 EX_ILLEGAL_ARGUMENT);
826}
827
828TEST_P(SensorsAidlTest, Activate) {
829 if (getSensorsList().size() == 0) {
830 return;
831 }
832
833 // Verify that sensor events are generated when activate is called
834 for (const SensorInfo& sensor : getSensorsList()) {
835 SCOPED_TRACE(::testing::Message()
836 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
837 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
838 << " name=" << sensor.name);
839
840 checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */));
841 checkIsOk(activate(sensor.sensorHandle, true));
842
843 // Call activate on a sensor that is already activated
844 checkIsOk(activate(sensor.sensorHandle, true));
845
846 // Deactivate the sensor
847 checkIsOk(activate(sensor.sensorHandle, false));
848
849 // Call deactivate on a sensor that is already deactivated
850 checkIsOk(activate(sensor.sensorHandle, false));
851 }
852
853 // Attempt to activate an invalid sensor
854 int32_t invalidHandle = getInvalidSensorHandle();
855 ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
856 ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
857}
858
859TEST_P(SensorsAidlTest, NoStaleEvents) {
860 constexpr std::chrono::milliseconds kFiveHundredMs(500);
861 constexpr std::chrono::milliseconds kOneSecond(1000);
862
863 // Register the callback to receive sensor events
864 EventCallback callback;
865 getEnvironment()->registerCallback(&callback);
866
867 // This test is not valid for one-shot, on-change or special-report-mode sensors
868 const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
869 std::chrono::milliseconds maxMinDelay(0);
870 for (const SensorInfo& sensor : sensors) {
871 std::chrono::milliseconds minDelay = duration_cast<std::chrono::milliseconds>(
872 std::chrono::microseconds(sensor.minDelayUs));
873 maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
874 }
875
876 // Activate the sensors so that they start generating events
877 activateAllSensors(true);
878
879 // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
880 // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
881 // of time to guarantee that a sample has arrived.
882 callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
883 activateAllSensors(false);
884
885 // Save the last received event for each sensor
886 std::map<int32_t, int64_t> lastEventTimestampMap;
887 for (const SensorInfo& sensor : sensors) {
888 SCOPED_TRACE(::testing::Message()
889 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
890 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
891 << " name=" << sensor.name);
892
893 if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
894 lastEventTimestampMap[sensor.sensorHandle] =
895 callback.getEvents(sensor.sensorHandle).back().timestamp;
896 }
897 }
898
899 // Allow some time to pass, reset the callback, then reactivate the sensors
900 usleep(duration_cast<std::chrono::microseconds>(kOneSecond + (5 * maxMinDelay)).count());
901 callback.reset();
902 activateAllSensors(true);
903 callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
904 activateAllSensors(false);
905
906 getEnvironment()->unregisterCallback();
907
908 for (const SensorInfo& sensor : sensors) {
909 SCOPED_TRACE(::testing::Message()
910 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
911 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
912 << " name=" << sensor.name);
913
914 // Skip sensors that did not previously report an event
915 if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
916 continue;
917 }
918
919 // Ensure that the first event received is not stale by ensuring that its timestamp is
920 // sufficiently different from the previous event
921 const Event newEvent = callback.getEvents(sensor.sensorHandle).front();
922 std::chrono::milliseconds delta =
923 duration_cast<std::chrono::milliseconds>(std::chrono::nanoseconds(
924 newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
925 std::chrono::milliseconds sensorMinDelay = duration_cast<std::chrono::milliseconds>(
926 std::chrono::microseconds(sensor.minDelayUs));
927 ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
928 }
929}
930
Grace Cheng629b3a42022-01-06 12:19:17 +0000931void SensorsAidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
932 ISensors::RateLevel rateLevel, int32_t* reportToken) {
933 ndk::ScopedAStatus status =
934 configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, reportToken);
935
936 SCOPED_TRACE(::testing::Message()
937 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
938 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
939 << " name=" << sensor.name);
940
941 if (isDirectReportRateSupported(sensor, rateLevel)) {
942 ASSERT_TRUE(status.isOk());
943 if (rateLevel != ISensors::RateLevel::STOP) {
Arthur Ishiguroe9cb2932022-04-12 15:43:51 +0000944 ASSERT_GT(*reportToken, 0);
Grace Cheng629b3a42022-01-06 12:19:17 +0000945 }
Arthur Ishiguroe9cb2932022-04-12 15:43:51 +0000946 } else {
947 ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
Grace Cheng629b3a42022-01-06 12:19:17 +0000948 }
949}
950
951void SensorsAidlTest::queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
952 bool* supportsSharedMemType,
953 bool* supportsAnyDirectChannel) {
954 *supportsSharedMemType = false;
955 *supportsAnyDirectChannel = false;
956 for (const SensorInfo& curSensor : getSensorsList()) {
957 if (isDirectChannelTypeSupported(curSensor, memType)) {
958 *supportsSharedMemType = true;
959 }
960 if (isDirectChannelTypeSupported(curSensor,
961 ISensors::SharedMemInfo::SharedMemType::ASHMEM) ||
962 isDirectChannelTypeSupported(curSensor,
963 ISensors::SharedMemInfo::SharedMemType::GRALLOC)) {
964 *supportsAnyDirectChannel = true;
965 }
966
967 if (*supportsSharedMemType && *supportsAnyDirectChannel) {
968 break;
969 }
970 }
971}
972
973void SensorsAidlTest::verifyRegisterDirectChannel(
974 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
975 int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
976 char* buffer = mem->getBuffer();
977 size_t size = mem->getSize();
978
979 if (supportsSharedMemType) {
980 memset(buffer, 0xff, size);
981 }
982
983 int32_t channelHandle;
984
985 ::ndk::ScopedAStatus status = registerDirectChannel(mem->getSharedMemInfo(), &channelHandle);
986 if (supportsSharedMemType) {
987 ASSERT_TRUE(status.isOk());
Arthur Ishiguroe9cb2932022-04-12 15:43:51 +0000988 ASSERT_GT(channelHandle, 0);
989
990 // Verify that the memory has been zeroed
991 for (size_t i = 0; i < mem->getSize(); i++) {
992 ASSERT_EQ(buffer[i], 0x00);
993 }
Grace Cheng629b3a42022-01-06 12:19:17 +0000994 } else {
995 int32_t error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
996 ASSERT_EQ(status.getExceptionCode(), error);
Grace Cheng629b3a42022-01-06 12:19:17 +0000997 }
Greg Kaiseraae30612022-01-14 07:54:49 -0800998 *directChannelHandle = channelHandle;
Grace Cheng629b3a42022-01-06 12:19:17 +0000999}
1000
1001void SensorsAidlTest::verifyUnregisterDirectChannel(int32_t* channelHandle,
1002 bool supportsAnyDirectChannel) {
1003 int result = supportsAnyDirectChannel ? EX_NONE : EX_UNSUPPORTED_OPERATION;
1004 ndk::ScopedAStatus status = unregisterDirectChannel(channelHandle);
1005 ASSERT_EQ(status.getExceptionCode(), result);
1006}
1007
1008void SensorsAidlTest::verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType) {
1009 constexpr size_t kNumEvents = 1;
1010 constexpr size_t kMemSize = kNumEvents * kEventSize;
1011
1012 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem(
1013 SensorsAidlTestSharedMemory<SensorType, Event>::create(memType, kMemSize));
1014 ASSERT_NE(mem, nullptr);
1015
1016 bool supportsSharedMemType;
1017 bool supportsAnyDirectChannel;
1018 queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
1019
1020 for (const SensorInfo& sensor : getSensorsList()) {
1021 int32_t directChannelHandle = 0;
1022 verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
1023 supportsAnyDirectChannel);
1024 verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
1025 verifyUnregisterDirectChannel(&directChannelHandle, supportsAnyDirectChannel);
1026 }
1027}
1028
1029void SensorsAidlTest::verifyConfigure(const SensorInfo& sensor,
1030 ISensors::SharedMemInfo::SharedMemType memType,
1031 int32_t directChannelHandle, bool supportsAnyDirectChannel) {
1032 SCOPED_TRACE(::testing::Message()
1033 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1034 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1035 << " name=" << sensor.name);
1036
1037 int32_t reportToken = 0;
1038 if (isDirectChannelTypeSupported(sensor, memType)) {
1039 // Verify that each rate level is properly supported
1040 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken);
1041 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::FAST, &reportToken);
1042 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::VERY_FAST, &reportToken);
1043 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::STOP, &reportToken);
1044
1045 // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
1046 ndk::ScopedAStatus status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1047 ISensors::RateLevel::NORMAL, &reportToken);
Arthur Ishiguroe9cb2932022-04-12 15:43:51 +00001048 ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
Grace Cheng629b3a42022-01-06 12:19:17 +00001049
1050 status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1051 ISensors::RateLevel::STOP, &reportToken);
1052 ASSERT_TRUE(status.isOk());
1053 } else {
1054 // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
1055 // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
1056 // channel is not supported at all
1057 int error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1058 ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle,
1059 ISensors::RateLevel::NORMAL, &reportToken);
1060 ASSERT_EQ(status.getExceptionCode(), error);
1061 }
1062}
1063
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +00001064TEST_P(SensorsAidlTest, DirectChannelAshmem) {
Grace Cheng629b3a42022-01-06 12:19:17 +00001065 verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::ASHMEM);
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +00001066}
1067
1068TEST_P(SensorsAidlTest, DirectChannelGralloc) {
Grace Cheng629b3a42022-01-06 12:19:17 +00001069 verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::GRALLOC);
Arthur Ishiguroc7ac0b22021-10-13 16:12:37 +00001070}
1071
1072GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest);
1073INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest,
1074 testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)),
1075 android::PrintInstanceNameToString);
1076
1077int main(int argc, char** argv) {
1078 ::testing::InitGoogleTest(&argc, argv);
1079 ProcessState::self()->setThreadPoolMaxThreadCount(1);
1080 ProcessState::self()->startThreadPool();
1081 return RUN_ALL_TESTS();
1082}