Michael Butler | 2f499a9 | 2017-09-19 19:59:45 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2017 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "neuralnetworks_hidl_hal_test" |
| 18 | |
| 19 | #include "Models.h" |
| 20 | #include <android/hidl/memory/1.0/IMemory.h> |
| 21 | #include <hidlmemory/mapping.h> |
| 22 | #include <vector> |
| 23 | |
| 24 | namespace android { |
| 25 | namespace hardware { |
| 26 | namespace neuralnetworks { |
| 27 | namespace V1_0 { |
| 28 | namespace vts { |
| 29 | namespace functional { |
| 30 | |
| 31 | // create a valid model |
| 32 | Model createValidTestModel() { |
| 33 | const std::vector<float> operand2Data = {5.0f, 6.0f, 7.0f, 8.0f}; |
| 34 | const uint32_t size = operand2Data.size() * sizeof(float); |
| 35 | |
| 36 | const uint32_t operand1 = 0; |
| 37 | const uint32_t operand2 = 1; |
| 38 | const uint32_t operand3 = 2; |
| 39 | const uint32_t operand4 = 3; |
| 40 | |
| 41 | const std::vector<Operand> operands = { |
| 42 | { |
| 43 | .type = OperandType::TENSOR_FLOAT32, |
| 44 | .dimensions = {1, 2, 2, 1}, |
| 45 | .numberOfConsumers = 1, |
| 46 | .scale = 0.0f, |
| 47 | .zeroPoint = 0, |
| 48 | .lifetime = OperandLifeTime::MODEL_INPUT, |
| 49 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 50 | }, |
| 51 | { |
| 52 | .type = OperandType::TENSOR_FLOAT32, |
| 53 | .dimensions = {1, 2, 2, 1}, |
| 54 | .numberOfConsumers = 1, |
| 55 | .scale = 0.0f, |
| 56 | .zeroPoint = 0, |
| 57 | .lifetime = OperandLifeTime::CONSTANT_COPY, |
| 58 | .location = {.poolIndex = 0, .offset = 0, .length = size}, |
| 59 | }, |
| 60 | { |
| 61 | .type = OperandType::INT32, |
| 62 | .dimensions = {}, |
| 63 | .numberOfConsumers = 1, |
| 64 | .scale = 0.0f, |
| 65 | .zeroPoint = 0, |
| 66 | .lifetime = OperandLifeTime::CONSTANT_COPY, |
| 67 | .location = {.poolIndex = 0, .offset = size, .length = sizeof(int32_t)}, |
| 68 | }, |
| 69 | { |
| 70 | .type = OperandType::TENSOR_FLOAT32, |
| 71 | .dimensions = {1, 2, 2, 1}, |
| 72 | .numberOfConsumers = 0, |
| 73 | .scale = 0.0f, |
| 74 | .zeroPoint = 0, |
| 75 | .lifetime = OperandLifeTime::MODEL_OUTPUT, |
| 76 | .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| 77 | }, |
| 78 | }; |
| 79 | |
| 80 | const std::vector<Operation> operations = {{ |
Jean-Luc Brouillet | 39ac22e | 2017-09-23 15:15:58 -0700 | [diff] [blame^] | 81 | .type = OperationType::ADD, .inputs = {operand1, operand2, operand3}, .outputs = {operand4}, |
Michael Butler | 2f499a9 | 2017-09-19 19:59:45 -0700 | [diff] [blame] | 82 | }}; |
| 83 | |
| 84 | const std::vector<uint32_t> inputIndexes = {operand1}; |
| 85 | const std::vector<uint32_t> outputIndexes = {operand4}; |
| 86 | std::vector<uint8_t> operandValues( |
| 87 | reinterpret_cast<const uint8_t*>(operand2Data.data()), |
| 88 | reinterpret_cast<const uint8_t*>(operand2Data.data()) + size); |
| 89 | int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)}; |
| 90 | operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]), |
| 91 | reinterpret_cast<const uint8_t*>(&activation[1])); |
| 92 | |
| 93 | const std::vector<hidl_memory> pools = {}; |
| 94 | |
| 95 | return { |
| 96 | .operands = operands, |
| 97 | .operations = operations, |
| 98 | .inputIndexes = inputIndexes, |
| 99 | .outputIndexes = outputIndexes, |
| 100 | .operandValues = operandValues, |
| 101 | .pools = pools, |
| 102 | }; |
| 103 | } |
| 104 | |
| 105 | // create first invalid model |
| 106 | Model createInvalidTestModel1() { |
| 107 | Model model = createValidTestModel(); |
Jean-Luc Brouillet | 39ac22e | 2017-09-23 15:15:58 -0700 | [diff] [blame^] | 108 | model.operations[0].type = static_cast<OperationType>(0xDEADBEEF); /* INVALID */ |
Michael Butler | 2f499a9 | 2017-09-19 19:59:45 -0700 | [diff] [blame] | 109 | return model; |
| 110 | } |
| 111 | |
| 112 | // create second invalid model |
| 113 | Model createInvalidTestModel2() { |
| 114 | Model model = createValidTestModel(); |
| 115 | const uint32_t operand1 = 0; |
| 116 | const uint32_t operand5 = 4; // INVALID OPERAND |
| 117 | model.inputIndexes = std::vector<uint32_t>({operand1, operand5 /* INVALID OPERAND */}); |
| 118 | return model; |
| 119 | } |
| 120 | |
| 121 | // allocator helper |
| 122 | hidl_memory allocateSharedMemory(int64_t size, const std::string& type = "ashmem") { |
| 123 | hidl_memory memory; |
| 124 | |
| 125 | sp<IAllocator> allocator = IAllocator::getService(type); |
| 126 | if (!allocator.get()) { |
| 127 | return {}; |
| 128 | } |
| 129 | |
| 130 | Return<void> ret = allocator->allocate(size, [&](bool success, const hidl_memory& mem) { |
| 131 | ASSERT_TRUE(success); |
| 132 | memory = mem; |
| 133 | }); |
| 134 | if (!ret.isOk()) { |
| 135 | return {}; |
| 136 | } |
| 137 | |
| 138 | return memory; |
| 139 | } |
| 140 | |
| 141 | // create a valid request |
| 142 | Request createValidTestRequest() { |
| 143 | std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f}; |
| 144 | std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f}; |
| 145 | const uint32_t INPUT = 0; |
| 146 | const uint32_t OUTPUT = 1; |
| 147 | |
| 148 | // prepare inputs |
| 149 | uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float)); |
| 150 | uint32_t outputSize = static_cast<uint32_t>(outputData.size() * sizeof(float)); |
| 151 | std::vector<RequestArgument> inputs = {{ |
| 152 | .location = {.poolIndex = INPUT, .offset = 0, .length = inputSize}, .dimensions = {}, |
| 153 | }}; |
| 154 | std::vector<RequestArgument> outputs = {{ |
| 155 | .location = {.poolIndex = OUTPUT, .offset = 0, .length = outputSize}, .dimensions = {}, |
| 156 | }}; |
| 157 | std::vector<hidl_memory> pools = {allocateSharedMemory(inputSize), |
| 158 | allocateSharedMemory(outputSize)}; |
| 159 | if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) { |
| 160 | return {}; |
| 161 | } |
| 162 | |
| 163 | // load data |
| 164 | sp<IMemory> inputMemory = mapMemory(pools[INPUT]); |
| 165 | sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]); |
| 166 | if (inputMemory.get() == nullptr || outputMemory.get() == nullptr) { |
| 167 | return {}; |
| 168 | } |
| 169 | float* inputPtr = reinterpret_cast<float*>(static_cast<void*>(inputMemory->getPointer())); |
| 170 | float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer())); |
| 171 | if (inputPtr == nullptr || outputPtr == nullptr) { |
| 172 | return {}; |
| 173 | } |
| 174 | inputMemory->update(); |
| 175 | outputMemory->update(); |
| 176 | std::copy(inputData.begin(), inputData.end(), inputPtr); |
| 177 | std::copy(outputData.begin(), outputData.end(), outputPtr); |
| 178 | inputMemory->commit(); |
| 179 | outputMemory->commit(); |
| 180 | |
| 181 | return {.inputs = inputs, .outputs = outputs, .pools = pools}; |
| 182 | } |
| 183 | |
| 184 | // create first invalid request |
| 185 | Request createInvalidTestRequest1() { |
| 186 | Request request = createValidTestRequest(); |
| 187 | const uint32_t INVALID = 2; |
| 188 | std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f}; |
| 189 | uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float)); |
| 190 | request.inputs[0].location = { |
| 191 | .poolIndex = INVALID /* INVALID */, .offset = 0, .length = inputSize}; |
| 192 | return request; |
| 193 | } |
| 194 | |
| 195 | // create second invalid request |
| 196 | Request createInvalidTestRequest2() { |
| 197 | Request request = createValidTestRequest(); |
| 198 | request.inputs[0].dimensions = std::vector<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8} /* INVALID */); |
| 199 | return request; |
| 200 | } |
| 201 | |
| 202 | } // namespace functional |
| 203 | } // namespace vts |
| 204 | } // namespace V1_0 |
| 205 | } // namespace neuralnetworks |
| 206 | } // namespace hardware |
| 207 | } // namespace android |