blob: 27e6ebfab3783af0b94d78acee5fee264ab79411 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/Gtest.h>
#include <aidl/Vintf.h>
#include <aidl/android/hardware/bluetooth/BnBluetoothHciCallbacks.h>
#include <aidl/android/hardware/bluetooth/IBluetoothHci.h>
#include <aidl/android/hardware/bluetooth/IBluetoothHciCallbacks.h>
#include <aidl/android/hardware/bluetooth/Status.h>
#include <android/binder_auto_utils.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <binder/IServiceManager.h>
#include <binder/ProcessState.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <future>
#include <mutex>
#include <queue>
#include <thread>
#include <vector>
using aidl::android::hardware::bluetooth::IBluetoothHci;
using aidl::android::hardware::bluetooth::IBluetoothHciCallbacks;
using aidl::android::hardware::bluetooth::Status;
using ndk::ScopedAStatus;
using ndk::SpAIBinder;
// Bluetooth Core Specification 3.0 + HS
static constexpr uint8_t kHciMinimumHciVersion = 5;
// Bluetooth Core Specification 3.0 + HS
static constexpr uint8_t kHciMinimumLmpVersion = 5;
static constexpr std::chrono::milliseconds kWaitForInitTimeout(2000);
static constexpr std::chrono::milliseconds kWaitForHciEventTimeout(2000);
static constexpr std::chrono::milliseconds kInterfaceCloseDelayMs(200);
static constexpr uint8_t kCommandHciShouldBeUnknown[] = {
0xff, 0x3B, 0x08, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
static constexpr uint8_t kCommandHciReadLocalVersionInformation[] = {0x01, 0x10,
0x00};
static constexpr uint8_t kCommandHciReadBufferSize[] = {0x05, 0x10, 0x00};
static constexpr uint8_t kCommandHciReset[] = {0x03, 0x0c, 0x00};
static constexpr uint8_t kHciStatusSuccess = 0x00;
static constexpr uint8_t kHciStatusUnknownHciCommand = 0x01;
static constexpr uint8_t kEventCommandComplete = 0x0e;
static constexpr uint8_t kEventCommandStatus = 0x0f;
static constexpr uint8_t kEventNumberOfCompletedPackets = 0x13;
static constexpr size_t kEventCodeByte = 0;
static constexpr size_t kEventCommandStatusStatusByte = 2;
static constexpr size_t kEventCommandStatusOpcodeLsByte = 4; // Bytes 4 and 5
static constexpr size_t kEventCommandCompleteOpcodeLsByte = 3; // Bytes 3 and 4
static constexpr size_t kEventCommandCompleteStatusByte = 5;
static constexpr size_t kEventCommandCompleteFirstParamByte = 6;
static constexpr size_t kEventLocalHciVersionByte =
kEventCommandCompleteFirstParamByte;
static constexpr size_t kEventLocalLmpVersionByte =
kEventLocalHciVersionByte + 3;
static constexpr size_t kEventNumberOfCompletedPacketsNumHandles = 2;
// To discard Qualcomm ACL debugging
static constexpr uint16_t kAclHandleQcaDebugMessage = 0xedc;
class ThroughputLogger {
public:
ThroughputLogger(std::string task)
: task_(task), start_time_(std::chrono::steady_clock::now()) {}
~ThroughputLogger() {
if (total_bytes_ == 0) {
return;
}
std::chrono::duration<double> duration =
std::chrono::steady_clock::now() - start_time_;
double s = duration.count();
if (s == 0) {
return;
}
double rate_kb = (static_cast<double>(total_bytes_) / s) / 1024;
ALOGD("%s %.1f KB/s (%zu bytes in %.3fs)", task_.c_str(), rate_kb,
total_bytes_, s);
}
void setTotalBytes(size_t total_bytes) { total_bytes_ = total_bytes; }
private:
size_t total_bytes_;
std::string task_;
std::chrono::steady_clock::time_point start_time_;
};
// The main test class for Bluetooth HAL.
class BluetoothAidlTest : public ::testing::TestWithParam<std::string> {
public:
virtual void SetUp() override {
// currently test passthrough mode only
hci = IBluetoothHci::fromBinder(
SpAIBinder(AServiceManager_waitForService(GetParam().c_str())));
ASSERT_NE(hci, nullptr);
ALOGI("%s: getService() for bluetooth hci is %s", __func__,
hci->isRemote() ? "remote" : "local");
// Lambda function
auto on_binder_death = [](void* /*cookie*/) { FAIL(); };
bluetooth_hci_death_recipient =
AIBinder_DeathRecipient_new(on_binder_death);
ASSERT_NE(bluetooth_hci_death_recipient, nullptr);
ASSERT_EQ(STATUS_OK,
AIBinder_linkToDeath(hci->asBinder().get(),
bluetooth_hci_death_recipient, 0));
hci_cb = ndk::SharedRefBase::make<BluetoothHciCallbacks>(*this);
ASSERT_NE(hci_cb, nullptr);
max_acl_data_packet_length = 0;
max_sco_data_packet_length = 0;
max_acl_data_packets = 0;
max_sco_data_packets = 0;
event_cb_count = 0;
acl_cb_count = 0;
sco_cb_count = 0;
ASSERT_TRUE(hci->initialize(hci_cb).isOk());
auto future = initialized_promise.get_future();
auto timeout_status = future.wait_for(kWaitForInitTimeout);
ASSERT_EQ(timeout_status, std::future_status::ready);
ASSERT_TRUE(future.get());
}
virtual void TearDown() override {
ALOGI("TearDown");
// Should not be checked in production code
ASSERT_TRUE(hci->close().isOk());
std::this_thread::sleep_for(kInterfaceCloseDelayMs);
handle_no_ops();
EXPECT_EQ(static_cast<size_t>(0), event_queue.size());
EXPECT_EQ(static_cast<size_t>(0), sco_queue.size());
EXPECT_EQ(static_cast<size_t>(0), acl_queue.size());
EXPECT_EQ(static_cast<size_t>(0), iso_queue.size());
}
void setBufferSizes();
// Helper functions to try to get a handle on verbosity
void handle_no_ops();
void wait_for_event(bool timeout_is_error);
void wait_for_command_complete_event(std::vector<uint8_t> cmd);
int wait_for_completed_packets_event(uint16_t handle);
// A simple test implementation of BluetoothHciCallbacks.
class BluetoothHciCallbacks
: public aidl::android::hardware::bluetooth::BnBluetoothHciCallbacks {
BluetoothAidlTest& parent_;
public:
BluetoothHciCallbacks(BluetoothAidlTest& parent) : parent_(parent){};
virtual ~BluetoothHciCallbacks() = default;
ndk::ScopedAStatus initializationComplete(Status status) {
parent_.initialized_promise.set_value(status == Status::SUCCESS);
ALOGV("%s (status = %d)", __func__, static_cast<int>(status));
return ScopedAStatus::ok();
};
ndk::ScopedAStatus hciEventReceived(const std::vector<uint8_t>& event) {
parent_.event_cb_count++;
parent_.event_queue.push(event);
ALOGV("Event received (length = %d)", static_cast<int>(event.size()));
return ScopedAStatus::ok();
};
ndk::ScopedAStatus aclDataReceived(const std::vector<uint8_t>& data) {
parent_.acl_cb_count++;
parent_.acl_queue.push(data);
return ScopedAStatus::ok();
};
ndk::ScopedAStatus scoDataReceived(const std::vector<uint8_t>& data) {
parent_.sco_cb_count++;
parent_.sco_queue.push(data);
return ScopedAStatus::ok();
};
ndk::ScopedAStatus isoDataReceived(const std::vector<uint8_t>& data) {
parent_.iso_cb_count++;
parent_.iso_queue.push(data);
return ScopedAStatus::ok();
};
};
template <class T>
class WaitQueue {
public:
WaitQueue(){};
virtual ~WaitQueue() = default;
bool empty() const {
std::lock_guard<std::mutex> lock(m_);
return q_.empty();
};
size_t size() const {
std::lock_guard<std::mutex> lock(m_);
return q_.size();
};
void push(const T& v) {
std::lock_guard<std::mutex> lock(m_);
q_.push(v);
ready_.notify_one();
};
bool pop(T& v) {
std::lock_guard<std::mutex> lock(m_);
if (q_.empty()) {
return false;
}
v = std::move(q_.front());
q_.pop();
return true;
};
bool front(T& v) {
std::lock_guard<std::mutex> lock(m_);
if (q_.empty()) {
return false;
}
v = q_.front();
return true;
};
void wait() {
std::unique_lock<std::mutex> lock(m_);
while (q_.empty()) {
ready_.wait(lock);
}
};
bool waitWithTimeout(std::chrono::milliseconds timeout) {
std::unique_lock<std::mutex> lock(m_);
while (q_.empty()) {
if (ready_.wait_for(lock, timeout) == std::cv_status::timeout) {
return false;
}
}
return true;
};
bool tryPopWithTimeout(T& v, std::chrono::milliseconds timeout) {
std::unique_lock<std::mutex> lock(m_);
while (q_.empty()) {
if (ready_.wait_for(lock, timeout) == std::cv_status::timeout) {
return false;
}
}
v = std::move(q_.front());
q_.pop();
return true;
};
private:
mutable std::mutex m_;
std::queue<T> q_;
std::condition_variable_any ready_;
};
std::shared_ptr<IBluetoothHci> hci;
std::shared_ptr<BluetoothHciCallbacks> hci_cb;
AIBinder_DeathRecipient* bluetooth_hci_death_recipient;
WaitQueue<std::vector<uint8_t>> event_queue;
WaitQueue<std::vector<uint8_t>> acl_queue;
WaitQueue<std::vector<uint8_t>> sco_queue;
WaitQueue<std::vector<uint8_t>> iso_queue;
std::promise<bool> initialized_promise;
int event_cb_count;
int sco_cb_count;
int acl_cb_count;
int iso_cb_count;
int max_acl_data_packet_length;
int max_sco_data_packet_length;
int max_acl_data_packets;
int max_sco_data_packets;
};
// Discard NO-OPs from the event queue.
void BluetoothAidlTest::handle_no_ops() {
while (!event_queue.empty()) {
std::vector<uint8_t> event;
event_queue.front(event);
ASSERT_GE(event.size(),
static_cast<size_t>(kEventCommandCompleteStatusByte));
bool event_is_no_op =
(event[kEventCodeByte] == kEventCommandComplete) &&
(event[kEventCommandCompleteOpcodeLsByte] == 0x00) &&
(event[kEventCommandCompleteOpcodeLsByte + 1] == 0x00);
event_is_no_op |= (event[kEventCodeByte] == kEventCommandStatus) &&
(event[kEventCommandStatusOpcodeLsByte] == 0x00) &&
(event[kEventCommandStatusOpcodeLsByte + 1] == 0x00);
if (event_is_no_op) {
event_queue.pop(event);
} else {
break;
}
}
// Discard Qualcomm ACL debugging
while (!acl_queue.empty()) {
std::vector<uint8_t> acl_packet;
acl_queue.front(acl_packet);
uint16_t connection_handle = acl_packet[1] & 0xF;
connection_handle <<= 8;
connection_handle |= acl_packet[0];
bool packet_is_no_op = connection_handle == kAclHandleQcaDebugMessage;
if (packet_is_no_op) {
acl_queue.pop(acl_packet);
} else {
break;
}
}
}
// Receive an event, discarding NO-OPs.
void BluetoothAidlTest::wait_for_event(bool timeout_is_error = true) {
if (timeout_is_error) {
ASSERT_TRUE(event_queue.waitWithTimeout(kWaitForHciEventTimeout));
} else {
event_queue.wait();
}
ASSERT_LT(static_cast<size_t>(0), event_queue.size());
if (event_queue.empty()) {
// waitWithTimeout timed out
return;
}
handle_no_ops();
}
// Wait until a command complete is received.
void BluetoothAidlTest::wait_for_command_complete_event(
std::vector<uint8_t> cmd) {
wait_for_event();
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_GT(event.size(), static_cast<size_t>(kEventCommandCompleteStatusByte));
ASSERT_EQ(kEventCommandComplete, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusSuccess, event[kEventCommandCompleteStatusByte]);
}
// Send the command to read the controller's buffer sizes.
void BluetoothAidlTest::setBufferSizes() {
std::vector<uint8_t> cmd{
kCommandHciReadBufferSize,
kCommandHciReadBufferSize + sizeof(kCommandHciReadBufferSize)};
hci->sendHciCommand(cmd);
wait_for_event();
if (event_queue.empty()) {
return;
}
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_EQ(kEventCommandComplete, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusSuccess, event[kEventCommandCompleteStatusByte]);
max_acl_data_packet_length =
event[kEventCommandCompleteStatusByte + 1] +
(event[kEventCommandCompleteStatusByte + 2] << 8);
max_sco_data_packet_length = event[kEventCommandCompleteStatusByte + 3];
max_acl_data_packets = event[kEventCommandCompleteStatusByte + 4] +
(event[kEventCommandCompleteStatusByte + 5] << 8);
max_sco_data_packets = event[kEventCommandCompleteStatusByte + 6] +
(event[kEventCommandCompleteStatusByte + 7] << 8);
ALOGD("%s: ACL max %d num %d SCO max %d num %d", __func__,
static_cast<int>(max_acl_data_packet_length),
static_cast<int>(max_acl_data_packets),
static_cast<int>(max_sco_data_packet_length),
static_cast<int>(max_sco_data_packets));
}
// Return the number of completed packets reported by the controller.
int BluetoothAidlTest::wait_for_completed_packets_event(uint16_t handle) {
int packets_processed = 0;
wait_for_event(false);
if (event_queue.empty()) {
ALOGW("%s: waitForBluetoothCallback timed out.", __func__);
return packets_processed;
}
while (!event_queue.empty()) {
std::vector<uint8_t> event;
EXPECT_TRUE(event_queue.pop(event));
EXPECT_EQ(kEventNumberOfCompletedPackets, event[kEventCodeByte]);
EXPECT_EQ(1, event[kEventNumberOfCompletedPacketsNumHandles]);
uint16_t event_handle = event[3] + (event[4] << 8);
EXPECT_EQ(handle, event_handle);
packets_processed += event[5] + (event[6] << 8);
}
return packets_processed;
}
// Empty test: Initialize()/Close() are called in SetUp()/TearDown().
TEST_P(BluetoothAidlTest, InitializeAndClose) {}
// Send an HCI Reset with sendHciCommand and wait for a command complete event.
TEST_P(BluetoothAidlTest, HciReset) {
std::vector<uint8_t> reset{kCommandHciReset,
kCommandHciReset + sizeof(kCommandHciReset)};
hci->sendHciCommand(reset);
wait_for_command_complete_event(reset);
}
// Read and check the HCI version of the controller.
TEST_P(BluetoothAidlTest, HciVersionTest) {
std::vector<uint8_t> cmd{kCommandHciReadLocalVersionInformation,
kCommandHciReadLocalVersionInformation +
sizeof(kCommandHciReadLocalVersionInformation)};
hci->sendHciCommand(cmd);
wait_for_event();
if (event_queue.empty()) {
return;
}
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_GT(event.size(), static_cast<size_t>(kEventLocalLmpVersionByte));
ASSERT_EQ(kEventCommandComplete, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusSuccess, event[kEventCommandCompleteStatusByte]);
ASSERT_LE(kHciMinimumHciVersion, event[kEventLocalHciVersionByte]);
ASSERT_LE(kHciMinimumLmpVersion, event[kEventLocalLmpVersionByte]);
}
// Send an unknown HCI command and wait for the error message.
TEST_P(BluetoothAidlTest, HciUnknownCommand) {
std::vector<uint8_t> cmd{
kCommandHciShouldBeUnknown,
kCommandHciShouldBeUnknown + sizeof(kCommandHciShouldBeUnknown)};
hci->sendHciCommand(cmd);
wait_for_event();
if (event_queue.empty()) {
return;
}
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_GT(event.size(), static_cast<size_t>(kEventCommandCompleteStatusByte));
if (event[kEventCodeByte] == kEventCommandComplete) {
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusUnknownHciCommand,
event[kEventCommandCompleteStatusByte]);
} else {
ASSERT_EQ(kEventCommandStatus, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandStatusOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandStatusOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusUnknownHciCommand,
event[kEventCommandStatusStatusByte]);
}
}
// Set all bits in the event mask
TEST_P(BluetoothAidlTest, SetEventMask) {
std::vector<uint8_t> set_event_mask{
0x01, 0x0c, 0x08 /*parameter bytes*/, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff};
hci->sendHciCommand({set_event_mask});
wait_for_command_complete_event(set_event_mask);
}
// Set all bits in the LE event mask
TEST_P(BluetoothAidlTest, SetLeEventMask) {
std::vector<uint8_t> set_event_mask{
0x20, 0x0c, 0x08 /*parameter bytes*/, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff};
hci->sendHciCommand({set_event_mask});
wait_for_command_complete_event(set_event_mask);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(BluetoothAidlTest);
INSTANTIATE_TEST_SUITE_P(PerInstance, BluetoothAidlTest,
testing::ValuesIn(android::getAidlHalInstanceNames(
IBluetoothHci::descriptor)),
android::PrintInstanceNameToString);
int main(int argc, char** argv) {
ABinderProcess_startThreadPool();
::testing::InitGoogleTest(&argc, argv);
int status = RUN_ALL_TESTS();
ALOGI("Test result = %d", status);
return status;
}