VtsHalTargetTest: Configure channel layout and generate input data
correctly

This commit includes multiple changes:
	- Updated generateSineWave function to generate both mono and stereo data
	- Moved the calculateMagnitude function to a common location, the EffectHelper
	  class and added support for both mono and stereo data
	- Modified the createParamCommon function
	- Moved some constants to a common location, EffectHelper.h
	- Updated some test functions to add support for both mono and stereo
	- Added a function in EffectHelper to validate pffft input size
	- Added checks in calculateMagnitudeMono() function to validate
	  input and output buffer size

Bug: 305866207
Test: atest hardware/interfaces/audio/aidl/vts/

Change-Id: Ia68108ad79349559b5b12bd6574da79fb1e117f3
diff --git a/audio/aidl/vts/EffectHelper.h b/audio/aidl/vts/EffectHelper.h
index eedac3d..d714ef4 100644
--- a/audio/aidl/vts/EffectHelper.h
+++ b/audio/aidl/vts/EffectHelper.h
@@ -84,7 +84,9 @@
 }
 
 static constexpr float kMaxAudioSampleValue = 1;
+static constexpr int kNPointFFT = 16384;
 static constexpr int kSamplingFrequency = 44100;
+static constexpr int kDefaultChannelLayout = AudioChannelLayout::LAYOUT_STEREO;
 
 class EffectHelper {
   public:
@@ -255,13 +257,14 @@
         EXPECT_TRUE(efState & kEventFlagDataMqUpdate);
     }
 
-    Parameter::Common createParamCommon(int session = 0, int ioHandle = -1, int iSampleRate = 48000,
-                                        int oSampleRate = 48000, long iFrameCount = 0x100,
-                                        long oFrameCount = 0x100) {
-        AudioChannelLayout inputLayout = AudioChannelLayout::make<AudioChannelLayout::layoutMask>(
-                AudioChannelLayout::LAYOUT_STEREO);
-        AudioChannelLayout outputLayout = inputLayout;
-
+    Parameter::Common createParamCommon(
+            int session = 0, int ioHandle = -1, int iSampleRate = 48000, int oSampleRate = 48000,
+            long iFrameCount = 0x100, long oFrameCount = 0x100,
+            AudioChannelLayout inputChannelLayout =
+                    AudioChannelLayout::make<AudioChannelLayout::layoutMask>(kDefaultChannelLayout),
+            AudioChannelLayout outputChannelLayout =
+                    AudioChannelLayout::make<AudioChannelLayout::layoutMask>(
+                            kDefaultChannelLayout)) {
         // query supported input layout and use it as the default parameter in common
         if (mIsSpatializer && isRangeValid<Range::spatializer>(Spatializer::supportedChannelLayout,
                                                                mDescriptor.capability)) {
@@ -271,18 +274,10 @@
                 layoutRange &&
                 0 != (layouts = layoutRange->min.get<Spatializer::supportedChannelLayout>())
                                 .size()) {
-                inputLayout = layouts[0];
+                inputChannelLayout = layouts[0];
             }
         }
 
-        return createParamCommon(session, ioHandle, iSampleRate, oSampleRate, iFrameCount,
-                                 oFrameCount, inputLayout, outputLayout);
-    }
-
-    static Parameter::Common createParamCommon(int session, int ioHandle, int iSampleRate,
-                                               int oSampleRate, long iFrameCount, long oFrameCount,
-                                               AudioChannelLayout inputChannelLayout,
-                                               AudioChannelLayout outputChannelLayout) {
         Parameter::Common common;
         common.session = session;
         common.ioHandle = ioHandle;
@@ -459,43 +454,120 @@
 
     // Generate multitone input between -amplitude to +amplitude using testFrequencies
     // All test frequencies are considered having the same amplitude
+    // The function supports only mono and stereo channel layout
     void generateSineWave(const std::vector<int>& testFrequencies, std::vector<float>& input,
                           const float amplitude = 1.0,
-                          const int samplingFrequency = kSamplingFrequency) {
-        for (size_t i = 0; i < input.size(); i++) {
+                          const int samplingFrequency = kSamplingFrequency,
+                          int channelLayout = AudioChannelLayout::LAYOUT_STEREO) {
+        bool isStereo = (channelLayout == AudioChannelLayout::LAYOUT_STEREO);
+        if (isStereo) {
+            ASSERT_EQ(input.size() % 2, 0u)
+                    << "In case of stereo input, the input size value must be even";
+        }
+        for (size_t i = 0; i < input.size(); i += (isStereo ? 2 : 1)) {
             input[i] = 0;
 
             for (size_t j = 0; j < testFrequencies.size(); j++) {
-                input[i] += sin(2 * M_PI * testFrequencies[j] * i / samplingFrequency);
+                input[i] += sin(2 * M_PI * testFrequencies[j] * (i / (isStereo ? 2 : 1)) /
+                                samplingFrequency);
             }
             input[i] *= amplitude / testFrequencies.size();
+
+            if (isStereo) {
+                input[i + 1] = input[i];
+            }
         }
     }
 
     // Generate single tone input between -amplitude to +amplitude using testFrequency
+    // The function supports only mono and stereo channel layout
     void generateSineWave(const int testFrequency, std::vector<float>& input,
                           const float amplitude = 1.0,
-                          const int samplingFrequency = kSamplingFrequency) {
-        generateSineWave(std::vector<int>{testFrequency}, input, amplitude, samplingFrequency);
+                          const int samplingFrequency = kSamplingFrequency,
+                          int channelLayout = AudioChannelLayout::LAYOUT_STEREO) {
+        ASSERT_NO_FATAL_FAILURE(generateSineWave(std::vector<int>{testFrequency}, input, amplitude,
+                                                 samplingFrequency, channelLayout));
+    }
+
+    // PFFFT only supports transforms for inputs of length N of the form N = (2^a)*(3^b)*(5^c) where
+    // a >= 5, b >=0, c >= 0.
+    constexpr bool isFftInputSizeValid(size_t n) {
+        if (n == 0 || n & 0b11111) {
+            return false;
+        }
+        for (const int factor : {2, 3, 5}) {
+            while (n % factor == 0) {
+                n /= factor;
+            }
+        }
+        return n == 1;
     }
 
     // Use FFT transform to convert the buffer to frequency domain
     // Compute its magnitude at binOffsets
-    std::vector<float> calculateMagnitude(const std::vector<float>& buffer,
-                                          const std::vector<int>& binOffsets, const int nPointFFT) {
+    void calculateMagnitudeMono(std::vector<float>& bufferMag,       // Output parameter
+                                const std::vector<float>& buffer,    // Input parameter
+                                const std::vector<int>& binOffsets,  // Input parameter
+                                const int nPointFFT = kNPointFFT) {  // Input parameter
+        ASSERT_TRUE(isFftInputSizeValid(nPointFFT))
+                << "PFFFT only supports transforms for inputs of length N of the form N = (2 ^ a) "
+                   "* (3 ^ b) * (5 ^ c) where a >= 5, b >= 0, c >= 0. ";
+        ASSERT_GE((int)buffer.size(), nPointFFT)
+                << "The input(buffer) size must be greater than or equal to nPointFFT";
+        bufferMag.resize(binOffsets.size());
         std::vector<float> fftInput(nPointFFT);
         PFFFT_Setup* inputHandle = pffft_new_setup(nPointFFT, PFFFT_REAL);
         pffft_transform_ordered(inputHandle, buffer.data(), fftInput.data(), nullptr,
                                 PFFFT_FORWARD);
         pffft_destroy_setup(inputHandle);
-        std::vector<float> bufferMag(binOffsets.size());
         for (size_t i = 0; i < binOffsets.size(); i++) {
             size_t k = binOffsets[i];
             bufferMag[i] = sqrt((fftInput[k * 2] * fftInput[k * 2]) +
                                 (fftInput[k * 2 + 1] * fftInput[k * 2 + 1]));
         }
+    }
 
-        return bufferMag;
+    // Use FFT transform to convert the buffer to frequency domain
+    // Compute its magnitude at binOffsets
+    void calculateMagnitudeStereo(
+            std::pair<std::vector<float>, std::vector<float>>& bufferMag,  // Output parameter
+            const std::vector<float>& buffer,                              // Input parameter
+            const std::vector<int>& binOffsets,                            // Input parameter
+            const int nPointFFT = kNPointFFT) {                            // Input parameter
+        std::vector<float> leftChannelBuffer(buffer.size() / 2),
+                rightChannelBuffer(buffer.size() / 2);
+        for (size_t i = 0; i < buffer.size(); i += 2) {
+            leftChannelBuffer[i / 2] = buffer[i];
+            rightChannelBuffer[i / 2] = buffer[i + 1];
+        }
+        std::vector<float> leftMagnitude(binOffsets.size());
+        std::vector<float> rightMagnitude(binOffsets.size());
+
+        ASSERT_NO_FATAL_FAILURE(
+                calculateMagnitudeMono(leftMagnitude, leftChannelBuffer, binOffsets, nPointFFT));
+        ASSERT_NO_FATAL_FAILURE(
+                calculateMagnitudeMono(rightMagnitude, rightChannelBuffer, binOffsets, nPointFFT));
+
+        bufferMag = {leftMagnitude, rightMagnitude};
+    }
+
+    // Computes magnitude for mono and stereo inputs and verifies equal magnitude for left and right
+    // channel in case of stereo inputs
+    void calculateAndVerifyMagnitude(std::vector<float>& mag,             // Output parameter
+                                     const int channelLayout,             // Input parameter
+                                     const std::vector<float>& buffer,    // Input parameter
+                                     const std::vector<int>& binOffsets,  // Input parameter
+                                     const int nPointFFT = kNPointFFT) {  // Input parameter
+        if (channelLayout == AudioChannelLayout::LAYOUT_STEREO) {
+            std::pair<std::vector<float>, std::vector<float>> magStereo;
+            ASSERT_NO_FATAL_FAILURE(
+                    calculateMagnitudeStereo(magStereo, buffer, binOffsets, nPointFFT));
+            ASSERT_EQ(magStereo.first, magStereo.second);
+
+            mag = magStereo.first;
+        } else {
+            ASSERT_NO_FATAL_FAILURE(calculateMagnitudeMono(mag, buffer, binOffsets, nPointFFT));
+        }
     }
 
     void updateFrameSize(const Parameter::Common& common) {
diff --git a/audio/aidl/vts/VtsHalBassBoostTargetTest.cpp b/audio/aidl/vts/VtsHalBassBoostTargetTest.cpp
index 5a24be7..c3c1e9e 100644
--- a/audio/aidl/vts/VtsHalBassBoostTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalBassBoostTargetTest.cpp
@@ -48,7 +48,7 @@
 
 class BassBoostEffectHelper : public EffectHelper {
   public:
-    void SetUpBassBoost(int32_t layout = AudioChannelLayout::LAYOUT_STEREO) {
+    void SetUpBassBoost(int32_t layout = kDefaultChannelLayout) {
         ASSERT_NE(nullptr, mFactory);
         ASSERT_NO_FATAL_FAILURE(create(mFactory, mEffect, mDescriptor));
         setFrameCounts(layout);
@@ -113,7 +113,7 @@
         }
     }
 
-    static constexpr int kDurationMilliSec = 720;
+    static constexpr int kDurationMilliSec = 1440;
     static constexpr int kInputSize = kSamplingFrequency * kDurationMilliSec / 1000;
     long mInputFrameCount, mOutputFrameCount;
     std::shared_ptr<IFactory> mFactory;
@@ -187,25 +187,6 @@
         }
     }
 
-    // Use FFT transform to convert the buffer to frequency domain
-    // Compute its magnitude at binOffsets
-    std::vector<float> calculateMagnitude(const std::vector<float>& buffer,
-                                          const std::vector<int>& binOffsets) {
-        std::vector<float> fftInput(kNPointFFT);
-        PFFFT_Setup* inputHandle = pffft_new_setup(kNPointFFT, PFFFT_REAL);
-        pffft_transform_ordered(inputHandle, buffer.data(), fftInput.data(), nullptr,
-                                PFFFT_FORWARD);
-        pffft_destroy_setup(inputHandle);
-        std::vector<float> bufferMag(binOffsets.size());
-        for (size_t i = 0; i < binOffsets.size(); i++) {
-            size_t k = binOffsets[i];
-            bufferMag[i] = sqrt((fftInput[k * 2] * fftInput[k * 2]) +
-                                (fftInput[k * 2 + 1] * fftInput[k * 2 + 1]));
-        }
-
-        return bufferMag;
-    }
-
     // Calculate gain difference between low frequency and high frequency magnitude
     float calculateGainDiff(const std::vector<float>& inputMag,
                             const std::vector<float>& outputMag) {
@@ -218,7 +199,6 @@
         return gains[0] - gains[1];
     }
 
-    static constexpr int kNPointFFT = 16384;
     static constexpr float kBinWidth = (float)kSamplingFrequency / kNPointFFT;
     std::set<int> mStrengthValues;
     int32_t mChannelLayout;
@@ -240,9 +220,11 @@
     roundToFreqCenteredToFftBin(testFrequencies, binOffsets);
 
     // Generate multitone input
-    generateSineWave(testFrequencies, input);
+    ASSERT_NO_FATAL_FAILURE(
+            generateSineWave(testFrequencies, input, 1.0, kSamplingFrequency, mChannelLayout));
 
-    inputMag = calculateMagnitude(input, binOffsets);
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(inputMag, mChannelLayout, input, binOffsets));
 
     if (isStrengthValid(0)) {
         ASSERT_NO_FATAL_FAILURE(setAndVerifyParameters(0, EX_NONE));
@@ -254,7 +236,10 @@
             processAndWriteToOutput(input, baseOutput, mEffect, &mOpenEffectReturn));
 
     std::vector<float> baseMag(testFrequencies.size());
-    baseMag = calculateMagnitude(baseOutput, binOffsets);
+
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(baseMag, mChannelLayout, baseOutput, binOffsets));
+
     float baseDiff = calculateGainDiff(inputMag, baseMag);
 
     for (int strength : mStrengthValues) {
@@ -271,7 +256,9 @@
         ASSERT_NO_FATAL_FAILURE(
                 processAndWriteToOutput(input, output, mEffect, &mOpenEffectReturn));
 
-        outputMag = calculateMagnitude(output, binOffsets);
+        ASSERT_NO_FATAL_FAILURE(
+                calculateAndVerifyMagnitude(outputMag, mChannelLayout, output, binOffsets));
+
         float diff = calculateGainDiff(inputMag, outputMag);
 
         ASSERT_GT(diff, prevGain);
diff --git a/audio/aidl/vts/VtsHalDownmixTargetTest.cpp b/audio/aidl/vts/VtsHalDownmixTargetTest.cpp
index 322fdc0..5c5be3a 100644
--- a/audio/aidl/vts/VtsHalDownmixTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalDownmixTargetTest.cpp
@@ -86,7 +86,7 @@
 
 class DownmixEffectHelper : public EffectHelper {
   public:
-    void SetUpDownmix(int32_t inputBufferLayout = AudioChannelLayout::LAYOUT_STEREO) {
+    void SetUpDownmix(int32_t inputBufferLayout = kDefaultChannelLayout) {
         ASSERT_NE(nullptr, mFactory);
         ASSERT_NO_FATAL_FAILURE(create(mFactory, mEffect, mDescriptor));
 
diff --git a/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp b/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp
index 3b1f3d9..9c23e94 100644
--- a/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp
+++ b/audio/aidl/vts/VtsHalDynamicsProcessingTest.cpp
@@ -46,8 +46,8 @@
 class DynamicsProcessingTestHelper : public EffectHelper {
   public:
     DynamicsProcessingTestHelper(std::pair<std::shared_ptr<IFactory>, Descriptor> pair,
-                                 int32_t channelLayOut = AudioChannelLayout::LAYOUT_STEREO)
-        : mChannelLayout(channelLayOut),
+                                 int32_t channelLayout = kDefaultChannelLayout)
+        : mChannelLayout(channelLayout),
           mChannelCount(::aidl::android::hardware::audio::common::getChannelCount(
                   AudioChannelLayout::make<AudioChannelLayout::layoutMask>(mChannelLayout))) {
         std::tie(mFactory, mDescriptor) = pair;
@@ -162,11 +162,12 @@
     static const std::set<std::vector<DynamicsProcessing::InputGain>> kInputGainTestSet;
 
   private:
-    const int32_t mChannelLayout;
     std::vector<std::pair<DynamicsProcessing::Tag, DynamicsProcessing>> mTags;
 
   protected:
+    const int32_t mChannelLayout;
     const int mChannelCount;
+
     void CleanUp() {
         mTags.clear();
         mPreEqChannelEnable.clear();
@@ -397,6 +398,8 @@
     return true;
 }
 
+// This function calculates power for both and mono and stereo data as the total power for
+// interleaved multichannel data can be calculated by treating it as a continuous mono input.
 float DynamicsProcessingTestHelper::calculateDb(const std::vector<float>& input,
                                                 size_t startSamplePos = 0) {
     return audio_utils_compute_power_mono(input.data() + startSamplePos, AUDIO_FORMAT_PCM_FLOAT,
@@ -623,13 +626,14 @@
     DynamicsProcessingInputGainDataTest()
         : DynamicsProcessingTestHelper((GetParam()), AudioChannelLayout::LAYOUT_MONO) {
         mInput.resize(kFrameCount * mChannelCount);
-        generateSineWave(kInputFrequency /*Input Frequency*/, mInput);
-        mInputDb = calculateDb(mInput);
     }
 
     void SetUp() override {
         SetUpDynamicsProcessingEffect();
         SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
+        ASSERT_NO_FATAL_FAILURE(generateSineWave(kInputFrequency /*Input Frequency*/, mInput, 1.0,
+                                                 kSamplingFrequency, mChannelLayout));
+        mInputDb = calculateDb(mInput);
     }
 
     void TearDown() override { TearDownDynamicsProcessingEffect(); }
@@ -758,13 +762,14 @@
         : DynamicsProcessingTestHelper(GetParam(), AudioChannelLayout::LAYOUT_MONO) {
         mBufferSize = kFrameCount * mChannelCount;
         mInput.resize(mBufferSize);
-        generateSineWave(1000 /*Input Frequency*/, mInput);
-        mInputDb = calculateDb(mInput);
     }
 
     void SetUp() override {
         SetUpDynamicsProcessingEffect();
         SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
+        ASSERT_NO_FATAL_FAILURE(generateSineWave(1000 /*Input Frequency*/, mInput, 1.0,
+                                                 kSamplingFrequency, mChannelLayout));
+        mInputDb = calculateDb(mInput);
     }
 
     void TearDown() override { TearDownDynamicsProcessingEffect(); }
diff --git a/audio/aidl/vts/VtsHalEnvironmentalReverbTargetTest.cpp b/audio/aidl/vts/VtsHalEnvironmentalReverbTargetTest.cpp
index bf48a87..0222923 100644
--- a/audio/aidl/vts/VtsHalEnvironmentalReverbTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalEnvironmentalReverbTargetTest.cpp
@@ -139,6 +139,7 @@
 
     return valueTag;
 }
+
 /**
  * Tests do the following:
  * - Testing parameter range supported by the effect. Range is verified with IEffect.getDescriptor()
@@ -282,10 +283,10 @@
     static constexpr int kDurationMilliSec = 500;
     static constexpr int kBufferSize = kSamplingFrequency * kDurationMilliSec / 1000;
     static constexpr int kInputFrequency = 2000;
+    static constexpr int mChannelLayout = AudioChannelLayout::LAYOUT_STEREO;
 
-    int mStereoChannelCount =
-            getChannelCount(AudioChannelLayout::make<AudioChannelLayout::layoutMask>(
-                    AudioChannelLayout::LAYOUT_STEREO));
+    int mStereoChannelCount = getChannelCount(
+            AudioChannelLayout::make<AudioChannelLayout::layoutMask>(mChannelLayout));
     int mFrameCount = kBufferSize / mStereoChannelCount;
 
     std::shared_ptr<IFactory> mFactory;
@@ -344,10 +345,11 @@
         : EnvironmentalReverbHelper(std::get<DESCRIPTOR_INDEX>(GetParam())) {
         std::tie(mTag, mParamValues) = std::get<TAG_VALUE_PAIR>(GetParam());
         mInput.resize(kBufferSize);
-        generateSineWave(kInputFrequency, mInput);
     }
     void SetUp() override {
         SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
+        ASSERT_NO_FATAL_FAILURE(
+                generateSineWave(kInputFrequency, mInput, 1.0, kSamplingFrequency, mChannelLayout));
         SetUpReverb();
     }
     void TearDown() override {
@@ -434,7 +436,8 @@
 
 TEST_P(EnvironmentalReverbMinimumParamTest, MinimumValueTest) {
     std::vector<float> input(kBufferSize);
-    generateSineWave(kInputFrequency, input);
+    ASSERT_NO_FATAL_FAILURE(
+            generateSineWave(kInputFrequency, input, 1.0, kSamplingFrequency, mChannelLayout));
     std::vector<float> output(kBufferSize);
     setParameterAndProcess(input, output, mValue, mTag);
     float energy = computeOutputEnergy(input, output);
@@ -470,10 +473,11 @@
         : EnvironmentalReverbHelper(std::get<DESCRIPTOR_INDEX>(GetParam())) {
         std::tie(mTag, mParamValues) = std::get<TAG_VALUE_PAIR>(GetParam());
         mInput.resize(kBufferSize);
-        generateSineWave(kInputFrequency, mInput);
     }
     void SetUp() override {
         SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
+        ASSERT_NO_FATAL_FAILURE(
+                generateSineWave(kInputFrequency, mInput, 1.0, kSamplingFrequency, mChannelLayout));
         SetUpReverb();
     }
     void TearDown() override {
@@ -546,14 +550,15 @@
         mParamValues = std::get<PARAM_DENSITY_VALUE>(GetParam());
         mIsInputMute = (std::get<IS_INPUT_MUTE>(GetParam()));
         mInput.resize(kBufferSize);
-        if (mIsInputMute) {
-            std::fill(mInput.begin(), mInput.end(), 0);
-        } else {
-            generateSineWave(kInputFrequency, mInput);
-        }
     }
     void SetUp() override {
         SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
+        if (mIsInputMute) {
+            std::fill(mInput.begin(), mInput.end(), 0);
+        } else {
+            ASSERT_NO_FATAL_FAILURE(generateSineWave(kInputFrequency, mInput, 1.0,
+                                                     kSamplingFrequency, mChannelLayout));
+        }
         SetUpReverb();
     }
     void TearDown() override {
diff --git a/audio/aidl/vts/VtsHalLoudnessEnhancerTargetTest.cpp b/audio/aidl/vts/VtsHalLoudnessEnhancerTargetTest.cpp
index 4c868a9..ace0597 100644
--- a/audio/aidl/vts/VtsHalLoudnessEnhancerTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalLoudnessEnhancerTargetTest.cpp
@@ -153,9 +153,8 @@
   public:
     LoudnessEnhancerDataTest() {
         std::tie(mFactory, mDescriptor) = GetParam();
-        size_t channelCount =
-                getChannelCount(AudioChannelLayout::make<AudioChannelLayout::layoutMask>(
-                        AudioChannelLayout::LAYOUT_STEREO));
+        size_t channelCount = getChannelCount(
+                AudioChannelLayout::make<AudioChannelLayout::layoutMask>(kDefaultChannelLayout));
         mBufferSizeInFrames = kFrameCount * channelCount;
         mInputBuffer.resize(mBufferSizeInFrames);
         generateInputBuffer(mInputBuffer, 0, true, channelCount, kMaxAudioSampleValue);
diff --git a/audio/aidl/vts/VtsHalPresetReverbTargetTest.cpp b/audio/aidl/vts/VtsHalPresetReverbTargetTest.cpp
index 3ce9e53..f127c81 100644
--- a/audio/aidl/vts/VtsHalPresetReverbTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalPresetReverbTargetTest.cpp
@@ -133,11 +133,11 @@
     PresetReverbProcessTest() {
         std::tie(mFactory, mDescriptor) = GetParam();
         mInput.resize(kBufferSize);
-        generateSineWave(1000 /*Input Frequency*/, mInput);
     }
 
     void SetUp() override {
         SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
+        ASSERT_NO_FATAL_FAILURE(generateSineWave(1000 /*Input Frequency*/, mInput));
         ASSERT_NO_FATAL_FAILURE(SetUpPresetReverb());
     }
     void TearDown() override {
diff --git a/audio/aidl/vts/VtsHalVirtualizerTargetTest.cpp b/audio/aidl/vts/VtsHalVirtualizerTargetTest.cpp
index 3021370..c9c7172 100644
--- a/audio/aidl/vts/VtsHalVirtualizerTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalVirtualizerTargetTest.cpp
@@ -94,7 +94,6 @@
         }
     }
 
-    static constexpr int kDefaultChannelLayout = AudioChannelLayout::LAYOUT_STEREO;
     static constexpr int kDurationMilliSec = 720;
     static constexpr int kBufferSize = kSamplingFrequency * kDurationMilliSec / 1000;
     int kChannelCount = getChannelCount(
@@ -159,14 +158,6 @@
         ASSERT_NO_FATAL_FAILURE(TearDownVirtualizer());
     }
 
-    void generateInput(std::vector<float>& buffer) {
-        if (mZeroInput) {
-            std::fill(buffer.begin(), buffer.end(), 0);
-        } else {
-            generateSineWave(1000 /*Input Frequency*/, buffer);
-        }
-    }
-
     static constexpr float kAbsError = 0.00001;
     bool mZeroInput;
 };
@@ -176,7 +167,11 @@
     std::vector<float> output(kBufferSize);
     std::vector<int> strengths = {250, 500, 750, 1000};
 
-    generateInput(input);
+    if (mZeroInput) {
+        std::fill(input.begin(), input.end(), 0);
+    } else {
+        ASSERT_NO_FATAL_FAILURE(generateSineWave(1000 /*Input Frequency*/, input));
+    }
 
     const float inputRmse =
             audio_utils_compute_energy_mono(input.data(), AUDIO_FORMAT_PCM_FLOAT, input.size());
diff --git a/audio/aidl/vts/VtsHalVisualizerTargetTest.cpp b/audio/aidl/vts/VtsHalVisualizerTargetTest.cpp
index a942521..a88a1cc 100644
--- a/audio/aidl/vts/VtsHalVisualizerTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalVisualizerTargetTest.cpp
@@ -68,9 +68,14 @@
         ASSERT_NE(nullptr, mFactory);
         ASSERT_NO_FATAL_FAILURE(create(mFactory, mEffect, mDescriptor));
 
+        AudioChannelLayout inputLayout = AudioChannelLayout::make<AudioChannelLayout::layoutMask>(
+                AudioChannelLayout::LAYOUT_MONO);
+        AudioChannelLayout outputLayout = inputLayout;
+
         Parameter::Common common = createParamCommon(
-                0 /* session */, 1 /* ioHandle */, 44100 /* iSampleRate */, 44100 /* oSampleRate */,
-                kInputFrameCount /* iFrameCount */, kOutputFrameCount /* oFrameCount */);
+                0 /* session */, 1 /* ioHandle */, mBufferSizeInFrames /* iSampleRate */,
+                mBufferSizeInFrames /* oSampleRate */, kInputFrameCount /* iFrameCount */,
+                kOutputFrameCount /* oFrameCount */, inputLayout, outputLayout);
         ASSERT_NO_FATAL_FAILURE(open(mEffect, common, std::nullopt, &mOpenEffectReturn, EX_NONE));
         ASSERT_NE(nullptr, mEffect);
         mVersion = EffectFactoryHelper::getHalVersion(mFactory);
@@ -261,7 +266,8 @@
 
     constexpr float kPowerToleranceDb = 0.5;
 
-    generateSineWave(std::vector<int>{1000}, mInputBuffer, 1.0, mBufferSizeInFrames);
+    ASSERT_NO_FATAL_FAILURE(generateSineWave(1000, mInputBuffer, 1.0, mBufferSizeInFrames,
+                                             AudioChannelLayout::LAYOUT_MONO));
     const float expectedPowerNormalized = audio_utils_compute_power_mono(
             mInputBuffer.data(), AUDIO_FORMAT_PCM_FLOAT, mInputBuffer.size());
 
@@ -281,8 +287,9 @@
         ASSERT_NO_FATAL_FAILURE(addLatencyParam(mLatency));
         ASSERT_NO_FATAL_FAILURE(SetAndGetParameters(&allParamsValid));
 
-        generateSineWave(std::vector<int>{1000}, mInputBuffer, maxAudioSampleValue,
-                         mBufferSizeInFrames);
+        ASSERT_NO_FATAL_FAILURE(generateSineWave(std::vector<int>{1000}, mInputBuffer,
+                                                 maxAudioSampleValue, mBufferSizeInFrames,
+                                                 AudioChannelLayout::LAYOUT_MONO));
 
         // The stop and reset calls to the effect are made towards the end in order to fetch the
         // captureSampleBuffer values
diff --git a/audio/aidl/vts/VtsHalVolumeTargetTest.cpp b/audio/aidl/vts/VtsHalVolumeTargetTest.cpp
index b58c1c6..0b68b02 100644
--- a/audio/aidl/vts/VtsHalVolumeTargetTest.cpp
+++ b/audio/aidl/vts/VtsHalVolumeTargetTest.cpp
@@ -66,7 +66,7 @@
 
     void initFrameCount() {
         int channelCount = getChannelCount(
-                AudioChannelLayout::make<AudioChannelLayout::layoutMask>(kDefaultChannelLayout));
+                AudioChannelLayout::make<AudioChannelLayout::layoutMask>(mChannelLayout));
         mInputFrameCount = kBufferSize / channelCount;
         mOutputFrameCount = kBufferSize / channelCount;
     }
@@ -93,10 +93,10 @@
         }
     }
 
-    static constexpr int kDurationMilliSec = 720;
+    static constexpr int kDurationMilliSec = 1440;
     static constexpr int kBufferSize = kSamplingFrequency * kDurationMilliSec / 1000;
     static constexpr int kMinLevel = -96;
-    static constexpr int kDefaultChannelLayout = AudioChannelLayout::LAYOUT_STEREO;
+    static constexpr int mChannelLayout = kDefaultChannelLayout;
     long mInputFrameCount, mOutputFrameCount;
     std::shared_ptr<IFactory> mFactory;
     std::shared_ptr<IEffect> mEffect;
@@ -162,8 +162,6 @@
         mInputMag.resize(mTestFrequencies.size());
         mBinOffsets.resize(mTestFrequencies.size());
         roundToFreqCenteredToFftBin(mTestFrequencies, mBinOffsets, kBinWidth);
-        generateSineWave(mTestFrequencies, mInput);
-        mInputMag = calculateMagnitude(mInput, mBinOffsets, kNPointFFT);
     }
 
     std::vector<int> calculatePercentageDiff(const std::vector<float>& outputMag) {
@@ -183,6 +181,11 @@
         SKIP_TEST_IF_DATA_UNSUPPORTED(mDescriptor.common.flags);
         // Skips test fixture if api_level <= 34 (__ANDROID_API_U__).
         if (kVsrApiLevel <= __ANDROID_API_U__) GTEST_SKIP();
+        ASSERT_NO_FATAL_FAILURE(generateSineWave(mTestFrequencies, mInput, 1.0, kSamplingFrequency,
+                                                 mChannelLayout));
+        ASSERT_NO_FATAL_FAILURE(
+                calculateAndVerifyMagnitude(mInputMag, mChannelLayout, mInput, mBinOffsets));
+
         ASSERT_NO_FATAL_FAILURE(SetUpVolumeControl());
     }
     void TearDown() override {
@@ -194,7 +197,6 @@
     const int kVsrApiLevel;
     static constexpr int kMaxAudioSample = 1;
     static constexpr int kTransitionDuration = 300;
-    static constexpr int kNPointFFT = 16384;
     static constexpr float kBinWidth = (float)kSamplingFrequency / kNPointFFT;
     static constexpr size_t offset = kSamplingFrequency * kTransitionDuration / 1000;
     static constexpr float kBaseLevel = 0;
@@ -218,7 +220,9 @@
     ASSERT_NO_FATAL_FAILURE(setAndVerifyParameters(Volume::levelDb, kBaseLevel, EX_NONE));
     ASSERT_NO_FATAL_FAILURE(processAndWriteToOutput(mInput, output, mEffect, &mOpenEffectReturn));
 
-    outputMag = calculateMagnitude(output, mBinOffsets, kNPointFFT);
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(outputMag, mChannelLayout, output, mBinOffsets));
+
     diffs = calculatePercentageDiff(outputMag);
 
     for (size_t i = 0; i < diffs.size(); i++) {
@@ -231,7 +235,10 @@
     ASSERT_NO_FATAL_FAILURE(processAndWriteToOutput(mInput, output, mEffect, &mOpenEffectReturn));
 
     std::vector<float> subOutputMute(output.begin() + offset, output.end());
-    outputMag = calculateMagnitude(subOutputMute, mBinOffsets, kNPointFFT);
+
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(outputMag, mChannelLayout, subOutputMute, mBinOffsets));
+
     diffs = calculatePercentageDiff(outputMag);
 
     for (size_t i = 0; i < diffs.size(); i++) {
@@ -239,7 +246,9 @@
     }
 
     // Verifying Fade out
-    outputMag = calculateMagnitude(output, mBinOffsets, kNPointFFT);
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(outputMag, mChannelLayout, output, mBinOffsets));
+
     diffs = calculatePercentageDiff(outputMag);
 
     for (size_t i = 0; i < diffs.size(); i++) {
@@ -253,7 +262,9 @@
 
     std::vector<float> subOutputUnmute(output.begin() + offset, output.end());
 
-    outputMag = calculateMagnitude(subOutputUnmute, mBinOffsets, kNPointFFT);
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(outputMag, mChannelLayout, subOutputUnmute, mBinOffsets));
+
     diffs = calculatePercentageDiff(outputMag);
 
     for (size_t i = 0; i < diffs.size(); i++) {
@@ -261,7 +272,9 @@
     }
 
     // Verifying Fade in
-    outputMag = calculateMagnitude(output, mBinOffsets, kNPointFFT);
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(outputMag, mChannelLayout, output, mBinOffsets));
+
     diffs = calculatePercentageDiff(outputMag);
 
     for (size_t i = 0; i < diffs.size(); i++) {
@@ -283,7 +296,9 @@
     ASSERT_NO_FATAL_FAILURE(
             processAndWriteToOutput(mInput, baseOutput, mEffect, &mOpenEffectReturn));
 
-    outputMag = calculateMagnitude(baseOutput, mBinOffsets, kNPointFFT);
+    ASSERT_NO_FATAL_FAILURE(
+            calculateAndVerifyMagnitude(outputMag, mChannelLayout, baseOutput, mBinOffsets));
+
     baseDiffs = calculatePercentageDiff(outputMag);
 
     for (int level : decreasingLevels) {
@@ -298,7 +313,9 @@
         ASSERT_NO_FATAL_FAILURE(
                 processAndWriteToOutput(mInput, output, mEffect, &mOpenEffectReturn));
 
-        outputMag = calculateMagnitude(output, mBinOffsets, kNPointFFT);
+        ASSERT_NO_FATAL_FAILURE(
+                calculateAndVerifyMagnitude(outputMag, mChannelLayout, output, mBinOffsets));
+
         diffs = calculatePercentageDiff(outputMag);
 
         // Decrease in volume level results in greater magnitude difference