| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <HadamardUtils.h> |
| |
| #include <android-base/logging.h> |
| |
| namespace aidl { |
| namespace android { |
| namespace hardware { |
| namespace rebootescrow { |
| namespace hadamard { |
| |
| constexpr auto BYTE_LENGTH = 8u; |
| |
| std::vector<uint8_t> BitsetToBytes(const std::bitset<ENCODE_LENGTH>& encoded_bits) { |
| CHECK_EQ(0, (encoded_bits.size() % BYTE_LENGTH)); |
| std::vector<uint8_t> result; |
| for (size_t i = 0; i < encoded_bits.size(); i += 8) { |
| uint8_t current = 0; |
| // Set each byte starting from the LSB. |
| for (size_t j = 0; j < BYTE_LENGTH; j++) { |
| CHECK_LE(i + j, encoded_bits.size()); |
| if (encoded_bits[i + j]) { |
| current |= (1u << j); |
| } |
| } |
| result.push_back(current); |
| } |
| return result; |
| } |
| |
| std::bitset<ENCODE_LENGTH> BytesToBitset(const std::vector<uint8_t>& encoded) { |
| CHECK_EQ(ENCODE_LENGTH, encoded.size() * BYTE_LENGTH); |
| |
| std::bitset<ENCODE_LENGTH> result; |
| size_t offset = 0; |
| for (const auto& byte : encoded) { |
| // Set each byte starting from the LSB. |
| for (size_t j = 0; j < BYTE_LENGTH; j++) { |
| result[offset + j] = byte & (1u << j); |
| } |
| offset += BYTE_LENGTH; |
| } |
| return result; |
| } |
| |
| // The encoding is equivalent to multiply the word with the generator matrix (and take the module |
| // of 2). Here is an example of encoding a number with 3 bits. The encoded length is thus |
| // 2^(3-1) = 4 bits. |
| // |1 1 1 1| |0| |
| // |0 1 1| * |0 0 1 1| = |1| |
| // |0 1 0 1| |1| |
| // |0| |
| std::bitset<ENCODE_LENGTH> EncodeWord(uint16_t word) { |
| std::bitset<ENCODE_LENGTH> result; |
| for (uint64_t i = ENCODE_LENGTH; i < 2 * ENCODE_LENGTH; i++) { |
| uint32_t wi = word & i; |
| // Sum all the bits in the word and check its parity. |
| wi ^= wi >> 8u; |
| wi ^= wi >> 4u; |
| wi ^= wi >> 2u; |
| wi ^= wi >> 1u; |
| result[i - ENCODE_LENGTH] = wi & 1u; |
| } |
| return result; |
| } |
| |
| std::vector<uint8_t> EncodeKey(const std::vector<uint8_t>& key) { |
| CHECK_EQ(KEY_SIZE_IN_BYTES, key.size()); |
| |
| std::vector<uint8_t> result; |
| for (size_t i = 0; i < key.size(); i += 2) { |
| uint16_t word = static_cast<uint16_t>(key[i + 1]) << BYTE_LENGTH | key[i]; |
| auto encoded_bits = EncodeWord(word); |
| auto byte_array = BitsetToBytes(encoded_bits); |
| std::move(byte_array.begin(), byte_array.end(), std::back_inserter(result)); |
| } |
| return result; |
| } |
| |
| std::vector<uint8_t> DecodeKey(const std::vector<uint8_t>& encoded) { |
| CHECK_EQ(0, (encoded.size() * 8) % ENCODE_LENGTH); |
| std::vector<uint8_t> result; |
| for (size_t i = 0; i < encoded.size(); i += ENCODE_LENGTH / 8) { |
| auto current = |
| std::vector<uint8_t>{encoded.begin() + i, encoded.begin() + i + ENCODE_LENGTH / 8}; |
| auto bits = BytesToBitset(current); |
| auto candidates = DecodeWord(bits); |
| CHECK(!candidates.empty()); |
| // TODO(xunchang) Do we want to try other candidates? |
| uint16_t val = candidates.top().second; |
| result.push_back(val & 0xffu); |
| result.push_back(val >> BYTE_LENGTH); |
| } |
| |
| return result; |
| } |
| |
| std::priority_queue<std::pair<int32_t, uint16_t>> DecodeWord( |
| const std::bitset<ENCODE_LENGTH>& encoded) { |
| std::vector<int32_t> scores; |
| scores.reserve(ENCODE_LENGTH); |
| // Convert 0 -> -1 in the encoded bits. e.g [0, 1, 1, 0] -> [-1, 1, 1, -1] |
| for (uint32_t i = 0; i < ENCODE_LENGTH; i++) { |
| scores.push_back(2 * encoded[i] - 1); |
| } |
| |
| // Multiply the hadamard matrix by the transformed input. |
| // |1 1 1 1| |-1| | 0| |
| // |1 -1 1 -1| * | 1| = | 0| |
| // |1 1 -1 -1| | 1| | 0| |
| // |1 -1 -1 1| |-1| |-4| |
| for (uint32_t i = 0; i < CODE_K; i++) { |
| uint16_t step = 1u << i; |
| for (uint32_t j = 0; j < ENCODE_LENGTH; j += 2 * step) { |
| for (uint32_t k = j; k < j + step; k++) { |
| auto a0 = scores[k]; |
| auto a1 = scores[k + step]; |
| scores[k] = a0 + a1; |
| scores[k + step] = a0 - a1; |
| } |
| } |
| } |
| |
| // Assign the corresponding score to each index; larger score indicates higher probability. e.g. |
| // value 3, encoding [0, 1, 1, 0] -> score: 4 |
| // value 7, encoding [1, 0, 0, 1] (3's complement) -> score: -4 |
| std::priority_queue<std::pair<int32_t, uint16_t>> candidates; |
| // TODO(xunchang) limit the candidate size since we don't need all of them? |
| for (uint32_t i = 0; i < scores.size(); i++) { |
| candidates.emplace(-scores[i], i); |
| candidates.emplace(scores[i], (1u << CODE_K) | i); |
| } |
| |
| CHECK_EQ(2 * ENCODE_LENGTH, candidates.size()); |
| return candidates; |
| } |
| |
| } // namespace hadamard |
| } // namespace rebootescrow |
| } // namespace hardware |
| } // namespace android |
| } // namespace aidl |