blob: b5843c0fd4a9d9d6348e128b4f5e15ff20d90ee6 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ResilientPreparedModel.h"
#include "InvalidBurst.h"
#include "InvalidExecution.h"
#include "ResilientBurst.h"
#include "ResilientExecution.h"
#include <android-base/logging.h>
#include <android-base/thread_annotations.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <functional>
#include <memory>
#include <mutex>
#include <sstream>
#include <utility>
#include <vector>
namespace android::hardware::neuralnetworks::utils {
namespace {
template <typename FnType>
auto protect(const ResilientPreparedModel& resilientPreparedModel, const FnType& fn)
-> decltype(fn(*resilientPreparedModel.getPreparedModel())) {
auto preparedModel = resilientPreparedModel.getPreparedModel();
auto result = fn(*preparedModel);
// Immediately return if prepared model is not dead.
if (result.has_value() || result.error().code != nn::ErrorStatus::DEAD_OBJECT) {
return result;
}
// Attempt recovery and return if it fails.
auto maybePreparedModel = resilientPreparedModel.recover(preparedModel.get());
if (!maybePreparedModel.has_value()) {
const auto& [message, code] = maybePreparedModel.error();
std::ostringstream oss;
oss << ", and failed to recover dead prepared model with error " << code << ": " << message;
result.error().message += oss.str();
return result;
}
preparedModel = std::move(maybePreparedModel).value();
return fn(*preparedModel);
}
} // namespace
nn::GeneralResult<std::shared_ptr<const ResilientPreparedModel>> ResilientPreparedModel::create(
Factory makePreparedModel) {
if (makePreparedModel == nullptr) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "utils::ResilientPreparedModel::create must have non-empty makePreparedModel";
}
auto preparedModel = NN_TRY(makePreparedModel());
CHECK(preparedModel != nullptr);
return std::make_shared<ResilientPreparedModel>(
PrivateConstructorTag{}, std::move(makePreparedModel), std::move(preparedModel));
}
ResilientPreparedModel::ResilientPreparedModel(PrivateConstructorTag /*tag*/,
Factory makePreparedModel,
nn::SharedPreparedModel preparedModel)
: kMakePreparedModel(std::move(makePreparedModel)), mPreparedModel(std::move(preparedModel)) {
CHECK(kMakePreparedModel != nullptr);
CHECK(mPreparedModel != nullptr);
}
nn::SharedPreparedModel ResilientPreparedModel::getPreparedModel() const {
std::lock_guard guard(mMutex);
return mPreparedModel;
}
nn::GeneralResult<nn::SharedPreparedModel> ResilientPreparedModel::recover(
const nn::IPreparedModel* failingPreparedModel) const {
std::lock_guard guard(mMutex);
// Another caller updated the failing prepared model.
if (mPreparedModel.get() != failingPreparedModel) {
return mPreparedModel;
}
mPreparedModel = NN_TRY(kMakePreparedModel());
return mPreparedModel;
}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
ResilientPreparedModel::execute(
const nn::Request& request, nn::MeasureTiming measure,
const nn::OptionalTimePoint& deadline, const nn::OptionalDuration& loopTimeoutDuration,
const std::vector<nn::TokenValuePair>& hints,
const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix) const {
const auto fn = [&request, measure, &deadline, &loopTimeoutDuration, &hints,
&extensionNameToPrefix](const nn::IPreparedModel& preparedModel) {
return preparedModel.execute(request, measure, deadline, loopTimeoutDuration, hints,
extensionNameToPrefix);
};
return protect(*this, fn);
}
nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>>
ResilientPreparedModel::executeFenced(
const nn::Request& request, const std::vector<nn::SyncFence>& waitFor,
nn::MeasureTiming measure, const nn::OptionalTimePoint& deadline,
const nn::OptionalDuration& loopTimeoutDuration,
const nn::OptionalDuration& timeoutDurationAfterFence,
const std::vector<nn::TokenValuePair>& hints,
const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix) const {
const auto fn = [&request, &waitFor, measure, &deadline, &loopTimeoutDuration,
&timeoutDurationAfterFence, &hints,
&extensionNameToPrefix](const nn::IPreparedModel& preparedModel) {
return preparedModel.executeFenced(request, waitFor, measure, deadline, loopTimeoutDuration,
timeoutDurationAfterFence, hints, extensionNameToPrefix);
};
return protect(*this, fn);
}
nn::GeneralResult<nn::SharedExecution> ResilientPreparedModel::createReusableExecution(
const nn::Request& request, nn::MeasureTiming measure,
const nn::OptionalDuration& loopTimeoutDuration,
const std::vector<nn::TokenValuePair>& hints,
const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix) const {
#if 0
auto self = shared_from_this();
ResilientExecution::Factory makeExecution = [preparedModel = std::move(self), request, measure,
loopTimeoutDuration, hints,
extensionNameToPrefix] {
return preparedModel->createReusableExecutionInternal(request, measure, loopTimeoutDuration,
hints, extensionNameToPrefix);
};
return ResilientExecution::create(std::move(makeExecution));
#else
return createReusableExecutionInternal(request, measure, loopTimeoutDuration, hints,
extensionNameToPrefix);
#endif
}
nn::GeneralResult<nn::SharedBurst> ResilientPreparedModel::configureExecutionBurst() const {
#if 0
auto self = shared_from_this();
ResilientBurst::Factory makeBurst =
[preparedModel = std::move(self)]() -> nn::GeneralResult<nn::SharedBurst> {
return preparedModel->configureExecutionBurst();
};
return ResilientBurst::create(std::move(makeBurst));
#else
return configureExecutionBurstInternal();
#endif
}
nn::GeneralResult<nn::SharedExecution> ResilientPreparedModel::createReusableExecutionInternal(
const nn::Request& request, nn::MeasureTiming measure,
const nn::OptionalDuration& loopTimeoutDuration,
const std::vector<nn::TokenValuePair>& hints,
const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix) const {
if (!isValidInternal()) {
return std::make_shared<const InvalidExecution>();
}
const auto fn = [&request, measure, &loopTimeoutDuration, &hints,
&extensionNameToPrefix](const nn::IPreparedModel& preparedModel) {
return preparedModel.createReusableExecution(request, measure, loopTimeoutDuration, hints,
extensionNameToPrefix);
};
return protect(*this, fn);
}
std::any ResilientPreparedModel::getUnderlyingResource() const {
return getPreparedModel()->getUnderlyingResource();
}
bool ResilientPreparedModel::isValidInternal() const {
return true;
}
nn::GeneralResult<nn::SharedBurst> ResilientPreparedModel::configureExecutionBurstInternal() const {
if (!isValidInternal()) {
return std::make_shared<const InvalidBurst>();
}
const auto fn = [](const nn::IPreparedModel& preparedModel) {
return preparedModel.configureExecutionBurst();
};
return protect(*this, fn);
}
} // namespace android::hardware::neuralnetworks::utils