blob: e334ee902b521d31cbe3f8795cfb1370c333ad7d [file] [log] [blame] [edit]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <memory>
#include <optional>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#include <Utils.h>
#include <aidl/android/hardware/audio/effect/IEffect.h>
#include <aidl/android/hardware/audio/effect/IFactory.h>
#include <aidl/android/media/audio/common/AudioChannelLayout.h>
#include <android/binder_auto_utils.h>
#include <fmq/AidlMessageQueue.h>
#include <gtest/gtest.h>
#include <system/audio_aidl_utils.h>
#include <system/audio_effects/aidl_effects_utils.h>
#include <system/audio_effects/effect_uuid.h>
#include "EffectFactoryHelper.h"
#include "TestUtils.h"
#include "pffft.hpp"
using namespace android;
using aidl::android::hardware::audio::effect::CommandId;
using aidl::android::hardware::audio::effect::Descriptor;
using aidl::android::hardware::audio::effect::getEffectTypeUuidSpatializer;
using aidl::android::hardware::audio::effect::getRange;
using aidl::android::hardware::audio::effect::IEffect;
using aidl::android::hardware::audio::effect::isRangeValid;
using aidl::android::hardware::audio::effect::kDrainSupportedVersion;
using aidl::android::hardware::audio::effect::kEffectTypeUuidSpatializer;
using aidl::android::hardware::audio::effect::kEventFlagDataMqNotEmpty;
using aidl::android::hardware::audio::effect::kEventFlagDataMqUpdate;
using aidl::android::hardware::audio::effect::kEventFlagNotEmpty;
using aidl::android::hardware::audio::effect::kReopenSupportedVersion;
using aidl::android::hardware::audio::effect::Parameter;
using aidl::android::hardware::audio::effect::Range;
using aidl::android::hardware::audio::effect::Spatializer;
using aidl::android::hardware::audio::effect::State;
using aidl::android::hardware::common::fmq::SynchronizedReadWrite;
using aidl::android::media::audio::common::AudioChannelLayout;
using aidl::android::media::audio::common::AudioFormatDescription;
using aidl::android::media::audio::common::AudioFormatType;
using aidl::android::media::audio::common::AudioUuid;
using aidl::android::media::audio::common::PcmType;
using ::android::audio::utils::toString;
using ::android::hardware::EventFlag;
const AudioFormatDescription kDefaultFormatDescription = {
.type = AudioFormatType::PCM, .pcm = PcmType::FLOAT_32_BIT, .encoding = ""};
typedef ::android::AidlMessageQueue<IEffect::Status,
::aidl::android::hardware::common::fmq::SynchronizedReadWrite>
StatusMQ;
typedef ::android::AidlMessageQueue<float,
::aidl::android::hardware::common::fmq::SynchronizedReadWrite>
DataMQ;
static inline std::string getPrefix(Descriptor& descriptor) {
std::string prefix = "Implementor_" + descriptor.common.implementor + "_name_" +
descriptor.common.name + "_UUID_" + toString(descriptor.common.id.uuid);
std::replace_if(
prefix.begin(), prefix.end(), [](const char c) { return !std::isalnum(c); }, '_');
return prefix;
}
static constexpr float kMaxAudioSampleValue = 1;
static constexpr int kNPointFFT = 16384;
static constexpr int kSamplingFrequency = 44100;
static constexpr int kDefaultChannelLayout = AudioChannelLayout::LAYOUT_STEREO;
static constexpr float kLn10Div20 = -0.11512925f; // -ln(10)/20
class EffectHelper {
public:
void create(std::shared_ptr<IFactory> factory, std::shared_ptr<IEffect>& effect,
Descriptor& desc, binder_status_t status = EX_NONE) {
ASSERT_NE(factory, nullptr);
auto& id = desc.common.id;
ASSERT_STATUS(status, factory->createEffect(id.uuid, &effect));
if (status == EX_NONE) {
ASSERT_NE(effect, nullptr) << toString(id.uuid);
ASSERT_NO_FATAL_FAILURE(expectState(effect, State::INIT));
}
mIsSpatializer = id.type == getEffectTypeUuidSpatializer();
mDescriptor = desc;
}
static void destroyIgnoreRet(std::shared_ptr<IFactory> factory,
std::shared_ptr<IEffect> effect) {
if (factory && effect) {
factory->destroyEffect(effect);
}
}
static void destroy(std::shared_ptr<IFactory> factory, std::shared_ptr<IEffect> effect,
binder_status_t status = EX_NONE) {
ASSERT_NE(factory, nullptr);
ASSERT_NE(effect, nullptr);
ASSERT_STATUS(status, factory->destroyEffect(effect));
}
void open(std::shared_ptr<IEffect> effect, const Parameter::Common& common,
const std::optional<Parameter::Specific>& specific, IEffect::OpenEffectReturn* ret,
binder_status_t status = EX_NONE) {
ASSERT_NE(effect, nullptr);
ASSERT_STATUS(status, effect->open(common, specific, ret));
if (status != EX_NONE) {
return;
}
ASSERT_TRUE(expectState(effect, State::IDLE));
updateFrameSize(common);
}
void open(std::shared_ptr<IEffect> effect, int session = 0, binder_status_t status = EX_NONE) {
ASSERT_NE(effect, nullptr);
Parameter::Common common = createParamCommon(session);
IEffect::OpenEffectReturn ret;
ASSERT_NO_FATAL_FAILURE(open(effect, common, std::nullopt /* specific */, &ret, status));
}
void reopen(std::shared_ptr<IEffect> effect, const Parameter::Common& common,
IEffect::OpenEffectReturn* ret, binder_status_t status = EX_NONE) {
ASSERT_NE(effect, nullptr);
ASSERT_STATUS(status, effect->reopen(ret));
if (status != EX_NONE) {
return;
}
updateFrameSize(common);
}
static void closeIgnoreRet(std::shared_ptr<IEffect> effect) {
if (effect) {
effect->close();
}
}
static void close(std::shared_ptr<IEffect> effect, binder_status_t status = EX_NONE) {
if (effect) {
ASSERT_STATUS(status, effect->close());
if (status == EX_NONE) {
ASSERT_TRUE(expectState(effect, State::INIT));
}
}
}
static void getDescriptor(std::shared_ptr<IEffect> effect, Descriptor& desc,
binder_status_t status = EX_NONE) {
ASSERT_NE(effect, nullptr);
ASSERT_STATUS(status, effect->getDescriptor(&desc));
}
static bool expectState(std::shared_ptr<IEffect> effect, State expectState) {
if (effect == nullptr) return false;
if (State state; EX_NONE != effect->getState(&state).getStatus() || expectState != state) {
return false;
}
return true;
}
static void commandIgnoreRet(std::shared_ptr<IEffect> effect, CommandId command) {
if (effect) {
effect->command(command);
}
}
static void command(std::shared_ptr<IEffect> effect, CommandId command,
binder_status_t status = EX_NONE) {
ASSERT_NE(effect, nullptr);
ASSERT_STATUS(status, effect->command(command));
if (status != EX_NONE) {
return;
}
switch (command) {
case CommandId::START:
ASSERT_TRUE(expectState(effect, State::PROCESSING));
break;
case CommandId::STOP:
// Enforce the state checking after kDrainSupportedVersion
if (getHalVersion(effect) >= kDrainSupportedVersion) {
ASSERT_TRUE(expectState(effect, State::IDLE) ||
expectState(effect, State::DRAINING));
}
break;
case CommandId::RESET:
ASSERT_TRUE(expectState(effect, State::IDLE));
break;
default:
return;
}
}
static void writeToFmq(std::unique_ptr<StatusMQ>& statusMq, std::unique_ptr<DataMQ>& dataMq,
const std::vector<float>& buffer, int version) {
const size_t available = dataMq->availableToWrite();
ASSERT_NE(0Ul, available);
auto bufferFloats = buffer.size();
auto floatsToWrite = std::min(available, bufferFloats);
ASSERT_TRUE(dataMq->write(buffer.data(), floatsToWrite));
EventFlag* efGroup;
ASSERT_EQ(::android::OK,
EventFlag::createEventFlag(statusMq->getEventFlagWord(), &efGroup));
ASSERT_NE(nullptr, efGroup);
efGroup->wake(version >= kReopenSupportedVersion ? kEventFlagDataMqNotEmpty
: kEventFlagNotEmpty);
ASSERT_EQ(::android::OK, EventFlag::deleteEventFlag(&efGroup));
}
static void readFromFmq(std::unique_ptr<StatusMQ>& statusMq, size_t statusNum,
std::unique_ptr<DataMQ>& dataMq, size_t expectFloats,
std::vector<float>& buffer,
std::optional<int> expectStatus = STATUS_OK) {
if (0 == statusNum) {
ASSERT_EQ(0ul, statusMq->availableToRead());
return;
}
IEffect::Status status{};
ASSERT_TRUE(statusMq->readBlocking(&status, statusNum));
if (expectStatus.has_value()) {
ASSERT_EQ(expectStatus.value(), status.status);
}
ASSERT_EQ(expectFloats, (unsigned)status.fmqProduced);
ASSERT_EQ(expectFloats, dataMq->availableToRead());
if (expectFloats != 0) {
ASSERT_TRUE(dataMq->read(buffer.data(), expectFloats));
}
}
static void expectDataMqUpdateEventFlag(std::unique_ptr<StatusMQ>& statusMq) {
EventFlag* efGroup;
ASSERT_EQ(::android::OK,
EventFlag::createEventFlag(statusMq->getEventFlagWord(), &efGroup));
ASSERT_NE(nullptr, efGroup);
uint32_t efState = 0;
EXPECT_EQ(::android::OK, efGroup->wait(kEventFlagDataMqUpdate, &efState, 1'000'000 /*1ms*/,
true /* retry */));
EXPECT_TRUE(efState & kEventFlagDataMqUpdate);
}
Parameter::Common createParamCommon(
int session = 0, int ioHandle = -1, int iSampleRate = 48000, int oSampleRate = 48000,
long iFrameCount = 0x100, long oFrameCount = 0x100,
AudioChannelLayout inputChannelLayout =
AudioChannelLayout::make<AudioChannelLayout::layoutMask>(kDefaultChannelLayout),
AudioChannelLayout outputChannelLayout =
AudioChannelLayout::make<AudioChannelLayout::layoutMask>(
kDefaultChannelLayout)) {
// query supported input layout and use it as the default parameter in common
if (mIsSpatializer && isRangeValid<Range::spatializer>(Spatializer::supportedChannelLayout,
mDescriptor.capability)) {
const auto layoutRange = getRange<Range::spatializer, Range::SpatializerRange>(
mDescriptor.capability, Spatializer::supportedChannelLayout);
if (std::vector<AudioChannelLayout> layouts;
layoutRange &&
0 != (layouts = layoutRange->min.get<Spatializer::supportedChannelLayout>())
.size()) {
inputChannelLayout = layouts[0];
}
}
Parameter::Common common;
common.session = session;
common.ioHandle = ioHandle;
auto& input = common.input;
auto& output = common.output;
input.base.sampleRate = iSampleRate;
input.base.channelMask = inputChannelLayout;
input.base.format = kDefaultFormatDescription;
input.frameCount = iFrameCount;
output.base.sampleRate = oSampleRate;
output.base.channelMask = outputChannelLayout;
output.base.format = kDefaultFormatDescription;
output.frameCount = oFrameCount;
return common;
}
typedef ::android::AidlMessageQueue<
IEffect::Status, ::aidl::android::hardware::common::fmq::SynchronizedReadWrite>
StatusMQ;
typedef ::android::AidlMessageQueue<
float, ::aidl::android::hardware::common::fmq::SynchronizedReadWrite>
DataMQ;
class EffectParam {
public:
std::unique_ptr<StatusMQ> statusMQ;
std::unique_ptr<DataMQ> inputMQ;
std::unique_ptr<DataMQ> outputMQ;
};
template <typename T, Range::Tag tag>
static bool isParameterValid(const T& target, const Descriptor& desc) {
if (desc.capability.range.getTag() != tag) {
return true;
}
const auto& ranges = desc.capability.range.get<tag>();
return inRange(target, ranges);
}
/**
* Add to test value set: (min+max)/2, minimum/maximum numeric limits, and min-1/max+1 if
* result still in numeric limits after -1/+1.
* Only use this when the type of test value is basic type (std::is_arithmetic return true).
*/
template <typename S, typename = std::enable_if_t<std::is_arithmetic_v<S>>>
static std::set<S> expandTestValueBasic(std::set<S>& s) {
const auto minLimit = std::numeric_limits<S>::min(),
maxLimit = std::numeric_limits<S>::max();
if (s.size()) {
const auto min = *s.begin(), max = *s.rbegin();
s.insert((min & max) + ((min ^ max) >> 1));
if (min > minLimit + 1) {
s.insert(min - 1);
}
if (max < maxLimit - 1) {
s.insert(max + 1);
}
}
s.insert(minLimit);
s.insert(maxLimit);
return s;
}
template <typename T, typename S, Range::Tag R, typename T::Tag tag>
static std::set<S> getTestValueSet(
std::vector<std::pair<std::shared_ptr<IFactory>, Descriptor>> descList) {
std::set<S> result;
for (const auto& [_, desc] : descList) {
if (desc.capability.range.getTag() == R) {
const auto& ranges = desc.capability.range.get<R>();
for (const auto& range : ranges) {
if (range.min.getTag() == tag) {
result.insert(range.min.template get<tag>());
}
if (range.max.getTag() == tag) {
result.insert(range.max.template get<tag>());
}
}
}
}
return result;
}
template <typename T, typename S, Range::Tag R, typename T::Tag tag, typename Functor>
static std::set<S> getTestValueSet(
std::vector<std::pair<std::shared_ptr<IFactory>, Descriptor>> descList,
Functor functor) {
auto result = getTestValueSet<T, S, R, tag>(descList);
return functor(result);
}
// keep writing data to the FMQ until effect transit from DRAINING to IDLE
static void waitForDrain(std::vector<float>& inputBuffer, std::vector<float>& outputBuffer,
const std::shared_ptr<IEffect>& effect,
std::unique_ptr<EffectHelper::StatusMQ>& statusMQ,
std::unique_ptr<EffectHelper::DataMQ>& inputMQ,
std::unique_ptr<EffectHelper::DataMQ>& outputMQ, int version) {
State state;
while (effect->getState(&state).getStatus() == EX_NONE && state == State::DRAINING) {
EXPECT_NO_FATAL_FAILURE(
EffectHelper::writeToFmq(statusMQ, inputMQ, inputBuffer, version));
EXPECT_NO_FATAL_FAILURE(EffectHelper::readFromFmq(
statusMQ, 1, outputMQ, outputBuffer.size(), outputBuffer, std::nullopt));
}
ASSERT_TRUE(State::IDLE == state);
EXPECT_NO_FATAL_FAILURE(EffectHelper::readFromFmq(statusMQ, 0, outputMQ, 0, outputBuffer));
return;
}
static void processAndWriteToOutput(std::vector<float>& inputBuffer,
std::vector<float>& outputBuffer,
const std::shared_ptr<IEffect>& effect,
IEffect::OpenEffectReturn* openEffectReturn,
int version = -1, int times = 1,
bool callStopReset = true) {
// Initialize AidlMessagequeues
auto statusMQ = std::make_unique<EffectHelper::StatusMQ>(openEffectReturn->statusMQ);
ASSERT_TRUE(statusMQ->isValid());
auto inputMQ = std::make_unique<EffectHelper::DataMQ>(openEffectReturn->inputDataMQ);
ASSERT_TRUE(inputMQ->isValid());
auto outputMQ = std::make_unique<EffectHelper::DataMQ>(openEffectReturn->outputDataMQ);
ASSERT_TRUE(outputMQ->isValid());
// Enabling the process
ASSERT_NO_FATAL_FAILURE(command(effect, CommandId::START));
// Write from buffer to message queues and calling process
if (version == -1) {
ASSERT_IS_OK(effect->getInterfaceVersion(&version));
}
for (int i = 0; i < times; i++) {
EXPECT_NO_FATAL_FAILURE(
EffectHelper::writeToFmq(statusMQ, inputMQ, inputBuffer, version));
// Read the updated message queues into buffer
EXPECT_NO_FATAL_FAILURE(EffectHelper::readFromFmq(statusMQ, 1, outputMQ,
outputBuffer.size(), outputBuffer));
}
// Disable the process
if (callStopReset) {
ASSERT_NO_FATAL_FAILURE(command(effect, CommandId::STOP));
EXPECT_NO_FATAL_FAILURE(waitForDrain(inputBuffer, outputBuffer, effect, statusMQ,
inputMQ, outputMQ, version));
}
if (callStopReset) {
ASSERT_NO_FATAL_FAILURE(command(effect, CommandId::RESET));
}
}
// Find FFT bin indices for testFrequencies and get bin center frequencies
void roundToFreqCenteredToFftBin(std::vector<int>& testFrequencies,
std::vector<int>& binOffsets, const float kBinWidth) {
for (size_t i = 0; i < testFrequencies.size(); i++) {
binOffsets[i] = std::round(testFrequencies[i] / kBinWidth);
testFrequencies[i] = std::round(binOffsets[i] * kBinWidth);
}
}
// Fill inputBuffer with random values between -maxAudioSampleValue to maxAudioSampleValue
void generateInputBuffer(std::vector<float>& inputBuffer, size_t startPosition, bool isStrip,
size_t channelCount,
float maxAudioSampleValue = kMaxAudioSampleValue) {
size_t increment = isStrip ? 1 /*Fill input at all the channels*/
: channelCount /*Fill input at only one channel*/;
for (size_t i = startPosition; i < inputBuffer.size(); i += increment) {
inputBuffer[i] =
((static_cast<float>(std::rand()) / RAND_MAX) * 2 - 1) * maxAudioSampleValue;
}
}
// Generate multitone input between -amplitude to +amplitude using testFrequencies
// All test frequencies are considered having the same amplitude
// The function supports only mono and stereo channel layout
void generateSineWave(const std::vector<int>& testFrequencies, std::vector<float>& input,
const float amplitude = 1.0,
const int samplingFrequency = kSamplingFrequency,
int channelLayout = AudioChannelLayout::LAYOUT_STEREO) {
bool isStereo = (channelLayout == AudioChannelLayout::LAYOUT_STEREO);
if (isStereo) {
ASSERT_EQ(input.size() % 2, 0u)
<< "In case of stereo input, the input size value must be even";
}
for (size_t i = 0; i < input.size(); i += (isStereo ? 2 : 1)) {
input[i] = 0;
for (size_t j = 0; j < testFrequencies.size(); j++) {
input[i] += sin(2 * M_PI * testFrequencies[j] * (i / (isStereo ? 2 : 1)) /
samplingFrequency);
}
input[i] *= amplitude / testFrequencies.size();
if (isStereo) {
input[i + 1] = input[i];
}
}
}
// Generate single tone input between -amplitude to +amplitude using testFrequency
// The function supports only mono and stereo channel layout
void generateSineWave(const int testFrequency, std::vector<float>& input,
const float amplitude = 1.0,
const int samplingFrequency = kSamplingFrequency,
int channelLayout = AudioChannelLayout::LAYOUT_STEREO) {
ASSERT_NO_FATAL_FAILURE(generateSineWave(std::vector<int>{testFrequency}, input, amplitude,
samplingFrequency, channelLayout));
}
// PFFFT only supports transforms for inputs of length N of the form N = (2^a)*(3^b)*(5^c) where
// a >= 5, b >=0, c >= 0.
constexpr bool isFftInputSizeValid(size_t n) {
if (n == 0 || n & 0b11111) {
return false;
}
for (const int factor : {2, 3, 5}) {
while (n % factor == 0) {
n /= factor;
}
}
return n == 1;
}
// Use FFT transform to convert the buffer to frequency domain
// Compute its magnitude at binOffsets
void calculateMagnitudeMono(std::vector<float>& bufferMag, // Output parameter
const std::vector<float>& buffer, // Input parameter
const std::vector<int>& binOffsets, // Input parameter
const int nPointFFT = kNPointFFT) { // Input parameter
ASSERT_TRUE(isFftInputSizeValid(nPointFFT))
<< "PFFFT only supports transforms for inputs of length N of the form N = (2 ^ a) "
"* (3 ^ b) * (5 ^ c) where a >= 5, b >= 0, c >= 0. ";
ASSERT_GE((int)buffer.size(), nPointFFT)
<< "The input(buffer) size must be greater than or equal to nPointFFT";
bufferMag.resize(binOffsets.size());
std::vector<float> fftInput(nPointFFT);
pffft::detail::PFFFT_Setup* inputHandle =
pffft_new_setup(nPointFFT, pffft::detail::PFFFT_REAL);
pffft_transform_ordered(inputHandle, buffer.data(), fftInput.data(), nullptr,
pffft::detail::PFFFT_FORWARD);
pffft_destroy_setup(inputHandle);
for (size_t i = 0; i < binOffsets.size(); i++) {
size_t k = binOffsets[i];
bufferMag[i] = sqrt((fftInput[k * 2] * fftInput[k * 2]) +
(fftInput[k * 2 + 1] * fftInput[k * 2 + 1]));
}
}
// Use FFT transform to convert the buffer to frequency domain
// Compute its magnitude at binOffsets
void calculateMagnitudeStereo(
std::pair<std::vector<float>, std::vector<float>>& bufferMag, // Output parameter
const std::vector<float>& buffer, // Input parameter
const std::vector<int>& binOffsets, // Input parameter
const int nPointFFT = kNPointFFT) { // Input parameter
std::vector<float> leftChannelBuffer(buffer.size() / 2),
rightChannelBuffer(buffer.size() / 2);
for (size_t i = 0; i < buffer.size(); i += 2) {
leftChannelBuffer[i / 2] = buffer[i];
rightChannelBuffer[i / 2] = buffer[i + 1];
}
std::vector<float> leftMagnitude(binOffsets.size());
std::vector<float> rightMagnitude(binOffsets.size());
ASSERT_NO_FATAL_FAILURE(
calculateMagnitudeMono(leftMagnitude, leftChannelBuffer, binOffsets, nPointFFT));
ASSERT_NO_FATAL_FAILURE(
calculateMagnitudeMono(rightMagnitude, rightChannelBuffer, binOffsets, nPointFFT));
bufferMag = {leftMagnitude, rightMagnitude};
}
// Computes magnitude for mono and stereo inputs and verifies equal magnitude for left and right
// channel in case of stereo inputs
void calculateAndVerifyMagnitude(std::vector<float>& mag, // Output parameter
const int channelLayout, // Input parameter
const std::vector<float>& buffer, // Input parameter
const std::vector<int>& binOffsets, // Input parameter
const int nPointFFT = kNPointFFT) { // Input parameter
if (channelLayout == AudioChannelLayout::LAYOUT_STEREO) {
std::pair<std::vector<float>, std::vector<float>> magStereo;
ASSERT_NO_FATAL_FAILURE(
calculateMagnitudeStereo(magStereo, buffer, binOffsets, nPointFFT));
ASSERT_EQ(magStereo.first, magStereo.second);
mag = magStereo.first;
} else {
ASSERT_NO_FATAL_FAILURE(calculateMagnitudeMono(mag, buffer, binOffsets, nPointFFT));
}
}
void updateFrameSize(const Parameter::Common& common) {
mInputFrameSize = ::aidl::android::hardware::audio::common::getFrameSizeInBytes(
common.input.base.format, common.input.base.channelMask);
mInputSamples = common.input.frameCount * mInputFrameSize / sizeof(float);
mOutputFrameSize = ::aidl::android::hardware::audio::common::getFrameSizeInBytes(
common.output.base.format, common.output.base.channelMask);
mOutputSamples = common.output.frameCount * mOutputFrameSize / sizeof(float);
}
void generateInput(std::vector<float>& input, float inputFrequency, float samplingFrequency,
size_t inputSize = 0) {
if (inputSize == 0 || inputSize > input.size()) {
inputSize = input.size();
}
for (size_t i = 0; i < inputSize; i++) {
input[i] = sin(2 * M_PI * inputFrequency * i / samplingFrequency);
}
}
constexpr float dBToAmplitude(float dB) { return std::exp(dB * kLn10Div20); }
static int getHalVersion(const std::shared_ptr<IEffect>& effect) {
int version = 0;
return (effect && effect->getInterfaceVersion(&version).isOk()) ? version : 0;
}
bool mIsSpatializer;
Descriptor mDescriptor;
size_t mInputFrameSize, mOutputFrameSize;
size_t mInputSamples, mOutputSamples;
};