| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Callbacks.h" |
| #include "TestHarness.h" |
| #include "Utils.h" |
| |
| #include <android-base/logging.h> |
| #include <android/hardware/neuralnetworks/1.0/IDevice.h> |
| #include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h> |
| #include <android/hardware/neuralnetworks/1.0/IPreparedModel.h> |
| #include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h> |
| #include <android/hardware/neuralnetworks/1.0/types.h> |
| #include <android/hardware/neuralnetworks/1.1/IDevice.h> |
| #include <android/hardware/neuralnetworks/1.2/IDevice.h> |
| #include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h> |
| #include <android/hardware/neuralnetworks/1.2/IPreparedModel.h> |
| #include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h> |
| #include <android/hidl/allocator/1.0/IAllocator.h> |
| #include <android/hidl/memory/1.0/IMemory.h> |
| #include <hidlmemory/mapping.h> |
| #include <iostream> |
| |
| namespace android { |
| namespace hardware { |
| namespace neuralnetworks { |
| |
| namespace generated_tests { |
| using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback; |
| using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback; |
| using ::test_helper::bool8; |
| using ::test_helper::compare; |
| using ::test_helper::expectMultinomialDistributionWithinTolerance; |
| using ::test_helper::filter; |
| using ::test_helper::for_all; |
| using ::test_helper::for_each; |
| using ::test_helper::MixedTyped; |
| using ::test_helper::MixedTypedExample; |
| using ::test_helper::resize_accordingly; |
| |
| template <typename T> |
| void copy_back_(std::map<int, std::vector<T>>* dst, const std::vector<RequestArgument>& ra, |
| char* src) { |
| for_each<T>(*dst, [&ra, src](int index, std::vector<T>& m) { |
| ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T)); |
| char* begin = src + ra[index].location.offset; |
| memcpy(m.data(), begin, ra[index].location.length); |
| }); |
| } |
| |
| void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) { |
| copy_back_(&dst->float32Operands, ra, src); |
| copy_back_(&dst->int32Operands, ra, src); |
| copy_back_(&dst->quant8AsymmOperands, ra, src); |
| copy_back_(&dst->quant16SymmOperands, ra, src); |
| copy_back_(&dst->float16Operands, ra, src); |
| copy_back_(&dst->bool8Operands, ra, src); |
| copy_back_(&dst->quant8ChannelOperands, ra, src); |
| copy_back_(&dst->quant16AsymmOperands, ra, src); |
| static_assert(8 == MixedTyped::kNumTypes, |
| "Number of types in MixedTyped changed, but copy_back function wasn't updated"); |
| } |
| |
| // Top level driver for models and examples generated by test_generator.py |
| // Test driver for those generated from ml/nn/runtime/test/spec |
| static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>& preparedModel, |
| const Request& request, MeasureTiming, |
| sp<ExecutionCallback>& callback) { |
| return preparedModel->execute(request, callback); |
| } |
| static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel, |
| const Request& request, MeasureTiming measure, |
| sp<ExecutionCallback>& callback) { |
| return preparedModel->execute_1_2(request, measure, callback); |
| } |
| static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>&, const Request&, |
| MeasureTiming, hidl_vec<OutputShape>*, Timing*) { |
| ADD_FAILURE() << "asking for synchronous execution at V1_0"; |
| return ErrorStatus::GENERAL_FAILURE; |
| } |
| static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel, |
| const Request& request, MeasureTiming measure, |
| hidl_vec<OutputShape>* outputShapes, |
| Timing* timing) { |
| ErrorStatus result; |
| Return<void> ret = preparedModel->executeSynchronously( |
| request, measure, |
| [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes, |
| const Timing& time) { |
| result = error; |
| *outputShapes = shapes; |
| *timing = time; |
| }); |
| if (!ret.isOk()) { |
| return ErrorStatus::GENERAL_FAILURE; |
| } |
| return result; |
| } |
| enum class Synchronously { NO, YES }; |
| const float kDefaultAtol = 1e-5f; |
| const float kDefaultRtol = 1e-5f; |
| template <typename T_IPreparedModel> |
| void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored, |
| const std::vector<MixedTypedExample>& examples, |
| bool hasRelaxedFloat32Model, float fpAtol, float fpRtol, |
| Synchronously sync, MeasureTiming measure, bool testDynamicOutputShape) { |
| const uint32_t INPUT = 0; |
| const uint32_t OUTPUT = 1; |
| |
| int example_no = 1; |
| for (auto& example : examples) { |
| SCOPED_TRACE(example_no++); |
| const MixedTyped& inputs = example.operands.first; |
| const MixedTyped& golden = example.operands.second; |
| |
| const bool hasFloat16Inputs = !inputs.float16Operands.empty(); |
| if (hasRelaxedFloat32Model || hasFloat16Inputs) { |
| // TODO: Adjust the error limit based on testing. |
| // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16. |
| fpAtol = 5.0f * 0.0009765625f; |
| // Set the relative tolerance to be 5ULP of the corresponding FP precision. |
| fpRtol = 5.0f * 0.0009765625f; |
| } |
| |
| std::vector<RequestArgument> inputs_info, outputs_info; |
| uint32_t inputSize = 0, outputSize = 0; |
| // This function only partially specifies the metadata (vector of RequestArguments). |
| // The contents are copied over below. |
| for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) { |
| if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1); |
| RequestArgument arg = { |
| .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)}, |
| .dimensions = {}, |
| }; |
| RequestArgument arg_empty = { |
| .hasNoValue = true, |
| }; |
| inputs_info[index] = s ? arg : arg_empty; |
| inputSize += s; |
| }); |
| // Compute offset for inputs 1 and so on |
| { |
| size_t offset = 0; |
| for (auto& i : inputs_info) { |
| if (!i.hasNoValue) i.location.offset = offset; |
| offset += i.location.length; |
| } |
| } |
| |
| MixedTyped test; // holding test results |
| |
| // Go through all outputs, initialize RequestArgument descriptors |
| resize_accordingly(golden, test); |
| for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) { |
| if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1); |
| RequestArgument arg = { |
| .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)}, |
| .dimensions = {}, |
| }; |
| outputs_info[index] = arg; |
| outputSize += s; |
| }); |
| // Compute offset for outputs 1 and so on |
| { |
| size_t offset = 0; |
| for (auto& i : outputs_info) { |
| i.location.offset = offset; |
| offset += i.location.length; |
| } |
| } |
| std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize), |
| nn::allocateSharedMemory(outputSize)}; |
| ASSERT_NE(0ull, pools[INPUT].size()); |
| ASSERT_NE(0ull, pools[OUTPUT].size()); |
| |
| // load data |
| sp<IMemory> inputMemory = mapMemory(pools[INPUT]); |
| sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]); |
| ASSERT_NE(nullptr, inputMemory.get()); |
| ASSERT_NE(nullptr, outputMemory.get()); |
| char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer())); |
| char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer())); |
| ASSERT_NE(nullptr, inputPtr); |
| ASSERT_NE(nullptr, outputPtr); |
| inputMemory->update(); |
| outputMemory->update(); |
| |
| // Go through all inputs, copy the values |
| for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) { |
| char* begin = (char*)p; |
| char* end = begin + s; |
| // TODO: handle more than one input |
| std::copy(begin, end, inputPtr + inputs_info[index].location.offset); |
| }); |
| |
| inputMemory->commit(); |
| outputMemory->commit(); |
| |
| ErrorStatus executionStatus; |
| hidl_vec<OutputShape> outputShapes; |
| Timing timing; |
| if (sync == Synchronously::NO) { |
| SCOPED_TRACE("asynchronous"); |
| |
| // launch execution |
| sp<ExecutionCallback> executionCallback = new ExecutionCallback(); |
| ASSERT_NE(nullptr, executionCallback.get()); |
| Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel( |
| preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools}, |
| measure, executionCallback); |
| ASSERT_TRUE(executionLaunchStatus.isOk()); |
| EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus)); |
| |
| // retrieve execution status |
| executionCallback->wait(); |
| executionStatus = executionCallback->getStatus(); |
| outputShapes = executionCallback->getOutputShapes(); |
| timing = executionCallback->getTiming(); |
| } else { |
| SCOPED_TRACE("synchronous"); |
| |
| // execute |
| Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel( |
| preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools}, |
| measure, &outputShapes, &timing); |
| ASSERT_TRUE(executionReturnStatus.isOk()); |
| executionStatus = static_cast<ErrorStatus>(executionReturnStatus); |
| } |
| |
| if (testDynamicOutputShape && executionStatus != ErrorStatus::NONE) { |
| LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " |
| "execute model that it does not support."; |
| std::cout << "[ ] Early termination of test because vendor service cannot " |
| "execute model that it does not support." |
| << std::endl; |
| return; |
| } |
| ASSERT_EQ(ErrorStatus::NONE, executionStatus); |
| if (measure == MeasureTiming::NO) { |
| EXPECT_EQ(UINT64_MAX, timing.timeOnDevice); |
| EXPECT_EQ(UINT64_MAX, timing.timeInDriver); |
| } else { |
| if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) { |
| EXPECT_LE(timing.timeOnDevice, timing.timeInDriver); |
| } |
| } |
| |
| // Go through all outputs, overwrite output dimensions with returned output shapes |
| if (testDynamicOutputShape) { |
| ASSERT_NE(outputShapes.size(), 0); |
| for_each<uint32_t>(test.operandDimensions, |
| [&outputShapes](int idx, std::vector<uint32_t>& dim) { |
| dim = outputShapes[idx].dimensions; |
| }); |
| } |
| |
| // validate results |
| outputMemory->read(); |
| copy_back(&test, outputs_info, outputPtr); |
| outputMemory->commit(); |
| // Filter out don't cares |
| MixedTyped filtered_golden = filter(golden, is_ignored); |
| MixedTyped filtered_test = filter(test, is_ignored); |
| |
| // We want "close-enough" results for float |
| compare(filtered_golden, filtered_test, fpAtol, fpRtol); |
| |
| if (example.expectedMultinomialDistributionTolerance > 0) { |
| expectMultinomialDistributionWithinTolerance(test, example); |
| } |
| } |
| } |
| template <typename T_IPreparedModel> |
| void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored, |
| const std::vector<MixedTypedExample>& examples, |
| bool hasRelaxedFloat32Model, Synchronously sync, MeasureTiming measure, |
| bool testDynamicOutputShape) { |
| EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol, |
| kDefaultRtol, sync, measure, testDynamicOutputShape); |
| } |
| |
| static void getPreparedModel(sp<PreparedModelCallback> callback, |
| sp<V1_0::IPreparedModel>* preparedModel) { |
| *preparedModel = callback->getPreparedModel(); |
| } |
| static void getPreparedModel(sp<PreparedModelCallback> callback, |
| sp<V1_2::IPreparedModel>* preparedModel) { |
| sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel(); |
| *preparedModel = V1_2::IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr); |
| } |
| |
| void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model, |
| std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) { |
| V1_0::Model model = create_model(); |
| |
| // see if service can handle model |
| bool fullySupportsModel = false; |
| Return<void> supportedCall = device->getSupportedOperations( |
| model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) { |
| ASSERT_EQ(ErrorStatus::NONE, status); |
| ASSERT_NE(0ul, supported.size()); |
| fullySupportsModel = |
| std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; }); |
| }); |
| ASSERT_TRUE(supportedCall.isOk()); |
| |
| // launch prepare model |
| sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback(); |
| ASSERT_NE(nullptr, preparedModelCallback.get()); |
| Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback); |
| ASSERT_TRUE(prepareLaunchStatus.isOk()); |
| ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus)); |
| |
| // retrieve prepared model |
| preparedModelCallback->wait(); |
| ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus(); |
| sp<V1_0::IPreparedModel> preparedModel; |
| getPreparedModel(preparedModelCallback, &preparedModel); |
| |
| // early termination if vendor service cannot fully prepare model |
| if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) { |
| ASSERT_EQ(nullptr, preparedModel.get()); |
| LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " |
| "prepare model that it does not support."; |
| std::cout << "[ ] Early termination of test because vendor service cannot " |
| "prepare model that it does not support." |
| << std::endl; |
| return; |
| } |
| EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus); |
| ASSERT_NE(nullptr, preparedModel.get()); |
| |
| float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f; |
| EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| /*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol, Synchronously::NO, |
| MeasureTiming::NO, /*testDynamicOutputShape=*/false); |
| } |
| |
| void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model, |
| std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) { |
| V1_1::Model model = create_model(); |
| |
| // see if service can handle model |
| bool fullySupportsModel = false; |
| Return<void> supportedCall = device->getSupportedOperations_1_1( |
| model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) { |
| ASSERT_EQ(ErrorStatus::NONE, status); |
| ASSERT_NE(0ul, supported.size()); |
| fullySupportsModel = |
| std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; }); |
| }); |
| ASSERT_TRUE(supportedCall.isOk()); |
| |
| // launch prepare model |
| sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback(); |
| ASSERT_NE(nullptr, preparedModelCallback.get()); |
| Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1( |
| model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback); |
| ASSERT_TRUE(prepareLaunchStatus.isOk()); |
| ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus)); |
| |
| // retrieve prepared model |
| preparedModelCallback->wait(); |
| ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus(); |
| sp<V1_0::IPreparedModel> preparedModel; |
| getPreparedModel(preparedModelCallback, &preparedModel); |
| |
| // early termination if vendor service cannot fully prepare model |
| if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) { |
| ASSERT_EQ(nullptr, preparedModel.get()); |
| LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " |
| "prepare model that it does not support."; |
| std::cout << "[ ] Early termination of test because vendor service cannot " |
| "prepare model that it does not support." |
| << std::endl; |
| return; |
| } |
| EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus); |
| ASSERT_NE(nullptr, preparedModel.get()); |
| |
| EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| model.relaxComputationFloat32toFloat16, 1e-5f, 1e-5f, Synchronously::NO, |
| MeasureTiming::NO, /*testDynamicOutputShape=*/false); |
| } |
| |
| // TODO: Reduce code duplication. |
| void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model, |
| std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples, |
| bool testDynamicOutputShape) { |
| V1_2::Model model = create_model(); |
| |
| // see if service can handle model |
| bool fullySupportsModel = false; |
| Return<void> supportedCall = device->getSupportedOperations_1_2( |
| model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) { |
| ASSERT_EQ(ErrorStatus::NONE, status); |
| ASSERT_NE(0ul, supported.size()); |
| fullySupportsModel = |
| std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; }); |
| }); |
| ASSERT_TRUE(supportedCall.isOk()); |
| |
| // launch prepare model |
| sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback(); |
| ASSERT_NE(nullptr, preparedModelCallback.get()); |
| Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2( |
| model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback); |
| ASSERT_TRUE(prepareLaunchStatus.isOk()); |
| ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus)); |
| |
| // retrieve prepared model |
| preparedModelCallback->wait(); |
| ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus(); |
| sp<V1_2::IPreparedModel> preparedModel; |
| getPreparedModel(preparedModelCallback, &preparedModel); |
| |
| // early termination if vendor service cannot fully prepare model |
| if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) { |
| ASSERT_EQ(nullptr, preparedModel.get()); |
| LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " |
| "prepare model that it does not support."; |
| std::cout << "[ ] Early termination of test because vendor service cannot " |
| "prepare model that it does not support." |
| << std::endl; |
| return; |
| } |
| EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus); |
| ASSERT_NE(nullptr, preparedModel.get()); |
| |
| EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| model.relaxComputationFloat32toFloat16, Synchronously::NO, |
| MeasureTiming::NO, testDynamicOutputShape); |
| EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| model.relaxComputationFloat32toFloat16, Synchronously::YES, |
| MeasureTiming::NO, testDynamicOutputShape); |
| EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| model.relaxComputationFloat32toFloat16, Synchronously::NO, |
| MeasureTiming::YES, testDynamicOutputShape); |
| EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| model.relaxComputationFloat32toFloat16, Synchronously::YES, |
| MeasureTiming::YES, testDynamicOutputShape); |
| } |
| |
| } // namespace generated_tests |
| |
| } // namespace neuralnetworks |
| } // namespace hardware |
| } // namespace android |