blob: 386c141f80887f4d817ace7483ae281621fcf0bd [file] [log] [blame]
Michael Butler20f28a22019-04-26 17:46:08 -07001/*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "neuralnetworks_hidl_hal_test"
18
19#include "VtsHalNeuralnetworks.h"
20
21#include "Callbacks.h"
22#include "ExecutionBurstController.h"
23#include "ExecutionBurstServer.h"
24#include "TestHarness.h"
25#include "Utils.h"
26
27#include <android-base/logging.h>
28
29namespace android {
30namespace hardware {
31namespace neuralnetworks {
32namespace V1_2 {
33namespace vts {
34namespace functional {
35
36using ::android::nn::ExecutionBurstController;
37using ::android::nn::RequestChannelSender;
38using ::android::nn::ResultChannelReceiver;
39using ExecutionBurstCallback = ::android::nn::ExecutionBurstController::ExecutionBurstCallback;
40
41constexpr size_t kExecutionBurstChannelLength = 1024;
42constexpr size_t kExecutionBurstChannelSmallLength = 8;
43
44///////////////////////// UTILITY FUNCTIONS /////////////////////////
45
46static bool badTiming(Timing timing) {
47 return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
48}
49
50static void createBurst(const sp<IPreparedModel>& preparedModel, const sp<IBurstCallback>& callback,
51 std::unique_ptr<RequestChannelSender>* sender,
52 std::unique_ptr<ResultChannelReceiver>* receiver,
53 sp<IBurstContext>* context) {
54 ASSERT_NE(nullptr, preparedModel.get());
55 ASSERT_NE(nullptr, sender);
56 ASSERT_NE(nullptr, receiver);
57 ASSERT_NE(nullptr, context);
58
59 // create FMQ objects
60 auto [fmqRequestChannel, fmqRequestDescriptor] =
61 RequestChannelSender::create(kExecutionBurstChannelLength, /*blocking=*/true);
62 auto [fmqResultChannel, fmqResultDescriptor] =
63 ResultChannelReceiver::create(kExecutionBurstChannelLength, /*blocking=*/true);
64 ASSERT_NE(nullptr, fmqRequestChannel.get());
65 ASSERT_NE(nullptr, fmqResultChannel.get());
66 ASSERT_NE(nullptr, fmqRequestDescriptor);
67 ASSERT_NE(nullptr, fmqResultDescriptor);
68
69 // configure burst
70 ErrorStatus errorStatus;
71 sp<IBurstContext> burstContext;
72 const Return<void> ret = preparedModel->configureExecutionBurst(
73 callback, *fmqRequestDescriptor, *fmqResultDescriptor,
74 [&errorStatus, &burstContext](ErrorStatus status, const sp<IBurstContext>& context) {
75 errorStatus = status;
76 burstContext = context;
77 });
78 ASSERT_TRUE(ret.isOk());
79 ASSERT_EQ(ErrorStatus::NONE, errorStatus);
80 ASSERT_NE(nullptr, burstContext.get());
81
82 // return values
83 *sender = std::move(fmqRequestChannel);
84 *receiver = std::move(fmqResultChannel);
85 *context = burstContext;
86}
87
88static void createBurstWithResultChannelLength(
89 const sp<IPreparedModel>& preparedModel,
90 std::shared_ptr<ExecutionBurstController>* controller, size_t resultChannelLength) {
91 ASSERT_NE(nullptr, preparedModel.get());
92 ASSERT_NE(nullptr, controller);
93
94 // create FMQ objects
95 auto [fmqRequestChannel, fmqRequestDescriptor] =
96 RequestChannelSender::create(kExecutionBurstChannelLength, /*blocking=*/true);
97 auto [fmqResultChannel, fmqResultDescriptor] =
98 ResultChannelReceiver::create(resultChannelLength, /*blocking=*/true);
99 ASSERT_NE(nullptr, fmqRequestChannel.get());
100 ASSERT_NE(nullptr, fmqResultChannel.get());
101 ASSERT_NE(nullptr, fmqRequestDescriptor);
102 ASSERT_NE(nullptr, fmqResultDescriptor);
103
104 // configure burst
105 sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
106 ErrorStatus errorStatus;
107 sp<IBurstContext> burstContext;
108 const Return<void> ret = preparedModel->configureExecutionBurst(
109 callback, *fmqRequestDescriptor, *fmqResultDescriptor,
110 [&errorStatus, &burstContext](ErrorStatus status, const sp<IBurstContext>& context) {
111 errorStatus = status;
112 burstContext = context;
113 });
114 ASSERT_TRUE(ret.isOk());
115 ASSERT_EQ(ErrorStatus::NONE, errorStatus);
116 ASSERT_NE(nullptr, burstContext.get());
117
118 // return values
119 *controller = std::make_shared<ExecutionBurstController>(
120 std::move(fmqRequestChannel), std::move(fmqResultChannel), burstContext, callback);
121}
122
123// Primary validation function. This function will take a valid serialized
124// request, apply a mutation to it to invalidate the serialized request, then
125// pass it to interface calls that use the serialized request. Note that the
126// serialized request here is passed by value, and any mutation to the
127// serialized request does not leave this function.
128static void validate(RequestChannelSender* sender, ResultChannelReceiver* receiver,
129 const std::string& message, std::vector<FmqRequestDatum> serialized,
130 const std::function<void(std::vector<FmqRequestDatum>*)>& mutation) {
131 mutation(&serialized);
132
133 // skip if packet is too large to send
134 if (serialized.size() > kExecutionBurstChannelLength) {
135 return;
136 }
137
138 SCOPED_TRACE(message);
139
140 // send invalid packet
141 sender->sendPacket(serialized);
142
143 // receive error
144 auto results = receiver->getBlocking();
145 ASSERT_TRUE(results.has_value());
146 const auto [status, outputShapes, timing] = std::move(*results);
147 EXPECT_NE(ErrorStatus::NONE, status);
148 EXPECT_EQ(0u, outputShapes.size());
149 EXPECT_TRUE(badTiming(timing));
150}
151
152static std::vector<FmqRequestDatum> createUniqueDatum() {
153 const FmqRequestDatum::PacketInformation packetInformation = {
154 /*.packetSize=*/10, /*.numberOfInputOperands=*/10, /*.numberOfOutputOperands=*/10,
155 /*.numberOfPools=*/10};
156 const FmqRequestDatum::OperandInformation operandInformation = {
157 /*.hasNoValue=*/false, /*.location=*/{}, /*.numberOfDimensions=*/10};
158 const int32_t invalidPoolIdentifier = std::numeric_limits<int32_t>::max();
159 std::vector<FmqRequestDatum> unique(7);
160 unique[0].packetInformation(packetInformation);
161 unique[1].inputOperandInformation(operandInformation);
162 unique[2].inputOperandDimensionValue(0);
163 unique[3].outputOperandInformation(operandInformation);
164 unique[4].outputOperandDimensionValue(0);
165 unique[5].poolIdentifier(invalidPoolIdentifier);
166 unique[6].measureTiming(MeasureTiming::YES);
167 return unique;
168}
169
170static const std::vector<FmqRequestDatum>& getUniqueDatum() {
171 static const std::vector<FmqRequestDatum> unique = createUniqueDatum();
172 return unique;
173}
174
175///////////////////////// REMOVE DATUM ////////////////////////////////////
176
177static void removeDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
178 const std::vector<FmqRequestDatum>& serialized) {
179 for (size_t index = 0; index < serialized.size(); ++index) {
180 const std::string message = "removeDatum: removed datum at index " + std::to_string(index);
181 validate(sender, receiver, message, serialized,
182 [index](std::vector<FmqRequestDatum>* serialized) {
183 serialized->erase(serialized->begin() + index);
184 });
185 }
186}
187
188///////////////////////// ADD DATUM ////////////////////////////////////
189
190static void addDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
191 const std::vector<FmqRequestDatum>& serialized) {
192 const std::vector<FmqRequestDatum>& extra = getUniqueDatum();
193 for (size_t index = 0; index <= serialized.size(); ++index) {
194 for (size_t type = 0; type < extra.size(); ++type) {
195 const std::string message = "addDatum: added datum type " + std::to_string(type) +
196 " at index " + std::to_string(index);
197 validate(sender, receiver, message, serialized,
198 [index, type, &extra](std::vector<FmqRequestDatum>* serialized) {
199 serialized->insert(serialized->begin() + index, extra[type]);
200 });
201 }
202 }
203}
204
205///////////////////////// MUTATE DATUM ////////////////////////////////////
206
207static bool interestingCase(const FmqRequestDatum& lhs, const FmqRequestDatum& rhs) {
208 using Discriminator = FmqRequestDatum::hidl_discriminator;
209
210 const bool differentValues = (lhs != rhs);
211 const bool sameSumType = (lhs.getDiscriminator() == rhs.getDiscriminator());
212 const auto discriminator = rhs.getDiscriminator();
213 const bool isDimensionValue = (discriminator == Discriminator::inputOperandDimensionValue ||
214 discriminator == Discriminator::outputOperandDimensionValue);
215
216 return differentValues && !(sameSumType && isDimensionValue);
217}
218
219static void mutateDatumTest(RequestChannelSender* sender, ResultChannelReceiver* receiver,
220 const std::vector<FmqRequestDatum>& serialized) {
221 const std::vector<FmqRequestDatum>& change = getUniqueDatum();
222 for (size_t index = 0; index < serialized.size(); ++index) {
223 for (size_t type = 0; type < change.size(); ++type) {
224 if (interestingCase(serialized[index], change[type])) {
225 const std::string message = "mutateDatum: changed datum at index " +
226 std::to_string(index) + " to datum type " +
227 std::to_string(type);
228 validate(sender, receiver, message, serialized,
229 [index, type, &change](std::vector<FmqRequestDatum>* serialized) {
230 (*serialized)[index] = change[type];
231 });
232 }
233 }
234 }
235}
236
237///////////////////////// BURST VALIATION TESTS ////////////////////////////////////
238
239static void validateBurstSerialization(const sp<IPreparedModel>& preparedModel,
240 const std::vector<Request>& requests) {
241 // create burst
242 std::unique_ptr<RequestChannelSender> sender;
243 std::unique_ptr<ResultChannelReceiver> receiver;
244 sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
245 sp<IBurstContext> context;
246 ASSERT_NO_FATAL_FAILURE(createBurst(preparedModel, callback, &sender, &receiver, &context));
247 ASSERT_NE(nullptr, sender.get());
248 ASSERT_NE(nullptr, receiver.get());
249 ASSERT_NE(nullptr, context.get());
250
251 // validate each request
252 for (const Request& request : requests) {
253 // load memory into callback slots
254 std::vector<intptr_t> keys(request.pools.size());
255 for (size_t i = 0; i < keys.size(); ++i) {
256 keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
257 }
258 const std::vector<int32_t> slots = callback->getSlots(request.pools, keys);
259
260 // ensure slot std::numeric_limits<int32_t>::max() doesn't exist (for
261 // subsequent slot validation testing)
262 const auto maxElement = std::max_element(slots.begin(), slots.end());
263 ASSERT_NE(slots.end(), maxElement);
264 ASSERT_NE(std::numeric_limits<int32_t>::max(), *maxElement);
265
266 // serialize the request
267 const auto serialized = ::android::nn::serialize(request, MeasureTiming::YES, slots);
268
269 // validations
270 removeDatumTest(sender.get(), receiver.get(), serialized);
271 addDatumTest(sender.get(), receiver.get(), serialized);
272 mutateDatumTest(sender.get(), receiver.get(), serialized);
273 }
274}
275
276static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
277 const std::vector<Request>& requests) {
278 // create regular burst
279 std::shared_ptr<ExecutionBurstController> controllerRegular;
280 ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(preparedModel, &controllerRegular,
281 kExecutionBurstChannelLength));
282 ASSERT_NE(nullptr, controllerRegular.get());
283
284 // create burst with small output channel
285 std::shared_ptr<ExecutionBurstController> controllerSmall;
286 ASSERT_NO_FATAL_FAILURE(createBurstWithResultChannelLength(preparedModel, &controllerSmall,
287 kExecutionBurstChannelSmallLength));
288 ASSERT_NE(nullptr, controllerSmall.get());
289
290 // validate each request
291 for (const Request& request : requests) {
292 // load memory into callback slots
293 std::vector<intptr_t> keys(request.pools.size());
294 for (size_t i = 0; i < keys.size(); ++i) {
295 keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
296 }
297
298 // collect serialized result by running regular burst
299 const auto [status1, outputShapes1, timing1] =
300 controllerRegular->compute(request, MeasureTiming::NO, keys);
301
302 // skip test if synchronous output isn't useful
303 const std::vector<FmqResultDatum> serialized =
304 ::android::nn::serialize(status1, outputShapes1, timing1);
305 if (status1 != ErrorStatus::NONE ||
306 serialized.size() <= kExecutionBurstChannelSmallLength) {
307 continue;
308 }
309
310 // by this point, execution should fail because the result channel isn't
311 // large enough to return the serialized result
312 const auto [status2, outputShapes2, timing2] =
313 controllerSmall->compute(request, MeasureTiming::NO, keys);
314 EXPECT_NE(ErrorStatus::NONE, status2);
315 EXPECT_EQ(0u, outputShapes2.size());
316 EXPECT_TRUE(badTiming(timing2));
317 }
318}
319
320///////////////////////////// ENTRY POINT //////////////////////////////////
321
322void ValidationTest::validateBurst(const sp<IPreparedModel>& preparedModel,
323 const std::vector<Request>& requests) {
324 ASSERT_NO_FATAL_FAILURE(validateBurstSerialization(preparedModel, requests));
325 ASSERT_NO_FATAL_FAILURE(validateBurstFmqLength(preparedModel, requests));
326}
327
328} // namespace functional
329} // namespace vts
330} // namespace V1_2
331} // namespace neuralnetworks
332} // namespace hardware
333} // namespace android