| /* |
| * Copyright (C) 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "CommonUtils.h" |
| |
| #include "HandleError.h" |
| |
| #include <android-base/logging.h> |
| #include <android-base/unique_fd.h> |
| #include <android/hardware_buffer.h> |
| #include <hidl/HidlSupport.h> |
| #include <nnapi/Result.h> |
| #include <nnapi/SharedMemory.h> |
| #include <nnapi/TypeUtils.h> |
| #include <nnapi/Types.h> |
| #include <nnapi/Validation.h> |
| #include <vndk/hardware_buffer.h> |
| |
| #include <algorithm> |
| #include <any> |
| #include <functional> |
| #include <optional> |
| #include <variant> |
| #include <vector> |
| |
| namespace android::hardware::neuralnetworks::utils { |
| namespace { |
| |
| bool hasNoPointerData(const nn::Operand& operand); |
| bool hasNoPointerData(const nn::Model::Subgraph& subgraph); |
| bool hasNoPointerData(const nn::Request::Argument& argument); |
| |
| template <typename Type> |
| bool hasNoPointerData(const std::vector<Type>& objects) { |
| return std::all_of(objects.begin(), objects.end(), |
| [](const auto& object) { return hasNoPointerData(object); }); |
| } |
| |
| bool hasNoPointerData(const nn::DataLocation& location) { |
| return std::visit([](auto ptr) { return ptr == nullptr; }, location.pointer); |
| } |
| |
| bool hasNoPointerData(const nn::Operand& operand) { |
| return hasNoPointerData(operand.location); |
| } |
| |
| bool hasNoPointerData(const nn::Model::Subgraph& subgraph) { |
| return hasNoPointerData(subgraph.operands); |
| } |
| |
| bool hasNoPointerData(const nn::Request::Argument& argument) { |
| return hasNoPointerData(argument.location); |
| } |
| |
| void copyPointersToSharedMemory(nn::Operand* operand, nn::ConstantMemoryBuilder* memoryBuilder) { |
| CHECK(operand != nullptr); |
| CHECK(memoryBuilder != nullptr); |
| |
| if (operand->lifetime != nn::Operand::LifeTime::POINTER) { |
| return; |
| } |
| |
| const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); }, |
| operand->location.pointer); |
| CHECK(data != nullptr); |
| operand->lifetime = nn::Operand::LifeTime::CONSTANT_REFERENCE; |
| operand->location = memoryBuilder->append(data, operand->location.length); |
| } |
| |
| void copyPointersToSharedMemory(nn::Model::Subgraph* subgraph, |
| nn::ConstantMemoryBuilder* memoryBuilder) { |
| CHECK(subgraph != nullptr); |
| std::for_each(subgraph->operands.begin(), subgraph->operands.end(), |
| [memoryBuilder](auto& operand) { |
| copyPointersToSharedMemory(&operand, memoryBuilder); |
| }); |
| } |
| |
| nn::GeneralResult<hidl_handle> createNativeHandleFrom(base::unique_fd fd, |
| const std::vector<int32_t>& ints) { |
| constexpr size_t kIntMax = std::numeric_limits<int>::max(); |
| CHECK_LE(ints.size(), kIntMax); |
| native_handle_t* nativeHandle = native_handle_create(1, static_cast<int>(ints.size())); |
| if (nativeHandle == nullptr) { |
| return NN_ERROR() << "Failed to create native_handle"; |
| } |
| |
| nativeHandle->data[0] = fd.release(); |
| std::copy(ints.begin(), ints.end(), nativeHandle->data + 1); |
| |
| hidl_handle handle; |
| handle.setTo(nativeHandle, /*shouldOwn=*/true); |
| return handle; |
| } |
| |
| nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::Ashmem& memory) { |
| auto fd = NN_TRY(nn::dupFd(memory.fd)); |
| auto handle = NN_TRY(createNativeHandleFrom(std::move(fd), {})); |
| return hidl_memory("ashmem", std::move(handle), memory.size); |
| } |
| |
| nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::Fd& memory) { |
| auto fd = NN_TRY(nn::dupFd(memory.fd)); |
| |
| const auto [lowOffsetBits, highOffsetBits] = nn::getIntsFromOffset(memory.offset); |
| const std::vector<int> ints = {memory.prot, lowOffsetBits, highOffsetBits}; |
| |
| auto handle = NN_TRY(createNativeHandleFrom(std::move(fd), ints)); |
| return hidl_memory("mmap_fd", std::move(handle), memory.size); |
| } |
| |
| nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::HardwareBuffer& memory) { |
| const auto* ahwb = memory.handle.get(); |
| AHardwareBuffer_Desc bufferDesc; |
| AHardwareBuffer_describe(ahwb, &bufferDesc); |
| |
| const bool isBlob = bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB; |
| const size_t size = isBlob ? bufferDesc.width : 0; |
| const char* const name = isBlob ? "hardware_buffer_blob" : "hardware_buffer"; |
| |
| const native_handle_t* nativeHandle = AHardwareBuffer_getNativeHandle(ahwb); |
| const hidl_handle hidlHandle(nativeHandle); |
| hidl_handle copiedHandle(hidlHandle); |
| |
| return hidl_memory(name, std::move(copiedHandle), size); |
| } |
| |
| nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::Unknown& memory) { |
| return hidl_memory(memory.name, NN_TRY(hidlHandleFromSharedHandle(memory.handle)), memory.size); |
| } |
| |
| } // anonymous namespace |
| |
| nn::Capabilities::OperandPerformanceTable makeQuantized8PerformanceConsistentWithP( |
| const nn::Capabilities::PerformanceInfo& float32Performance, |
| const nn::Capabilities::PerformanceInfo& quantized8Performance) { |
| // In Android P, most data types are treated as having the same performance as |
| // TENSOR_QUANT8_ASYMM. This collection must be in sorted order. |
| std::vector<nn::Capabilities::OperandPerformance> operandPerformances = { |
| {.type = nn::OperandType::FLOAT32, .info = float32Performance}, |
| {.type = nn::OperandType::INT32, .info = quantized8Performance}, |
| {.type = nn::OperandType::UINT32, .info = quantized8Performance}, |
| {.type = nn::OperandType::TENSOR_FLOAT32, .info = float32Performance}, |
| {.type = nn::OperandType::TENSOR_INT32, .info = quantized8Performance}, |
| {.type = nn::OperandType::TENSOR_QUANT8_ASYMM, .info = quantized8Performance}, |
| {.type = nn::OperandType::OEM, .info = quantized8Performance}, |
| {.type = nn::OperandType::TENSOR_OEM_BYTE, .info = quantized8Performance}, |
| }; |
| return nn::Capabilities::OperandPerformanceTable::create(std::move(operandPerformances)) |
| .value(); |
| } |
| |
| bool hasNoPointerData(const nn::Model& model) { |
| return hasNoPointerData(model.main) && hasNoPointerData(model.referenced); |
| } |
| |
| bool hasNoPointerData(const nn::Request& request) { |
| return hasNoPointerData(request.inputs) && hasNoPointerData(request.outputs); |
| } |
| |
| nn::GeneralResult<std::reference_wrapper<const nn::Model>> flushDataFromPointerToShared( |
| const nn::Model* model, std::optional<nn::Model>* maybeModelInSharedOut) { |
| CHECK(model != nullptr); |
| CHECK(maybeModelInSharedOut != nullptr); |
| |
| if (hasNoPointerData(*model)) { |
| return *model; |
| } |
| |
| // Make a copy of the model in order to make modifications. The modified model is returned to |
| // the caller through `maybeModelInSharedOut` if the function succeeds. |
| nn::Model modelInShared = *model; |
| |
| nn::ConstantMemoryBuilder memoryBuilder(modelInShared.pools.size()); |
| copyPointersToSharedMemory(&modelInShared.main, &memoryBuilder); |
| std::for_each(modelInShared.referenced.begin(), modelInShared.referenced.end(), |
| [&memoryBuilder](auto& subgraph) { |
| copyPointersToSharedMemory(&subgraph, &memoryBuilder); |
| }); |
| |
| if (!memoryBuilder.empty()) { |
| auto memory = NN_TRY(memoryBuilder.finish()); |
| modelInShared.pools.push_back(std::move(memory)); |
| } |
| |
| *maybeModelInSharedOut = modelInShared; |
| return **maybeModelInSharedOut; |
| } |
| |
| nn::GeneralResult<std::reference_wrapper<const nn::Request>> flushDataFromPointerToShared( |
| const nn::Request* request, std::optional<nn::Request>* maybeRequestInSharedOut) { |
| CHECK(request != nullptr); |
| CHECK(maybeRequestInSharedOut != nullptr); |
| |
| if (hasNoPointerData(*request)) { |
| return *request; |
| } |
| |
| // Make a copy of the request in order to make modifications. The modified request is returned |
| // to the caller through `maybeRequestInSharedOut` if the function succeeds. |
| nn::Request requestInShared = *request; |
| |
| // Change input pointers to shared memory. |
| nn::ConstantMemoryBuilder inputBuilder(requestInShared.pools.size()); |
| for (auto& input : requestInShared.inputs) { |
| const auto& location = input.location; |
| if (input.lifetime != nn::Request::Argument::LifeTime::POINTER) { |
| continue; |
| } |
| |
| input.lifetime = nn::Request::Argument::LifeTime::POOL; |
| const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); }, |
| location.pointer); |
| CHECK(data != nullptr); |
| input.location = inputBuilder.append(data, location.length); |
| } |
| |
| // Allocate input memory. |
| if (!inputBuilder.empty()) { |
| auto memory = NN_TRY(inputBuilder.finish()); |
| requestInShared.pools.push_back(std::move(memory)); |
| } |
| |
| // Change output pointers to shared memory. |
| nn::MutableMemoryBuilder outputBuilder(requestInShared.pools.size()); |
| for (auto& output : requestInShared.outputs) { |
| const auto& location = output.location; |
| if (output.lifetime != nn::Request::Argument::LifeTime::POINTER) { |
| continue; |
| } |
| |
| output.lifetime = nn::Request::Argument::LifeTime::POOL; |
| output.location = outputBuilder.append(location.length); |
| } |
| |
| // Allocate output memory. |
| if (!outputBuilder.empty()) { |
| auto memory = NN_TRY(outputBuilder.finish()); |
| requestInShared.pools.push_back(std::move(memory)); |
| } |
| |
| *maybeRequestInSharedOut = requestInShared; |
| return **maybeRequestInSharedOut; |
| } |
| |
| nn::GeneralResult<void> unflushDataFromSharedToPointer( |
| const nn::Request& request, const std::optional<nn::Request>& maybeRequestInShared) { |
| if (!maybeRequestInShared.has_value() || maybeRequestInShared->pools.empty() || |
| !std::holds_alternative<nn::SharedMemory>(maybeRequestInShared->pools.back())) { |
| return {}; |
| } |
| const auto& requestInShared = *maybeRequestInShared; |
| |
| // Map the memory. |
| const auto& outputMemory = std::get<nn::SharedMemory>(requestInShared.pools.back()); |
| const auto [pointer, size, context] = NN_TRY(map(outputMemory)); |
| const uint8_t* constantPointer = |
| std::visit([](const auto& o) { return static_cast<const uint8_t*>(o); }, pointer); |
| |
| // Flush each output pointer. |
| CHECK_EQ(request.outputs.size(), requestInShared.outputs.size()); |
| for (size_t i = 0; i < request.outputs.size(); ++i) { |
| const auto& location = request.outputs[i].location; |
| const auto& locationInShared = requestInShared.outputs[i].location; |
| if (!std::holds_alternative<void*>(location.pointer)) { |
| continue; |
| } |
| |
| // Get output pointer and size. |
| void* data = std::get<void*>(location.pointer); |
| CHECK(data != nullptr); |
| const size_t length = location.length; |
| |
| // Get output pool location. |
| CHECK(requestInShared.outputs[i].lifetime == nn::Request::Argument::LifeTime::POOL); |
| const size_t index = locationInShared.poolIndex; |
| const size_t offset = locationInShared.offset; |
| const size_t outputPoolIndex = requestInShared.pools.size() - 1; |
| CHECK(locationInShared.length == length); |
| CHECK(index == outputPoolIndex); |
| |
| // Flush memory. |
| std::memcpy(data, constantPointer + offset, length); |
| } |
| |
| return {}; |
| } |
| |
| nn::GeneralResult<std::vector<uint32_t>> countNumberOfConsumers( |
| size_t numberOfOperands, const std::vector<nn::Operation>& operations) { |
| return makeGeneralFailure(nn::countNumberOfConsumers(numberOfOperands, operations)); |
| } |
| |
| nn::GeneralResult<hidl_memory> createHidlMemoryFromSharedMemory(const nn::SharedMemory& memory) { |
| if (memory == nullptr) { |
| return NN_ERROR() << "Memory must be non-empty"; |
| } |
| return std::visit([](const auto& x) { return createHidlMemoryFrom(x); }, memory->handle); |
| } |
| |
| static uint32_t roundUpToMultiple(uint32_t value, uint32_t multiple) { |
| return (value + multiple - 1) / multiple * multiple; |
| } |
| |
| nn::GeneralResult<nn::SharedMemory> createSharedMemoryFromHidlMemory(const hidl_memory& memory) { |
| CHECK_LE(memory.size(), std::numeric_limits<size_t>::max()); |
| if (!memory.valid()) { |
| return NN_ERROR() << "Unable to convert invalid hidl_memory"; |
| } |
| |
| if (memory.name() == "ashmem") { |
| if (memory.handle()->numFds != 1) { |
| return NN_ERROR() << "Unable to convert invalid ashmem memory object with " |
| << memory.handle()->numFds << " numFds, but expected 1"; |
| } |
| if (memory.handle()->numInts != 0) { |
| return NN_ERROR() << "Unable to convert invalid ashmem memory object with " |
| << memory.handle()->numInts << " numInts, but expected 0"; |
| } |
| auto handle = nn::Memory::Ashmem{ |
| .fd = NN_TRY(nn::dupFd(memory.handle()->data[0])), |
| .size = static_cast<size_t>(memory.size()), |
| }; |
| return std::make_shared<const nn::Memory>(nn::Memory{.handle = std::move(handle)}); |
| } |
| |
| if (memory.name() == "mmap_fd") { |
| if (memory.handle()->numFds != 1) { |
| return NN_ERROR() << "Unable to convert invalid mmap_fd memory object with " |
| << memory.handle()->numFds << " numFds, but expected 1"; |
| } |
| if (memory.handle()->numInts != 3) { |
| return NN_ERROR() << "Unable to convert invalid mmap_fd memory object with " |
| << memory.handle()->numInts << " numInts, but expected 3"; |
| } |
| |
| const int fd = memory.handle()->data[0]; |
| const int prot = memory.handle()->data[1]; |
| const int lower = memory.handle()->data[2]; |
| const int higher = memory.handle()->data[3]; |
| const size_t offset = nn::getOffsetFromInts(lower, higher); |
| |
| return nn::createSharedMemoryFromFd(static_cast<size_t>(memory.size()), prot, fd, offset); |
| } |
| |
| if (memory.name() != "hardware_buffer_blob") { |
| auto handle = nn::Memory::Unknown{ |
| .handle = NN_TRY(sharedHandleFromNativeHandle(memory.handle())), |
| .size = static_cast<size_t>(memory.size()), |
| .name = memory.name(), |
| }; |
| return std::make_shared<const nn::Memory>(nn::Memory{.handle = std::move(handle)}); |
| } |
| |
| const auto size = memory.size(); |
| const auto format = AHARDWAREBUFFER_FORMAT_BLOB; |
| const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN; |
| const uint32_t width = size; |
| const uint32_t height = 1; // height is always 1 for BLOB mode AHardwareBuffer. |
| const uint32_t layers = 1; // layers is always 1 for BLOB mode AHardwareBuffer. |
| |
| // AHardwareBuffer_createFromHandle() might fail because an allocator |
| // expects a specific stride value. In that case, we try to guess it by |
| // aligning the width to small powers of 2. |
| // TODO(b/174120849): Avoid stride assumptions. |
| AHardwareBuffer* hardwareBuffer = nullptr; |
| status_t status = UNKNOWN_ERROR; |
| for (uint32_t alignment : {1, 4, 32, 64, 128, 2, 8, 16}) { |
| const uint32_t stride = roundUpToMultiple(width, alignment); |
| AHardwareBuffer_Desc desc{ |
| .width = width, |
| .height = height, |
| .layers = layers, |
| .format = format, |
| .usage = usage, |
| .stride = stride, |
| }; |
| status = AHardwareBuffer_createFromHandle(&desc, memory.handle(), |
| AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE, |
| &hardwareBuffer); |
| if (status == NO_ERROR) { |
| break; |
| } |
| } |
| if (status != NO_ERROR) { |
| return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) |
| << "Can't create AHardwareBuffer from handle. Error: " << status; |
| } |
| |
| return nn::createSharedMemoryFromAHWB(hardwareBuffer, /*takeOwnership=*/true); |
| } |
| |
| nn::GeneralResult<hidl_handle> hidlHandleFromSharedHandle(const nn::Handle& handle) { |
| std::vector<base::unique_fd> fds; |
| fds.reserve(handle.fds.size()); |
| for (const auto& fd : handle.fds) { |
| const int dupFd = dup(fd); |
| if (dupFd == -1) { |
| return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Failed to dup the fd"; |
| } |
| fds.emplace_back(dupFd); |
| } |
| |
| constexpr size_t kIntMax = std::numeric_limits<int>::max(); |
| CHECK_LE(handle.fds.size(), kIntMax); |
| CHECK_LE(handle.ints.size(), kIntMax); |
| native_handle_t* nativeHandle = native_handle_create(static_cast<int>(handle.fds.size()), |
| static_cast<int>(handle.ints.size())); |
| if (nativeHandle == nullptr) { |
| return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Failed to create native_handle"; |
| } |
| for (size_t i = 0; i < fds.size(); ++i) { |
| nativeHandle->data[i] = fds[i].release(); |
| } |
| std::copy(handle.ints.begin(), handle.ints.end(), &nativeHandle->data[nativeHandle->numFds]); |
| |
| hidl_handle hidlHandle; |
| hidlHandle.setTo(nativeHandle, /*shouldOwn=*/true); |
| return hidlHandle; |
| } |
| |
| nn::GeneralResult<nn::Handle> sharedHandleFromNativeHandle(const native_handle_t* handle) { |
| if (handle == nullptr) { |
| return NN_ERROR() << "sharedHandleFromNativeHandle failed because handle is nullptr"; |
| } |
| |
| std::vector<base::unique_fd> fds; |
| fds.reserve(handle->numFds); |
| for (int i = 0; i < handle->numFds; ++i) { |
| const int dupFd = dup(handle->data[i]); |
| if (dupFd == -1) { |
| return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Failed to dup the fd"; |
| } |
| fds.emplace_back(dupFd); |
| } |
| |
| std::vector<int> ints(&handle->data[handle->numFds], |
| &handle->data[handle->numFds + handle->numInts]); |
| |
| return nn::Handle{.fds = std::move(fds), .ints = std::move(ints)}; |
| } |
| |
| nn::GeneralResult<hidl_vec<hidl_handle>> convertSyncFences( |
| const std::vector<nn::SyncFence>& syncFences) { |
| hidl_vec<hidl_handle> handles(syncFences.size()); |
| for (size_t i = 0; i < syncFences.size(); ++i) { |
| const auto& handle = syncFences[i].getSharedHandle(); |
| if (handle == nullptr) { |
| return NN_ERROR() << "convertSyncFences failed because sync fence is empty"; |
| } |
| handles[i] = NN_TRY(hidlHandleFromSharedHandle(*handle)); |
| } |
| return handles; |
| } |
| |
| } // namespace android::hardware::neuralnetworks::utils |