blob: d45922e1c4d6a4fc3234e873e628f3d882c8c69b [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.2/IDevice.h>
#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
#include <iostream>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace generated_tests {
using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
using ::test_helper::bool8;
using ::test_helper::compare;
using ::test_helper::expectMultinomialDistributionWithinTolerance;
using ::test_helper::filter;
using ::test_helper::for_all;
using ::test_helper::for_each;
using ::test_helper::MixedTyped;
using ::test_helper::MixedTypedExample;
using ::test_helper::resize_accordingly;
template <typename T>
void copy_back_(std::map<int, std::vector<T>>* dst, const std::vector<RequestArgument>& ra,
char* src) {
for_each<T>(*dst, [&ra, src](int index, std::vector<T>& m) {
ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
char* begin = src + ra[index].location.offset;
memcpy(m.data(), begin, ra[index].location.length);
});
}
void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
copy_back_(&dst->float32Operands, ra, src);
copy_back_(&dst->int32Operands, ra, src);
copy_back_(&dst->quant8AsymmOperands, ra, src);
copy_back_(&dst->quant16SymmOperands, ra, src);
copy_back_(&dst->float16Operands, ra, src);
copy_back_(&dst->bool8Operands, ra, src);
copy_back_(&dst->quant8ChannelOperands, ra, src);
copy_back_(&dst->quant16AsymmOperands, ra, src);
static_assert(8 == MixedTyped::kNumTypes,
"Number of types in MixedTyped changed, but copy_back function wasn't updated");
}
// Top level driver for models and examples generated by test_generator.py
// Test driver for those generated from ml/nn/runtime/test/spec
static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>& preparedModel,
const Request& request,
sp<ExecutionCallback>& callback) {
return preparedModel->execute(request, callback);
}
static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
const Request& request,
sp<ExecutionCallback>& callback) {
return preparedModel->execute_1_2(request, callback);
}
static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>&, const Request&,
hidl_vec<OutputShape>*) {
ADD_FAILURE() << "asking for synchronous execution at V1_0";
return ErrorStatus::GENERAL_FAILURE;
}
static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
const Request& request,
hidl_vec<OutputShape>* outputShapes) {
ErrorStatus result;
Return<void> ret = preparedModel->executeSynchronously(
request, [&result, &outputShapes](ErrorStatus error, const hidl_vec<OutputShape>& shapes) {
result = error;
*outputShapes = shapes;
});
if (!ret.isOk()) {
return ErrorStatus::GENERAL_FAILURE;
}
return result;
}
enum class Synchronously { NO, YES };
const float kDefaultAtol = 1e-5f;
const float kDefaultRtol = 1e-5f;
template <typename T_IPreparedModel>
void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExample>& examples,
bool hasRelaxedFloat32Model = false, float fpAtol = kDefaultAtol,
float fpRtol = kDefaultRtol, Synchronously sync = Synchronously::NO,
bool testDynamicOutputShape = false) {
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
int example_no = 1;
for (auto& example : examples) {
SCOPED_TRACE(example_no++);
const MixedTyped& inputs = example.operands.first;
const MixedTyped& golden = example.operands.second;
const bool hasFloat16Inputs = !inputs.float16Operands.empty();
if (hasRelaxedFloat32Model || hasFloat16Inputs) {
// TODO: Adjust the error limit based on testing.
// If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
fpAtol = 5.0f * 0.0009765625f;
// Set the relative tolerance to be 5ULP of the corresponding FP precision.
fpRtol = 5.0f * 0.0009765625f;
}
std::vector<RequestArgument> inputs_info, outputs_info;
uint32_t inputSize = 0, outputSize = 0;
// This function only partially specifies the metadata (vector of RequestArguments).
// The contents are copied over below.
for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
RequestArgument arg_empty = {
.hasNoValue = true,
};
inputs_info[index] = s ? arg : arg_empty;
inputSize += s;
});
// Compute offset for inputs 1 and so on
{
size_t offset = 0;
for (auto& i : inputs_info) {
if (!i.hasNoValue) i.location.offset = offset;
offset += i.location.length;
}
}
MixedTyped test; // holding test results
// Go through all outputs, initialize RequestArgument descriptors
resize_accordingly(golden, test);
for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) {
if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
outputs_info[index] = arg;
outputSize += s;
});
// Compute offset for outputs 1 and so on
{
size_t offset = 0;
for (auto& i : outputs_info) {
i.location.offset = offset;
offset += i.location.length;
}
}
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
nn::allocateSharedMemory(outputSize)};
ASSERT_NE(0ull, pools[INPUT].size());
ASSERT_NE(0ull, pools[OUTPUT].size());
// load data
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
ASSERT_NE(nullptr, inputMemory.get());
ASSERT_NE(nullptr, outputMemory.get());
char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
ASSERT_NE(nullptr, inputPtr);
ASSERT_NE(nullptr, outputPtr);
inputMemory->update();
outputMemory->update();
// Go through all inputs, copy the values
for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
char* begin = (char*)p;
char* end = begin + s;
// TODO: handle more than one input
std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
});
inputMemory->commit();
outputMemory->commit();
ErrorStatus executionStatus;
hidl_vec<OutputShape> outputShapes;
if (sync == Synchronously::NO) {
SCOPED_TRACE("asynchronous");
// launch execution
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
executionCallback);
ASSERT_TRUE(executionLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
// retrieve execution status
executionCallback->wait();
executionStatus = executionCallback->getStatus();
outputShapes = executionCallback->getOutputShapes();
} else {
SCOPED_TRACE("synchronous");
// execute
Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel(
preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
&outputShapes);
ASSERT_TRUE(executionReturnStatus.isOk());
executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
}
if (testDynamicOutputShape && executionStatus != ErrorStatus::NONE) {
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"execute model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"execute model that it does not support."
<< std::endl;
return;
}
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
// Go through all outputs, overwrite output dimensions with returned output shapes
if (testDynamicOutputShape) {
ASSERT_NE(outputShapes.size(), 0);
for_each<uint32_t>(test.operandDimensions,
[&outputShapes](int idx, std::vector<uint32_t>& dim) {
dim = outputShapes[idx].dimensions;
});
}
// validate results
outputMemory->read();
copy_back(&test, outputs_info, outputPtr);
outputMemory->commit();
// Filter out don't cares
MixedTyped filtered_golden = filter(golden, is_ignored);
MixedTyped filtered_test = filter(test, is_ignored);
// We want "close-enough" results for float
compare(filtered_golden, filtered_test, fpAtol, fpRtol);
if (example.expectedMultinomialDistributionTolerance > 0) {
expectMultinomialDistributionWithinTolerance(test, example);
}
}
}
template <typename T_IPreparedModel>
void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExample>& examples,
bool hasRelaxedFloat32Model, Synchronously sync,
bool testDynamicOutputShape) {
EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol,
kDefaultRtol, sync, testDynamicOutputShape);
}
static void getPreparedModel(sp<PreparedModelCallback> callback,
sp<V1_0::IPreparedModel>* preparedModel) {
*preparedModel = callback->getPreparedModel();
}
static void getPreparedModel(sp<PreparedModelCallback> callback,
sp<V1_2::IPreparedModel>* preparedModel) {
sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
*preparedModel = V1_2::IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
}
void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
V1_0::Model model = create_model();
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedCall = device->getSupportedOperations(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<V1_0::IPreparedModel> preparedModel;
getPreparedModel(preparedModelCallback, &preparedModel);
// early termination if vendor service cannot fully prepare model
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel.get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel.get());
float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f;
EvaluatePreparedModel(preparedModel, is_ignored, examples,
/*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol, Synchronously::NO,
/*testDynamicOutputShape=*/false);
}
void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
V1_1::Model model = create_model();
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedCall = device->getSupportedOperations_1_1(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1(
model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<V1_0::IPreparedModel> preparedModel;
getPreparedModel(preparedModelCallback, &preparedModel);
// early termination if vendor service cannot fully prepare model
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel.get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel.get());
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16, 1e-5f, 1e-5f, Synchronously::NO,
/*testDynamicOutputShape=*/false);
}
// TODO: Reduce code duplication.
void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples,
bool testDynamicOutputShape) {
V1_2::Model model = create_model();
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedCall = device->getSupportedOperations_1_2(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<V1_2::IPreparedModel> preparedModel;
getPreparedModel(preparedModelCallback, &preparedModel);
// early termination if vendor service cannot fully prepare model
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel.get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel.get());
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16, Synchronously::NO,
testDynamicOutputShape);
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16, Synchronously::YES,
testDynamicOutputShape);
}
} // namespace generated_tests
} // namespace neuralnetworks
} // namespace hardware
} // namespace android