blob: 805d5b53aa6760467fe35bdce64500aa49280f19 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "GeneratedTestHarness.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.2/IDevice.h>
#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <android/hardware/neuralnetworks/1.3/IDevice.h>
#include <android/hardware/neuralnetworks/1.3/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.3/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <gtest/gtest.h>
#include <hidlmemory/mapping.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <numeric>
#include <vector>
#include "1.0/Utils.h"
#include "1.2/Callbacks.h"
#include "1.3/Callbacks.h"
#include "ExecutionBurstController.h"
#include "MemoryUtils.h"
#include "TestHarness.h"
#include "Utils.h"
#include "VtsHalNeuralnetworks.h"
namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using namespace test_helper;
using hidl::memory::V1_0::IMemory;
using implementation::PreparedModelCallback;
using V1_0::DataLocation;
using V1_0::ErrorStatus;
using V1_0::RequestArgument;
using V1_1::ExecutionPreference;
using V1_2::Constant;
using V1_2::MeasureTiming;
using V1_2::OutputShape;
using V1_2::SymmPerChannelQuantParams;
using V1_2::Timing;
using V1_2::implementation::ExecutionCallback;
using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
namespace {
enum class Executor { ASYNC, SYNC, BURST };
enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
enum class MemoryType { SHARED, DEVICE };
enum class IOType { INPUT, OUTPUT };
struct TestConfig {
Executor executor;
MeasureTiming measureTiming;
OutputType outputType;
MemoryType memoryType;
// `reportSkipping` indicates if a test should print an info message in case
// it is skipped. The field is set to true by default and is set to false in
// quantization coupling tests to suppress skipping a test
bool reportSkipping;
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
MemoryType memoryType)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(true) {}
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
MemoryType memoryType, bool reportSkipping)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(reportSkipping) {}
};
class DeviceMemoryAllocator {
public:
DeviceMemoryAllocator(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel)
: kDevice(device), kPreparedModel(preparedModel), kTestModel(testModel) {}
// Allocate device memory for a target input/output operand.
// Return {IBuffer object, token} if successful.
// Return {nullptr, 0} if device memory is not supported.
template <IOType ioType>
std::pair<sp<IBuffer>, int32_t> allocate(uint32_t index) {
std::pair<sp<IBuffer>, int32_t> buffer;
allocateInternal<ioType>(index, &buffer);
return buffer;
}
private:
template <IOType ioType>
void allocateInternal(uint32_t index, std::pair<sp<IBuffer>, int32_t>* result) {
ASSERT_NE(result, nullptr);
// Prepare arguments.
BufferRole role = {.modelIndex = 0, .ioIndex = index, .frequency = 1.0f};
hidl_vec<BufferRole> inputRoles, outputRoles;
if constexpr (ioType == IOType::INPUT) {
inputRoles = {role};
} else {
outputRoles = {role};
}
// Allocate device memory.
ErrorStatus status;
sp<IBuffer> buffer;
int32_t token;
const auto ret = kDevice->allocate(
{}, {kPreparedModel}, inputRoles, outputRoles,
[&status, &buffer, &token](ErrorStatus error, const sp<IBuffer>& buf, int32_t tok) {
status = error;
buffer = buf;
token = tok;
});
// Check allocation results.
ASSERT_TRUE(ret.isOk());
if (status == ErrorStatus::NONE) {
ASSERT_NE(buffer, nullptr);
ASSERT_GT(token, 0);
} else {
ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
ASSERT_EQ(buffer, nullptr);
ASSERT_EQ(token, 0);
}
// Initialize input data from TestBuffer.
if constexpr (ioType == IOType::INPUT) {
if (buffer != nullptr) {
// TestBuffer -> Shared memory.
const auto& testBuffer = kTestModel.operands[kTestModel.inputIndexes[index]].data;
ASSERT_GT(testBuffer.size(), 0);
hidl_memory tmp = nn::allocateSharedMemory(testBuffer.size());
sp<IMemory> inputMemory = mapMemory(tmp);
ASSERT_NE(inputMemory.get(), nullptr);
uint8_t* inputPtr =
static_cast<uint8_t*>(static_cast<void*>(inputMemory->getPointer()));
ASSERT_NE(inputPtr, nullptr);
const uint8_t* begin = testBuffer.get<uint8_t>();
const uint8_t* end = begin + testBuffer.size();
std::copy(begin, end, inputPtr);
// Shared memory -> IBuffer.
auto ret = buffer->copyFrom(tmp, {});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
}
}
*result = {std::move(buffer), token};
}
const sp<IDevice> kDevice;
const sp<IPreparedModel> kPreparedModel;
const TestModel& kTestModel;
};
} // namespace
Model createModel(const TestModel& testModel) {
// Model operands.
hidl_vec<Operand> operands(testModel.operands.size());
size_t constCopySize = 0, constRefSize = 0;
for (uint32_t i = 0; i < testModel.operands.size(); i++) {
const auto& op = testModel.operands[i];
DataLocation loc = {};
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
loc = {.poolIndex = 0,
.offset = static_cast<uint32_t>(constCopySize),
.length = static_cast<uint32_t>(op.data.size())};
constCopySize += op.data.alignedSize();
} else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
loc = {.poolIndex = 0,
.offset = static_cast<uint32_t>(constRefSize),
.length = static_cast<uint32_t>(op.data.size())};
constRefSize += op.data.alignedSize();
}
Operand::ExtraParams extraParams;
if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
extraParams.channelQuant(SymmPerChannelQuantParams{
.scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
}
operands[i] = {.type = static_cast<OperandType>(op.type),
.dimensions = op.dimensions,
.numberOfConsumers = op.numberOfConsumers,
.scale = op.scale,
.zeroPoint = op.zeroPoint,
.lifetime = static_cast<OperandLifeTime>(op.lifetime),
.location = loc,
.extraParams = std::move(extraParams)};
}
// Model operations.
hidl_vec<Operation> operations(testModel.operations.size());
std::transform(testModel.operations.begin(), testModel.operations.end(), operations.begin(),
[](const TestOperation& op) -> Operation {
return {.type = static_cast<OperationType>(op.type),
.inputs = op.inputs,
.outputs = op.outputs};
});
// Constant copies.
hidl_vec<uint8_t> operandValues(constCopySize);
for (uint32_t i = 0; i < testModel.operands.size(); i++) {
const auto& op = testModel.operands[i];
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, operandValues.data() + operands[i].location.offset);
}
}
// Shared memory.
hidl_vec<hidl_memory> pools = {};
if (constRefSize > 0) {
hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
CHECK_NE(pools[0].size(), 0u);
// load data
sp<IMemory> mappedMemory = mapMemory(pools[0]);
CHECK(mappedMemory.get() != nullptr);
uint8_t* mappedPtr =
reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
CHECK(mappedPtr != nullptr);
for (uint32_t i = 0; i < testModel.operands.size(); i++) {
const auto& op = testModel.operands[i];
if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, mappedPtr + operands[i].location.offset);
}
}
}
return {.main = {.operands = std::move(operands),
.operations = std::move(operations),
.inputIndexes = testModel.inputIndexes,
.outputIndexes = testModel.outputIndexes},
.operandValues = std::move(operandValues),
.pools = std::move(pools),
.relaxComputationFloat32toFloat16 = testModel.isRelaxed};
}
static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
const auto byteSize = testModel.operands[testModel.outputIndexes[index]].data.size();
return byteSize > 1u;
}
static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
auto& length = request->outputs[outputIndex].location.length;
ASSERT_GT(length, 1u);
length -= 1u;
}
static void makeOutputDimensionsUnspecified(Model* model) {
for (auto i : model->main.outputIndexes) {
auto& dims = model->main.operands[i].dimensions;
std::fill(dims.begin(), dims.end(), 0);
}
}
constexpr uint32_t kInputPoolIndex = 0;
constexpr uint32_t kOutputPoolIndex = 1;
constexpr uint32_t kDeviceMemoryBeginIndex = 2;
static std::pair<Request, std::vector<sp<IBuffer>>> createRequest(
const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, bool preferDeviceMemory) {
// Memory pools are organized as:
// - 0: Input shared memory pool
// - 1: Output shared memory pool
// - [2, 2+i): Input device memories
// - [2+i, 2+i+o): Output device memories
DeviceMemoryAllocator allocator(device, preparedModel, testModel);
std::vector<sp<IBuffer>> buffers;
std::vector<int32_t> tokens;
// Model inputs.
hidl_vec<RequestArgument> inputs(testModel.inputIndexes.size());
size_t inputSize = 0;
for (uint32_t i = 0; i < testModel.inputIndexes.size(); i++) {
const auto& op = testModel.operands[testModel.inputIndexes[i]];
if (op.data.size() == 0) {
// Omitted input.
inputs[i] = {.hasNoValue = true};
continue;
} else if (preferDeviceMemory) {
SCOPED_TRACE("Input index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::INPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<uint32_t>(buffers.size() +
kDeviceMemoryBeginIndex)};
buffers.push_back(std::move(buffer));
tokens.push_back(token);
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// Reserve shared memory for input.
DataLocation loc = {.poolIndex = kInputPoolIndex,
.offset = static_cast<uint32_t>(inputSize),
.length = static_cast<uint32_t>(op.data.size())};
inputSize += op.data.alignedSize();
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Model outputs.
hidl_vec<RequestArgument> outputs(testModel.outputIndexes.size());
size_t outputSize = 0;
for (uint32_t i = 0; i < testModel.outputIndexes.size(); i++) {
const auto& op = testModel.operands[testModel.outputIndexes[i]];
if (preferDeviceMemory) {
SCOPED_TRACE("Output index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::OUTPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<uint32_t>(buffers.size() +
kDeviceMemoryBeginIndex)};
buffers.push_back(std::move(buffer));
tokens.push_back(token);
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// In the case of zero-sized output, we should at least provide a one-byte buffer.
// This is because zero-sized tensors are only supported internally to the driver, or
// reported in output shapes. It is illegal for the client to pre-specify a zero-sized
// tensor as model output. Otherwise, we will have two semantic conflicts:
// - "Zero dimension" conflicts with "unspecified dimension".
// - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
size_t bufferSize = std::max<size_t>(op.data.size(), 1);
// Reserve shared memory for output.
DataLocation loc = {.poolIndex = kOutputPoolIndex,
.offset = static_cast<uint32_t>(outputSize),
.length = static_cast<uint32_t>(bufferSize)};
outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Memory pools.
hidl_vec<Request::MemoryPool> pools(kDeviceMemoryBeginIndex + buffers.size());
pools[kInputPoolIndex].hidlMemory(nn::allocateSharedMemory(std::max<size_t>(inputSize, 1)));
pools[kOutputPoolIndex].hidlMemory(nn::allocateSharedMemory(std::max<size_t>(outputSize, 1)));
CHECK_NE(pools[kInputPoolIndex].hidlMemory().size(), 0u);
CHECK_NE(pools[kOutputPoolIndex].hidlMemory().size(), 0u);
for (uint32_t i = 0; i < buffers.size(); i++) {
pools[kDeviceMemoryBeginIndex + i].token(tokens[i]);
}
// Copy input data to the input shared memory pool.
sp<IMemory> inputMemory = mapMemory(pools[kInputPoolIndex].hidlMemory());
CHECK(inputMemory.get() != nullptr);
uint8_t* inputPtr = static_cast<uint8_t*>(static_cast<void*>(inputMemory->getPointer()));
CHECK(inputPtr != nullptr);
for (uint32_t i = 0; i < testModel.inputIndexes.size(); i++) {
if (!inputs[i].hasNoValue && inputs[i].location.poolIndex == kInputPoolIndex) {
const auto& op = testModel.operands[testModel.inputIndexes[i]];
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, inputPtr + inputs[i].location.offset);
}
}
Request request = {
.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
return {std::move(request), std::move(buffers)};
}
// Get a TestBuffer with data copied from an IBuffer object.
static void getBuffer(const sp<IBuffer>& buffer, size_t size, TestBuffer* testBuffer) {
// IBuffer -> Shared memory.
hidl_memory tmp = nn::allocateSharedMemory(size);
const auto ret = buffer->copyTo(tmp);
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
// Shared memory -> TestBuffer.
sp<IMemory> outputMemory = mapMemory(tmp);
ASSERT_NE(outputMemory.get(), nullptr);
uint8_t* outputPtr = static_cast<uint8_t*>(static_cast<void*>(outputMemory->getPointer()));
ASSERT_NE(outputPtr, nullptr);
ASSERT_NE(testBuffer, nullptr);
*testBuffer = TestBuffer(size, outputPtr);
}
static std::vector<TestBuffer> getOutputBuffers(const TestModel& testModel, const Request& request,
const std::vector<sp<IBuffer>>& buffers) {
sp<IMemory> outputMemory = mapMemory(request.pools[kOutputPoolIndex].hidlMemory());
CHECK(outputMemory.get() != nullptr);
uint8_t* outputPtr = static_cast<uint8_t*>(static_cast<void*>(outputMemory->getPointer()));
CHECK(outputPtr != nullptr);
// Copy out output results.
std::vector<TestBuffer> outputBuffers;
for (uint32_t i = 0; i < request.outputs.size(); i++) {
const auto& outputLoc = request.outputs[i].location;
if (outputLoc.poolIndex == kOutputPoolIndex) {
outputBuffers.emplace_back(outputLoc.length, outputPtr + outputLoc.offset);
} else {
const auto& op = testModel.operands[testModel.outputIndexes[i]];
if (op.data.size() == 0) {
outputBuffers.emplace_back();
} else {
SCOPED_TRACE("Output index = " + std::to_string(i));
const uint32_t bufferIndex = outputLoc.poolIndex - kDeviceMemoryBeginIndex;
TestBuffer buffer;
getBuffer(buffers[bufferIndex], op.data.size(), &buffer);
outputBuffers.push_back(std::move(buffer));
}
}
}
return outputBuffers;
}
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
sp<ExecutionCallback>& callback) {
return preparedModel->execute_1_3(request, measure, callback);
}
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
hidl_vec<OutputShape>* outputShapes,
Timing* timing) {
ErrorStatus result;
Return<void> ret = preparedModel->executeSynchronously_1_3(
request, measure,
[&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
const Timing& time) {
result = error;
*outputShapes = shapes;
*timing = time;
});
if (!ret.isOk()) {
return ErrorStatus::GENERAL_FAILURE;
}
return result;
}
static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
const sp<IPreparedModel>& preparedModel) {
return android::nn::ExecutionBurstController::create(preparedModel,
std::chrono::microseconds{0});
}
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, const TestConfig& testConfig,
bool* skipped = nullptr) {
if (skipped != nullptr) {
*skipped = false;
}
// If output0 does not have size larger than one byte, we can not test with insufficient buffer.
if (testConfig.outputType == OutputType::INSUFFICIENT &&
!isOutputSizeGreaterThanOne(testModel, 0)) {
return;
}
auto [request, buffers] =
createRequest(device, preparedModel, testModel,
/*preferDeviceMemory=*/testConfig.memoryType == MemoryType::DEVICE);
// Skip if testing memory domain but no device memory has been allocated.
if (testConfig.memoryType == MemoryType::DEVICE && buffers.empty()) {
return;
}
if (testConfig.outputType == OutputType::INSUFFICIENT) {
makeOutputInsufficientSize(/*outputIndex=*/0, &request);
}
ErrorStatus executionStatus;
hidl_vec<OutputShape> outputShapes;
Timing timing;
switch (testConfig.executor) {
case Executor::ASYNC: {
SCOPED_TRACE("asynchronous");
// launch execution
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
preparedModel, request, testConfig.measureTiming, executionCallback);
ASSERT_TRUE(executionLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
// retrieve execution status
executionCallback->wait();
executionStatus = executionCallback->getStatus();
outputShapes = executionCallback->getOutputShapes();
timing = executionCallback->getTiming();
break;
}
case Executor::SYNC: {
SCOPED_TRACE("synchronous");
// execute
Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel(
preparedModel, request, testConfig.measureTiming, &outputShapes, &timing);
ASSERT_TRUE(executionReturnStatus.isOk());
executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
break;
}
case Executor::BURST: {
// TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains
// V1_2.
SCOPED_TRACE("burst");
// check compliance
ASSERT_TRUE(nn::compliantWithV1_0(request));
V1_0::Request request10 = nn::convertToV1_0(request);
// create burst
const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
CreateBurst(preparedModel);
ASSERT_NE(nullptr, controller.get());
// create memory keys
std::vector<intptr_t> keys(request10.pools.size());
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = reinterpret_cast<intptr_t>(&request10.pools[i]);
}
// execute burst
int n;
std::tie(n, outputShapes, timing, std::ignore) =
controller->compute(request10, testConfig.measureTiming, keys);
executionStatus = nn::convertResultCodeToErrorStatus(n);
break;
}
}
if (testConfig.outputType != OutputType::FULLY_SPECIFIED &&
executionStatus == ErrorStatus::GENERAL_FAILURE) {
if (skipped != nullptr) {
*skipped = true;
}
if (!testConfig.reportSkipping) {
return;
}
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"execute model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"execute model that it does not support."
<< std::endl;
GTEST_SKIP();
}
if (testConfig.measureTiming == MeasureTiming::NO) {
EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
} else {
if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
}
}
switch (testConfig.outputType) {
case OutputType::FULLY_SPECIFIED:
// If the model output operands are fully specified, outputShapes must be either
// either empty, or have the same number of elements as the number of outputs.
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
ASSERT_TRUE(outputShapes.size() == 0 ||
outputShapes.size() == testModel.outputIndexes.size());
break;
case OutputType::UNSPECIFIED:
// If the model output operands are not fully specified, outputShapes must have
// the same number of elements as the number of outputs.
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
break;
case OutputType::INSUFFICIENT:
ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.outputIndexes.size());
ASSERT_FALSE(outputShapes[0].isSufficient);
return;
}
// Go through all outputs, check returned output shapes.
for (uint32_t i = 0; i < outputShapes.size(); i++) {
EXPECT_TRUE(outputShapes[i].isSufficient);
const auto& expect = testModel.operands[testModel.outputIndexes[i]].dimensions;
const std::vector<uint32_t> actual = outputShapes[i].dimensions;
EXPECT_EQ(expect, actual);
}
// Retrieve execution results.
const std::vector<TestBuffer> outputs = getOutputBuffers(testModel, request, buffers);
// We want "close-enough" results.
checkResults(testModel, outputs);
}
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, TestKind testKind) {
std::vector<OutputType> outputTypesList;
std::vector<MeasureTiming> measureTimingList;
std::vector<Executor> executorList;
MemoryType memoryType = MemoryType::SHARED;
switch (testKind) {
case TestKind::GENERAL: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
} break;
case TestKind::DYNAMIC_SHAPE: {
outputTypesList = {OutputType::UNSPECIFIED, OutputType::INSUFFICIENT};
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
} break;
case TestKind::MEMORY_DOMAIN: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {MeasureTiming::NO};
executorList = {Executor::ASYNC, Executor::SYNC};
memoryType = MemoryType::DEVICE;
} break;
case TestKind::QUANTIZATION_COUPLING: {
LOG(FATAL) << "Wrong TestKind for EvaluatePreparedModel";
return;
} break;
}
for (const OutputType outputType : outputTypesList) {
for (const MeasureTiming measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
const TestConfig testConfig(executor, measureTiming, outputType, memoryType);
EvaluatePreparedModel(device, preparedModel, testModel, testConfig);
}
}
}
}
void EvaluatePreparedCoupledModels(const sp<IDevice>& device,
const sp<IPreparedModel>& preparedModel,
const TestModel& testModel,
const sp<IPreparedModel>& preparedCoupledModel,
const TestModel& coupledModel) {
const std::vector<OutputType> outputTypesList = {OutputType::FULLY_SPECIFIED};
const std::vector<MeasureTiming> measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
const std::vector<Executor> executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
for (const OutputType outputType : outputTypesList) {
for (const MeasureTiming measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
const TestConfig testConfig(executor, measureTiming, outputType, MemoryType::SHARED,
/*reportSkipping=*/false);
bool baseSkipped = false;
EvaluatePreparedModel(device, preparedModel, testModel, testConfig, &baseSkipped);
bool coupledSkipped = false;
EvaluatePreparedModel(device, preparedCoupledModel, coupledModel, testConfig,
&coupledSkipped);
ASSERT_EQ(baseSkipped, coupledSkipped);
if (baseSkipped) {
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"execute model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service "
"cannot "
"execute model that it does not support."
<< std::endl;
GTEST_SKIP();
}
}
}
}
}
void Execute(const sp<IDevice>& device, const TestModel& testModel, TestKind testKind) {
Model model = createModel(testModel);
if (testKind == TestKind::DYNAMIC_SHAPE) {
makeOutputDimensionsUnspecified(&model);
}
sp<IPreparedModel> preparedModel;
switch (testKind) {
case TestKind::GENERAL:
case TestKind::DYNAMIC_SHAPE:
case TestKind::MEMORY_DOMAIN: {
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
EvaluatePreparedModel(device, preparedModel, testModel, testKind);
} break;
case TestKind::QUANTIZATION_COUPLING: {
ASSERT_TRUE(testModel.hasQuant8CoupledOperands());
createPreparedModel(device, model, &preparedModel, /*reportSkipping*/ false);
TestModel signedQuantizedModel = convertQuant8AsymmOperandsToSigned(testModel);
sp<IPreparedModel> preparedCoupledModel;
createPreparedModel(device, createModel(signedQuantizedModel), &preparedCoupledModel,
/*reportSkipping*/ false);
// If we couldn't prepare a model with unsigned quantization, we must
// fail to prepare a model with signed quantization as well.
if (preparedModel == nullptr) {
ASSERT_EQ(preparedCoupledModel, nullptr);
// If we failed to prepare both of the models, we can safely skip
// the test.
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout
<< "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
GTEST_SKIP();
}
ASSERT_NE(preparedCoupledModel, nullptr);
EvaluatePreparedCoupledModels(device, preparedModel, testModel, preparedCoupledModel,
signedQuantizedModel);
} break;
}
}
void GeneratedTestBase::SetUp() {
testing::TestWithParam<GeneratedTestParam>::SetUp();
ASSERT_NE(kDevice, nullptr);
}
std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
return TestModelManager::get().getTestModels(filter);
}
std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
const auto& [namedDevice, namedModel] = info.param;
return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
}
// Tag for the generated tests
class GeneratedTest : public GeneratedTestBase {};
// Tag for the dynamic output shape tests
class DynamicOutputShapeTest : public GeneratedTest {};
// Tag for the memory domain tests
class MemoryDomainTest : public GeneratedTest {};
// Tag for the dynamic output shape tests
class QuantizationCouplingTest : public GeneratedTest {};
TEST_P(GeneratedTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::GENERAL);
}
TEST_P(DynamicOutputShapeTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::DYNAMIC_SHAPE);
}
TEST_P(MemoryDomainTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::MEMORY_DOMAIN);
}
TEST_P(QuantizationCouplingTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::QUANTIZATION_COUPLING);
}
INSTANTIATE_GENERATED_TEST(GeneratedTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(MemoryDomainTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) {
return testModel.hasQuant8CoupledOperands() && testModel.operations.size() == 1;
});
} // namespace android::hardware::neuralnetworks::V1_3::vts::functional