blob: 8fe9cf7a5435ba4fc0ded86f623d7862d7e2da98 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "benchmark/benchmark.h"
#include <aidl/android/hardware/vibrator/BnVibratorCallback.h>
#include <aidl/android/hardware/vibrator/IVibrator.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <android/hardware/vibrator/1.3/IVibrator.h>
#include <future>
using ::android::hardware::hidl_enum_range;
using ::android::hardware::Return;
using ::android::hardware::details::hidl_enum_values;
using ::benchmark::Counter;
using ::benchmark::Fixture;
using ::benchmark::kMicrosecond;
using ::benchmark::State;
using ::benchmark::internal::Benchmark;
using ::ndk::enum_range;
using namespace ::std::chrono_literals;
namespace Aidl = ::aidl::android::hardware::vibrator;
namespace V1_0 = ::android::hardware::vibrator::V1_0;
namespace V1_1 = ::android::hardware::vibrator::V1_1;
namespace V1_2 = ::android::hardware::vibrator::V1_2;
namespace V1_3 = ::android::hardware::vibrator::V1_3;
// Fixed number of iterations for benchmarks that trigger a vibration on the loop.
// They require slow cleanup to ensure a stable state on each run and less noisy metrics.
static constexpr auto VIBRATION_ITERATIONS = 500;
// Timeout to wait for vibration callback completion.
static constexpr auto VIBRATION_CALLBACK_TIMEOUT = 100ms;
// Max duration the vibrator can be turned on, in milliseconds.
static constexpr uint32_t MAX_ON_DURATION_MS = UINT16_MAX;
template <typename I>
class BaseBench : public Fixture {
public:
void SetUp(State& /*state*/) override {
ABinderProcess_setThreadPoolMaxThreadCount(1);
ABinderProcess_startThreadPool();
}
void TearDown(State& /*state*/) override {
if (mVibrator) {
mVibrator->off();
}
}
static void DefaultConfig(Benchmark* b) { b->Unit(kMicrosecond); }
static void DefaultArgs(Benchmark* /*b*/) { /* none */
}
protected:
auto getOtherArg(const State& state, std::size_t index) const { return state.range(index + 0); }
protected:
std::shared_ptr<I> mVibrator;
};
template <typename I>
class VibratorBench : public BaseBench<I> {
public:
void SetUp(State& state) override {
BaseBench<I>::SetUp(state);
auto service = I::getService();
if (service) {
this->mVibrator = std::shared_ptr<I>(service.release());
} else {
this->mVibrator = nullptr;
}
}
protected:
bool shouldSkipWithError(State& state, const android::hardware::Return<V1_0::Status>&& ret) {
if (!ret.isOk()) {
state.SkipWithError(ret.description());
return true;
}
return false;
}
};
enum class EmptyEnum : uint32_t;
template <>
inline constexpr std::array<EmptyEnum, 0> hidl_enum_values<EmptyEnum> = {};
template <typename T, typename U>
std::set<T> difference(const hidl_enum_range<T>& t, const hidl_enum_range<U>& u) {
class Compare {
public:
bool operator()(const T& a, const U& b) { return a < static_cast<T>(b); }
bool operator()(const U& a, const T& b) { return static_cast<T>(a) < b; }
};
std::set<T> ret;
std::set_difference(t.begin(), t.end(), u.begin(), u.end(),
std::insert_iterator<decltype(ret)>(ret, ret.begin()), Compare());
return ret;
}
template <typename I, typename E1, typename E2 = EmptyEnum>
class VibratorEffectsBench : public VibratorBench<I> {
public:
using Effect = E1;
using EffectStrength = V1_0::EffectStrength;
using Status = V1_0::Status;
public:
static void DefaultArgs(Benchmark* b) {
b->ArgNames({"Effect", "Strength"});
for (const auto& effect : difference(hidl_enum_range<E1>(), hidl_enum_range<E2>())) {
for (const auto& strength : hidl_enum_range<EffectStrength>()) {
b->Args({static_cast<long>(effect), static_cast<long>(strength)});
}
}
}
void performBench(State* state, Return<void> (I::*performApi)(Effect, EffectStrength,
typename I::perform_cb)) {
auto effect = getEffect(*state);
auto strength = getStrength(*state);
bool supported = true;
(*this->mVibrator.*performApi)(effect, strength, [&](Status status, uint32_t /*lengthMs*/) {
if (status == Status::UNSUPPORTED_OPERATION) {
supported = false;
}
});
if (!supported) {
state->SkipWithMessage("effect unsupported");
return;
}
for (auto _ : *state) {
// Test
auto ret = (*this->mVibrator.*performApi)(
effect, strength, [](Status /*status*/, uint32_t /*lengthMs*/) {});
// Cleanup
state->PauseTiming();
if (!ret.isOk()) {
state->SkipWithError(ret.description());
return;
}
if (this->shouldSkipWithError(*state, this->mVibrator->off())) {
return;
}
state->ResumeTiming();
}
}
protected:
auto getEffect(const State& state) const {
return static_cast<Effect>(this->getOtherArg(state, 0));
}
auto getStrength(const State& state) const {
return static_cast<EffectStrength>(this->getOtherArg(state, 1));
}
};
#define BENCHMARK_WRAPPER(fixt, test, code) \
BENCHMARK_DEFINE_F(fixt, test) \
/* NOLINTNEXTLINE */ \
(State & state) { \
if (!mVibrator) { \
state.SkipWithMessage("HAL unavailable"); \
return; \
} \
\
code \
} \
BENCHMARK_REGISTER_F(fixt, test)->Apply(fixt::DefaultConfig)->Apply(fixt::DefaultArgs)
using VibratorBench_V1_0 = VibratorBench<V1_0::IVibrator>;
BENCHMARK_WRAPPER(VibratorBench_V1_0, on, {
auto ms = MAX_ON_DURATION_MS;
for (auto _ : state) {
// Test
if (shouldSkipWithError(state, mVibrator->on(ms))) {
return;
}
// Cleanup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->off())) {
return;
}
state.ResumeTiming();
}
});
BENCHMARK_WRAPPER(VibratorBench_V1_0, off, {
auto ms = MAX_ON_DURATION_MS;
for (auto _ : state) {
// Setup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->on(ms))) {
return;
}
state.ResumeTiming();
// Test
if (shouldSkipWithError(state, mVibrator->off())) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorBench_V1_0, supportsAmplitudeControl, {
for (auto _ : state) {
mVibrator->supportsAmplitudeControl();
}
});
BENCHMARK_WRAPPER(VibratorBench_V1_0, setAmplitude, {
auto ms = MAX_ON_DURATION_MS;
uint8_t amplitude = UINT8_MAX;
if (!mVibrator->supportsAmplitudeControl()) {
state.SkipWithMessage("amplitude control unavailable");
return;
}
if (shouldSkipWithError(state, mVibrator->on(ms))) {
return;
}
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->setAmplitude(amplitude))) {
return;
}
}
});
using VibratorEffectsBench_V1_0 = VibratorEffectsBench<V1_0::IVibrator, V1_0::Effect>;
BENCHMARK_WRAPPER(VibratorEffectsBench_V1_0, perform,
{ performBench(&state, &V1_0::IVibrator::perform); });
using VibratorEffectsBench_V1_1 =
VibratorEffectsBench<V1_1::IVibrator, V1_1::Effect_1_1, V1_0::Effect>;
BENCHMARK_WRAPPER(VibratorEffectsBench_V1_1, perform_1_1,
{ performBench(&state, &V1_1::IVibrator::perform_1_1); });
using VibratorEffectsBench_V1_2 =
VibratorEffectsBench<V1_2::IVibrator, V1_2::Effect, V1_1::Effect_1_1>;
BENCHMARK_WRAPPER(VibratorEffectsBench_V1_2, perform_1_2,
{ performBench(&state, &V1_2::IVibrator::perform_1_2); });
class VibratorBench_V1_3 : public VibratorBench<V1_3::IVibrator> {
public:
void TearDown(State& state) override {
VibratorBench::TearDown(state);
if (mVibrator) {
mVibrator->setExternalControl(false);
}
}
};
BENCHMARK_WRAPPER(VibratorBench_V1_3, supportsExternalControl, {
for (auto _ : state) {
mVibrator->supportsExternalControl();
}
});
BENCHMARK_WRAPPER(VibratorBench_V1_3, setExternalControl, {
if (!mVibrator->supportsExternalControl()) {
state.SkipWithMessage("external control unavailable");
return;
}
for (auto _ : state) {
// Test
if (shouldSkipWithError(state, mVibrator->setExternalControl(true))) {
return;
}
// Cleanup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->setExternalControl(false))) {
return;
}
state.ResumeTiming();
}
});
BENCHMARK_WRAPPER(VibratorBench_V1_3, supportsExternalAmplitudeControl, {
if (!mVibrator->supportsExternalControl()) {
state.SkipWithMessage("external control unavailable");
return;
}
if (shouldSkipWithError(state, mVibrator->setExternalControl(true))) {
return;
}
for (auto _ : state) {
mVibrator->supportsAmplitudeControl();
}
});
BENCHMARK_WRAPPER(VibratorBench_V1_3, setExternalAmplitude, {
uint8_t amplitude = UINT8_MAX;
if (!mVibrator->supportsExternalControl()) {
state.SkipWithMessage("external control unavailable");
return;
}
if (shouldSkipWithError(state, mVibrator->setExternalControl(true))) {
return;
}
if (!mVibrator->supportsAmplitudeControl()) {
state.SkipWithMessage("amplitude control unavailable");
return;
}
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->setAmplitude(amplitude))) {
return;
}
}
});
using VibratorEffectsBench_V1_3 = VibratorEffectsBench<V1_3::IVibrator, V1_3::Effect, V1_2::Effect>;
BENCHMARK_WRAPPER(VibratorEffectsBench_V1_3, perform_1_3,
{ performBench(&state, &V1_3::IVibrator::perform_1_3); });
class VibratorBench_Aidl : public BaseBench<Aidl::IVibrator> {
public:
void SetUp(State& state) override {
BaseBench::SetUp(state);
auto serviceName = std::string(Aidl::IVibrator::descriptor) + "/default";
this->mVibrator = Aidl::IVibrator::fromBinder(
ndk::SpAIBinder(AServiceManager_waitForService(serviceName.c_str())));
}
void TearDown(State& state) override {
BaseBench::TearDown(state);
if (mVibrator) {
mVibrator->setExternalControl(false);
}
}
protected:
int32_t hasCapabilities(int32_t capabilities) {
int32_t deviceCapabilities = 0;
this->mVibrator->getCapabilities(&deviceCapabilities);
return (deviceCapabilities & capabilities) == capabilities;
}
bool shouldSkipWithError(State& state, const ndk::ScopedAStatus&& status) {
if (!status.isOk()) {
state.SkipWithError(status.getMessage());
return true;
}
return false;
}
void waitForComplete(std::future<void>& callbackFuture) {
// Wait until the HAL has finished processing previous vibration before starting a new one,
// so the HAL state is consistent on each run and metrics are less noisy. Some of the newest
// HAL implementations are waiting on previous vibration cleanup and might be significantly
// slower, so make sure we measure vibrations on a clean slate.
if (callbackFuture.valid()) {
callbackFuture.wait_for(VIBRATION_CALLBACK_TIMEOUT);
}
}
static void SlowBenchConfig(Benchmark* b) { b->Iterations(VIBRATION_ITERATIONS); }
};
class SlowVibratorBench_Aidl : public VibratorBench_Aidl {
public:
static void DefaultConfig(Benchmark* b) {
VibratorBench_Aidl::DefaultConfig(b);
SlowBenchConfig(b);
}
};
class HalCallback : public Aidl::BnVibratorCallback {
public:
HalCallback() = default;
~HalCallback() = default;
ndk::ScopedAStatus onComplete() override {
mPromise.set_value();
return ndk::ScopedAStatus::ok();
}
std::future<void> getFuture() { return mPromise.get_future(); }
private:
std::promise<void> mPromise;
};
BENCHMARK_WRAPPER(SlowVibratorBench_Aidl, on, {
auto ms = MAX_ON_DURATION_MS;
for (auto _ : state) {
auto cb = hasCapabilities(Aidl::IVibrator::CAP_ON_CALLBACK)
? ndk::SharedRefBase::make<HalCallback>()
: nullptr;
// Grab the future before callback promise is destroyed by the HAL.
auto cbFuture = cb ? cb->getFuture() : std::future<void>();
// Test
if (shouldSkipWithError(state, mVibrator->on(ms, cb))) {
return;
}
// Cleanup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->off())) {
return;
}
waitForComplete(cbFuture);
state.ResumeTiming();
}
});
BENCHMARK_WRAPPER(SlowVibratorBench_Aidl, off, {
auto ms = MAX_ON_DURATION_MS;
for (auto _ : state) {
auto cb = hasCapabilities(Aidl::IVibrator::CAP_ON_CALLBACK)
? ndk::SharedRefBase::make<HalCallback>()
: nullptr;
// Grab the future before callback promise is destroyed by the HAL.
auto cbFuture = cb ? cb->getFuture() : std::future<void>();
// Setup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->on(ms, cb))) {
return;
}
state.ResumeTiming();
// Test
if (shouldSkipWithError(state, mVibrator->off())) {
return;
}
// Cleanup
state.PauseTiming();
waitForComplete(cbFuture);
state.ResumeTiming();
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, getCapabilities, {
int32_t capabilities = 0;
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->getCapabilities(&capabilities))) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, setAmplitude, {
auto ms = MAX_ON_DURATION_MS;
float amplitude = 1.0f;
if (!hasCapabilities(Aidl::IVibrator::CAP_AMPLITUDE_CONTROL)) {
state.SkipWithMessage("amplitude control unavailable");
return;
}
auto cb = hasCapabilities(Aidl::IVibrator::CAP_ON_CALLBACK)
? ndk::SharedRefBase::make<HalCallback>()
: nullptr;
if (shouldSkipWithError(state, mVibrator->on(ms, cb))) {
return;
}
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->setAmplitude(amplitude))) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, setExternalControl, {
if (!hasCapabilities(Aidl::IVibrator::CAP_EXTERNAL_CONTROL)) {
state.SkipWithMessage("external control unavailable");
return;
}
for (auto _ : state) {
// Test
if (shouldSkipWithError(state, mVibrator->setExternalControl(true))) {
return;
}
// Cleanup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->setExternalControl(false))) {
return;
}
state.ResumeTiming();
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, setExternalAmplitude, {
auto externalControl = static_cast<int32_t>(Aidl::IVibrator::CAP_EXTERNAL_CONTROL);
auto externalAmplitudeControl =
static_cast<int32_t>(Aidl::IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL);
if (!hasCapabilities(externalControl | externalAmplitudeControl)) {
state.SkipWithMessage("external amplitude control unavailable");
return;
}
if (shouldSkipWithError(state, mVibrator->setExternalControl(true))) {
return;
}
float amplitude = 1.0f;
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->setAmplitude(amplitude))) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, getSupportedEffects, {
std::vector<Aidl::Effect> supportedEffects;
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->getSupportedEffects(&supportedEffects))) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, getSupportedAlwaysOnEffects, {
if (!hasCapabilities(Aidl::IVibrator::CAP_ALWAYS_ON_CONTROL)) {
state.SkipWithMessage("always on control unavailable");
return;
}
std::vector<Aidl::Effect> supportedEffects;
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->getSupportedAlwaysOnEffects(&supportedEffects))) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, getSupportedPrimitives, {
std::vector<Aidl::CompositePrimitive> supportedPrimitives;
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->getSupportedPrimitives(&supportedPrimitives))) {
return;
}
}
});
class VibratorEffectsBench_Aidl : public VibratorBench_Aidl {
public:
static void DefaultArgs(Benchmark* b) {
b->ArgNames({"Effect", "Strength"});
for (const auto& effect : enum_range<Aidl::Effect>()) {
for (const auto& strength : enum_range<Aidl::EffectStrength>()) {
b->Args({static_cast<long>(effect), static_cast<long>(strength)});
}
}
}
protected:
auto getEffect(const State& state) const {
return static_cast<Aidl::Effect>(this->getOtherArg(state, 0));
}
auto getStrength(const State& state) const {
return static_cast<Aidl::EffectStrength>(this->getOtherArg(state, 1));
}
bool isEffectSupported(const Aidl::Effect& effect) {
std::vector<Aidl::Effect> supported;
mVibrator->getSupportedEffects(&supported);
return std::find(supported.begin(), supported.end(), effect) != supported.end();
}
bool isAlwaysOnEffectSupported(const Aidl::Effect& effect) {
std::vector<Aidl::Effect> supported;
mVibrator->getSupportedAlwaysOnEffects(&supported);
return std::find(supported.begin(), supported.end(), effect) != supported.end();
}
};
class SlowVibratorEffectsBench_Aidl : public VibratorEffectsBench_Aidl {
public:
static void DefaultConfig(Benchmark* b) {
VibratorEffectsBench_Aidl::DefaultConfig(b);
SlowBenchConfig(b);
}
};
BENCHMARK_WRAPPER(VibratorEffectsBench_Aidl, alwaysOnEnable, {
if (!hasCapabilities(Aidl::IVibrator::CAP_ALWAYS_ON_CONTROL)) {
state.SkipWithMessage("always on control unavailable");
return;
}
int32_t id = 1;
auto effect = getEffect(state);
auto strength = getStrength(state);
if (!isAlwaysOnEffectSupported(effect)) {
state.SkipWithMessage("always on effect unsupported");
return;
}
for (auto _ : state) {
// Test
if (shouldSkipWithError(state, mVibrator->alwaysOnEnable(id, effect, strength))) {
return;
}
// Cleanup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->alwaysOnDisable(id))) {
return;
}
state.ResumeTiming();
}
});
BENCHMARK_WRAPPER(VibratorEffectsBench_Aidl, alwaysOnDisable, {
if (!hasCapabilities(Aidl::IVibrator::CAP_ALWAYS_ON_CONTROL)) {
state.SkipWithMessage("always on control unavailable");
return;
}
int32_t id = 1;
auto effect = getEffect(state);
auto strength = getStrength(state);
if (!isAlwaysOnEffectSupported(effect)) {
state.SkipWithMessage("always on effect unsupported");
return;
}
for (auto _ : state) {
// Setup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->alwaysOnEnable(id, effect, strength))) {
return;
}
state.ResumeTiming();
// Test
if (shouldSkipWithError(state, mVibrator->alwaysOnDisable(id))) {
return;
}
}
});
BENCHMARK_WRAPPER(SlowVibratorEffectsBench_Aidl, perform, {
auto effect = getEffect(state);
auto strength = getStrength(state);
if (!isEffectSupported(effect)) {
state.SkipWithMessage("effect unsupported");
return;
}
int32_t lengthMs = 0;
for (auto _ : state) {
auto cb = hasCapabilities(Aidl::IVibrator::CAP_PERFORM_CALLBACK)
? ndk::SharedRefBase::make<HalCallback>()
: nullptr;
// Grab the future before callback promise is destroyed by the HAL.
auto cbFuture = cb ? cb->getFuture() : std::future<void>();
// Test
if (shouldSkipWithError(state, mVibrator->perform(effect, strength, cb, &lengthMs))) {
return;
}
// Cleanup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->off())) {
return;
}
waitForComplete(cbFuture);
state.ResumeTiming();
}
});
class VibratorPrimitivesBench_Aidl : public VibratorBench_Aidl {
public:
static void DefaultArgs(Benchmark* b) {
b->ArgNames({"Primitive"});
for (const auto& primitive : enum_range<Aidl::CompositePrimitive>()) {
b->Args({static_cast<long>(primitive)});
}
}
protected:
auto getPrimitive(const State& state) const {
return static_cast<Aidl::CompositePrimitive>(this->getOtherArg(state, 0));
}
bool isPrimitiveSupported(const Aidl::CompositePrimitive& primitive) {
std::vector<Aidl::CompositePrimitive> supported;
mVibrator->getSupportedPrimitives(&supported);
return std::find(supported.begin(), supported.end(), primitive) != supported.end();
}
};
class SlowVibratorPrimitivesBench_Aidl : public VibratorPrimitivesBench_Aidl {
public:
static void DefaultConfig(Benchmark* b) {
VibratorPrimitivesBench_Aidl::DefaultConfig(b);
SlowBenchConfig(b);
}
};
BENCHMARK_WRAPPER(VibratorBench_Aidl, getCompositionDelayMax, {
int32_t ms = 0;
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->getCompositionDelayMax(&ms))) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorBench_Aidl, getCompositionSizeMax, {
int32_t size = 0;
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->getCompositionSizeMax(&size))) {
return;
}
}
});
BENCHMARK_WRAPPER(VibratorPrimitivesBench_Aidl, getPrimitiveDuration, {
if (!hasCapabilities(Aidl::IVibrator::CAP_COMPOSE_EFFECTS)) {
state.SkipWithMessage("compose effects unavailable");
return;
}
auto primitive = getPrimitive(state);
int32_t ms = 0;
if (!isPrimitiveSupported(primitive)) {
state.SkipWithMessage("primitive unsupported");
return;
}
for (auto _ : state) {
if (shouldSkipWithError(state, mVibrator->getPrimitiveDuration(primitive, &ms))) {
return;
}
}
});
BENCHMARK_WRAPPER(SlowVibratorPrimitivesBench_Aidl, compose, {
if (!hasCapabilities(Aidl::IVibrator::CAP_COMPOSE_EFFECTS)) {
state.SkipWithMessage("compose effects unavailable");
return;
}
Aidl::CompositeEffect effect;
effect.primitive = getPrimitive(state);
effect.scale = 1.0f;
effect.delayMs = 0;
if (effect.primitive == Aidl::CompositePrimitive::NOOP) {
state.SkipWithMessage("skipping primitive NOOP");
return;
}
if (!isPrimitiveSupported(effect.primitive)) {
state.SkipWithMessage("primitive unsupported");
return;
}
std::vector<Aidl::CompositeEffect> effects;
effects.push_back(effect);
for (auto _ : state) {
auto cb = ndk::SharedRefBase::make<HalCallback>();
// Grab the future before callback promise is moved and destroyed by the HAL.
auto cbFuture = cb->getFuture();
// Test
if (shouldSkipWithError(state, mVibrator->compose(effects, cb))) {
return;
}
// Cleanup
state.PauseTiming();
if (shouldSkipWithError(state, mVibrator->off())) {
return;
}
waitForComplete(cbFuture);
state.ResumeTiming();
}
});
BENCHMARK_MAIN();