blob: 21dc4b6c082215ddf50309219e790b0e687d2dbe [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "AHAL_Stream"
#include <android-base/logging.h>
#include <utils/SystemClock.h>
#include "core-impl/Module.h"
#include "core-impl/Stream.h"
using aidl::android::hardware::audio::common::SinkMetadata;
using aidl::android::hardware::audio::common::SourceMetadata;
using aidl::android::media::audio::common::AudioOffloadInfo;
namespace aidl::android::hardware::audio::core {
void StreamContext::fillDescriptor(StreamDescriptor* desc) {
if (mCommandMQ) {
desc->command = mCommandMQ->dupeDesc();
}
if (mReplyMQ) {
desc->reply = mReplyMQ->dupeDesc();
}
if (mDataMQ) {
desc->frameSizeBytes = mFrameSize;
desc->bufferSizeFrames =
mDataMQ->getQuantumCount() * mDataMQ->getQuantumSize() / mFrameSize;
desc->audio.set<StreamDescriptor::AudioBuffer::Tag::fmq>(mDataMQ->dupeDesc());
}
}
bool StreamContext::isValid() const {
if (mCommandMQ && !mCommandMQ->isValid()) {
LOG(ERROR) << "command FMQ is invalid";
return false;
}
if (mReplyMQ && !mReplyMQ->isValid()) {
LOG(ERROR) << "reply FMQ is invalid";
return false;
}
if (mFrameSize == 0) {
LOG(ERROR) << "frame size is not set";
return false;
}
if (mDataMQ && !mDataMQ->isValid()) {
LOG(ERROR) << "data FMQ is invalid";
return false;
}
return true;
}
void StreamContext::reset() {
mCommandMQ.reset();
mReplyMQ.reset();
mDataMQ.reset();
}
std::string StreamWorkerCommonLogic::init() {
if (mCommandMQ == nullptr) return "Command MQ is null";
if (mReplyMQ == nullptr) return "Reply MQ is null";
if (mDataMQ == nullptr) return "Data MQ is null";
if (sizeof(decltype(mDataBuffer)::element_type) != mDataMQ->getQuantumSize()) {
return "Unexpected Data MQ quantum size: " + std::to_string(mDataMQ->getQuantumSize());
}
mDataBufferSize = mDataMQ->getQuantumCount() * mDataMQ->getQuantumSize();
mDataBuffer.reset(new (std::nothrow) int8_t[mDataBufferSize]);
if (mDataBuffer == nullptr) {
return "Failed to allocate data buffer for element count " +
std::to_string(mDataMQ->getQuantumCount()) +
", size in bytes: " + std::to_string(mDataBufferSize);
}
return "";
}
void StreamWorkerCommonLogic::populateReply(StreamDescriptor::Reply* reply,
bool isConnected) const {
if (isConnected) {
reply->status = STATUS_OK;
reply->observable.frames = mFrameCount;
reply->observable.timeNs = ::android::elapsedRealtimeNano();
} else {
reply->status = STATUS_NO_INIT;
}
}
const std::string StreamInWorkerLogic::kThreadName = "reader";
StreamInWorkerLogic::Status StreamInWorkerLogic::cycle() {
StreamDescriptor::Command command{};
if (!mCommandMQ->readBlocking(&command, 1)) {
LOG(ERROR) << __func__ << ": reading of command from MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
StreamDescriptor::Reply reply{};
reply.status = STATUS_BAD_VALUE;
using Tag = StreamDescriptor::Command::Tag;
switch (command.getTag()) {
case Tag::hal_reserved_exit:
if (const int32_t cookie = command.get<Tag::hal_reserved_exit>();
cookie == mInternalCommandCookie) {
LOG(DEBUG) << __func__ << ": received EXIT command";
setClosed();
// This is an internal command, no need to reply.
return Status::EXIT;
} else {
LOG(WARNING) << __func__ << ": EXIT command has a bad cookie: " << cookie;
}
break;
case Tag::start:
LOG(DEBUG) << __func__ << ": received START read command";
if (mState == StreamDescriptor::State::STANDBY ||
mState == StreamDescriptor::State::DRAINING) {
populateReply(&reply, mIsConnected);
mState = mState == StreamDescriptor::State::STANDBY
? StreamDescriptor::State::IDLE
: StreamDescriptor::State::ACTIVE;
} else {
LOG(WARNING) << __func__ << ": START command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
case Tag::burst:
if (const int32_t fmqByteCount = command.get<Tag::burst>(); fmqByteCount >= 0) {
LOG(DEBUG) << __func__ << ": received BURST read command for " << fmqByteCount
<< " bytes";
if (mState == StreamDescriptor::State::IDLE ||
mState == StreamDescriptor::State::ACTIVE ||
mState == StreamDescriptor::State::PAUSED ||
mState == StreamDescriptor::State::DRAINING) {
if (!read(fmqByteCount, &reply)) {
mState = StreamDescriptor::State::ERROR;
}
if (mState == StreamDescriptor::State::IDLE ||
mState == StreamDescriptor::State::PAUSED) {
mState = StreamDescriptor::State::ACTIVE;
} else if (mState == StreamDescriptor::State::DRAINING) {
// To simplify the reference code, we assume that the read operation
// has consumed all the data remaining in the hardware buffer.
// TODO: Provide parametrization on the duration of draining to test
// handling of commands during the 'DRAINING' state.
mState = StreamDescriptor::State::STANDBY;
}
} else {
LOG(WARNING) << __func__ << ": BURST command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
} else {
LOG(WARNING) << __func__ << ": invalid burst byte count: " << fmqByteCount;
}
break;
case Tag::drain:
LOG(DEBUG) << __func__ << ": received DRAIN read command";
if (mState == StreamDescriptor::State::ACTIVE) {
usleep(1000); // Simulate a blocking call into the driver.
populateReply(&reply, mIsConnected);
// Can switch the state to ERROR if a driver error occurs.
mState = StreamDescriptor::State::DRAINING;
} else {
LOG(WARNING) << __func__ << ": DRAIN command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
case Tag::standby:
LOG(DEBUG) << __func__ << ": received STANDBY read command";
if (mState == StreamDescriptor::State::IDLE) {
usleep(1000); // Simulate a blocking call into the driver.
populateReply(&reply, mIsConnected);
// Can switch the state to ERROR if a driver error occurs.
mState = StreamDescriptor::State::STANDBY;
} else {
LOG(WARNING) << __func__ << ": FLUSH command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
case Tag::pause:
LOG(DEBUG) << __func__ << ": received PAUSE read command";
if (mState == StreamDescriptor::State::ACTIVE) {
usleep(1000); // Simulate a blocking call into the driver.
populateReply(&reply, mIsConnected);
// Can switch the state to ERROR if a driver error occurs.
mState = StreamDescriptor::State::PAUSED;
} else {
LOG(WARNING) << __func__ << ": PAUSE command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
case Tag::flush:
LOG(DEBUG) << __func__ << ": received FLUSH read command";
if (mState == StreamDescriptor::State::PAUSED) {
usleep(1000); // Simulate a blocking call into the driver.
populateReply(&reply, mIsConnected);
// Can switch the state to ERROR if a driver error occurs.
mState = StreamDescriptor::State::STANDBY;
} else {
LOG(WARNING) << __func__ << ": FLUSH command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
}
reply.state = mState;
LOG(DEBUG) << __func__ << ": writing reply " << reply.toString();
if (!mReplyMQ->writeBlocking(&reply, 1)) {
LOG(ERROR) << __func__ << ": writing of reply " << reply.toString() << " to MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
return Status::CONTINUE;
}
bool StreamInWorkerLogic::read(size_t clientSize, StreamDescriptor::Reply* reply) {
// Can switch the state to ERROR if a driver error occurs.
const size_t byteCount = std::min({clientSize, mDataMQ->availableToWrite(), mDataBufferSize});
const bool isConnected = mIsConnected;
bool fatal = false;
// Simulate reading of data, or provide zeroes if the stream is not connected.
for (size_t i = 0; i < byteCount; ++i) {
using buffer_type = decltype(mDataBuffer)::element_type;
constexpr int kBufferValueRange = std::numeric_limits<buffer_type>::max() -
std::numeric_limits<buffer_type>::min() + 1;
mDataBuffer[i] = isConnected ? (std::rand() % kBufferValueRange) +
std::numeric_limits<buffer_type>::min()
: 0;
}
usleep(3000); // Simulate a blocking call into the driver.
// Set 'fatal = true' if a driver error occurs.
if (bool success = byteCount > 0 ? mDataMQ->write(&mDataBuffer[0], byteCount) : true; success) {
LOG(DEBUG) << __func__ << ": writing of " << byteCount << " bytes into data MQ"
<< " succeeded; connected? " << isConnected;
// Frames are provided and counted regardless of connection status.
reply->fmqByteCount += byteCount;
mFrameCount += byteCount / mFrameSize;
populateReply(reply, isConnected);
} else {
LOG(WARNING) << __func__ << ": writing of " << byteCount << " bytes of data to MQ failed";
reply->status = STATUS_NOT_ENOUGH_DATA;
}
reply->latencyMs = Module::kLatencyMs;
return !fatal;
}
const std::string StreamOutWorkerLogic::kThreadName = "writer";
StreamOutWorkerLogic::Status StreamOutWorkerLogic::cycle() {
StreamDescriptor::Command command{};
if (!mCommandMQ->readBlocking(&command, 1)) {
LOG(ERROR) << __func__ << ": reading of command from MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
StreamDescriptor::Reply reply{};
reply.status = STATUS_BAD_VALUE;
using Tag = StreamDescriptor::Command::Tag;
switch (command.getTag()) {
case Tag::hal_reserved_exit:
if (const int32_t cookie = command.get<Tag::hal_reserved_exit>();
cookie == mInternalCommandCookie) {
LOG(DEBUG) << __func__ << ": received EXIT command";
setClosed();
// This is an internal command, no need to reply.
return Status::EXIT;
} else {
LOG(WARNING) << __func__ << ": EXIT command has a bad cookie: " << cookie;
}
break;
case Tag::start:
LOG(DEBUG) << __func__ << ": received START write command";
switch (mState) {
case StreamDescriptor::State::STANDBY:
mState = StreamDescriptor::State::IDLE;
break;
case StreamDescriptor::State::PAUSED:
mState = StreamDescriptor::State::ACTIVE;
break;
case StreamDescriptor::State::DRAIN_PAUSED:
mState = StreamDescriptor::State::PAUSED;
break;
default:
LOG(WARNING) << __func__ << ": START command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
if (reply.status != STATUS_INVALID_OPERATION) {
populateReply(&reply, mIsConnected);
}
break;
case Tag::burst:
if (const int32_t fmqByteCount = command.get<Tag::burst>(); fmqByteCount >= 0) {
LOG(DEBUG) << __func__ << ": received BURST write command for " << fmqByteCount
<< " bytes";
if (mState !=
StreamDescriptor::State::ERROR) { // BURST can be handled in all valid states
if (!write(fmqByteCount, &reply)) {
mState = StreamDescriptor::State::ERROR;
}
if (mState == StreamDescriptor::State::STANDBY ||
mState == StreamDescriptor::State::DRAIN_PAUSED) {
mState = StreamDescriptor::State::PAUSED;
} else if (mState == StreamDescriptor::State::IDLE ||
mState == StreamDescriptor::State::DRAINING) {
mState = StreamDescriptor::State::ACTIVE;
} // When in 'ACTIVE' and 'PAUSED' do not need to change the state.
} else {
LOG(WARNING) << __func__ << ": BURST command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
} else {
LOG(WARNING) << __func__ << ": invalid burst byte count: " << fmqByteCount;
}
break;
case Tag::drain:
LOG(DEBUG) << __func__ << ": received DRAIN write command";
if (mState == StreamDescriptor::State::ACTIVE) {
usleep(1000); // Simulate a blocking call into the driver.
populateReply(&reply, mIsConnected);
// Can switch the state to ERROR if a driver error occurs.
mState = StreamDescriptor::State::IDLE;
// Since there is no actual hardware that would be draining the buffer,
// in order to simplify the reference code, we assume that draining
// happens instantly, thus skipping the 'DRAINING' state.
// TODO: Provide parametrization on the duration of draining to test
// handling of commands during the 'DRAINING' state.
} else {
LOG(WARNING) << __func__ << ": DRAIN command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
case Tag::standby:
LOG(DEBUG) << __func__ << ": received STANDBY write command";
if (mState == StreamDescriptor::State::IDLE) {
usleep(1000); // Simulate a blocking call into the driver.
populateReply(&reply, mIsConnected);
// Can switch the state to ERROR if a driver error occurs.
mState = StreamDescriptor::State::STANDBY;
} else {
LOG(WARNING) << __func__ << ": STANDBY command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
case Tag::pause:
LOG(DEBUG) << __func__ << ": received PAUSE write command";
if (mState == StreamDescriptor::State::ACTIVE ||
mState == StreamDescriptor::State::DRAINING) {
populateReply(&reply, mIsConnected);
mState = mState == StreamDescriptor::State::ACTIVE
? StreamDescriptor::State::PAUSED
: StreamDescriptor::State::DRAIN_PAUSED;
} else {
LOG(WARNING) << __func__ << ": PAUSE command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
case Tag::flush:
LOG(DEBUG) << __func__ << ": received FLUSH write command";
if (mState == StreamDescriptor::State::PAUSED ||
mState == StreamDescriptor::State::DRAIN_PAUSED) {
populateReply(&reply, mIsConnected);
mState = StreamDescriptor::State::IDLE;
} else {
LOG(WARNING) << __func__ << ": FLUSH command can not be handled in the state "
<< toString(mState);
reply.status = STATUS_INVALID_OPERATION;
}
break;
}
reply.state = mState;
LOG(DEBUG) << __func__ << ": writing reply " << reply.toString();
if (!mReplyMQ->writeBlocking(&reply, 1)) {
LOG(ERROR) << __func__ << ": writing of reply " << reply.toString() << " to MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
return Status::CONTINUE;
}
bool StreamOutWorkerLogic::write(size_t clientSize, StreamDescriptor::Reply* reply) {
const size_t readByteCount = mDataMQ->availableToRead();
// Amount of data that the HAL module is going to actually use.
const size_t byteCount = std::min({clientSize, readByteCount, mDataBufferSize});
bool fatal = false;
if (bool success = readByteCount > 0 ? mDataMQ->read(&mDataBuffer[0], readByteCount) : true) {
const bool isConnected = mIsConnected;
LOG(DEBUG) << __func__ << ": reading of " << readByteCount << " bytes from data MQ"
<< " succeeded; connected? " << isConnected;
// Frames are consumed and counted regardless of connection status.
reply->fmqByteCount += byteCount;
mFrameCount += byteCount / mFrameSize;
populateReply(reply, isConnected);
usleep(3000); // Simulate a blocking call into the driver.
// Set 'fatal = true' if a driver error occurs.
} else {
LOG(WARNING) << __func__ << ": reading of " << readByteCount
<< " bytes of data from MQ failed";
reply->status = STATUS_NOT_ENOUGH_DATA;
}
reply->latencyMs = Module::kLatencyMs;
return !fatal;
}
template <class Metadata, class StreamWorker>
StreamCommon<Metadata, StreamWorker>::~StreamCommon() {
if (!isClosed()) {
LOG(ERROR) << __func__ << ": stream was not closed prior to destruction, resource leak";
stopWorker();
// The worker and the context should clean up by themselves via destructors.
}
}
template <class Metadata, class StreamWorker>
ndk::ScopedAStatus StreamCommon<Metadata, StreamWorker>::close() {
LOG(DEBUG) << __func__;
if (!isClosed()) {
stopWorker();
LOG(DEBUG) << __func__ << ": joining the worker thread...";
mWorker.stop();
LOG(DEBUG) << __func__ << ": worker thread joined";
mContext.reset();
mWorker.setClosed();
return ndk::ScopedAStatus::ok();
} else {
LOG(ERROR) << __func__ << ": stream was already closed";
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
}
template <class Metadata, class StreamWorker>
void StreamCommon<Metadata, StreamWorker>::stopWorker() {
if (auto commandMQ = mContext.getCommandMQ(); commandMQ != nullptr) {
LOG(DEBUG) << __func__ << ": asking the worker to exit...";
auto cmd =
StreamDescriptor::Command::make<StreamDescriptor::Command::Tag::hal_reserved_exit>(
mContext.getInternalCommandCookie());
// Note: never call 'pause' and 'resume' methods of StreamWorker
// in the HAL implementation. These methods are to be used by
// the client side only. Preventing the worker loop from running
// on the HAL side can cause a deadlock.
if (!commandMQ->writeBlocking(&cmd, 1)) {
LOG(ERROR) << __func__ << ": failed to write exit command to the MQ";
}
LOG(DEBUG) << __func__ << ": done";
}
}
template <class Metadata, class StreamWorker>
ndk::ScopedAStatus StreamCommon<Metadata, StreamWorker>::updateMetadata(const Metadata& metadata) {
LOG(DEBUG) << __func__;
if (!isClosed()) {
mMetadata = metadata;
return ndk::ScopedAStatus::ok();
}
LOG(ERROR) << __func__ << ": stream was closed";
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
StreamIn::StreamIn(const SinkMetadata& sinkMetadata, StreamContext context)
: StreamCommon<SinkMetadata, StreamInWorker>(sinkMetadata, std::move(context)) {
LOG(DEBUG) << __func__;
}
StreamOut::StreamOut(const SourceMetadata& sourceMetadata, StreamContext context,
const std::optional<AudioOffloadInfo>& offloadInfo)
: StreamCommon<SourceMetadata, StreamOutWorker>(sourceMetadata, std::move(context)),
mOffloadInfo(offloadInfo) {
LOG(DEBUG) << __func__;
}
} // namespace aidl::android::hardware::audio::core