blob: 7b9e211d5bce0c32b88e9b773682ad83538d39fb [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/Gtest.h>
#include <aidl/Vintf.h>
#include <aidl/android/hardware/bluetooth/BnBluetoothHciCallbacks.h>
#include <aidl/android/hardware/bluetooth/IBluetoothHci.h>
#include <aidl/android/hardware/bluetooth/IBluetoothHciCallbacks.h>
#include <aidl/android/hardware/bluetooth/Status.h>
#include <android/binder_auto_utils.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <binder/IServiceManager.h>
#include <binder/ProcessState.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <future>
#include <mutex>
#include <queue>
#include <thread>
#include <vector>
using aidl::android::hardware::bluetooth::IBluetoothHci;
using aidl::android::hardware::bluetooth::IBluetoothHciCallbacks;
using aidl::android::hardware::bluetooth::Status;
using ndk::ScopedAStatus;
using ndk::SpAIBinder;
// Bluetooth Core Specification 3.0 + HS
static constexpr uint8_t kHciMinimumHciVersion = 5;
// Bluetooth Core Specification 3.0 + HS
static constexpr uint8_t kHciMinimumLmpVersion = 5;
static constexpr size_t kNumHciCommandsBandwidth = 100;
static constexpr size_t kNumScoPacketsBandwidth = 100;
static constexpr size_t kNumAclPacketsBandwidth = 100;
static constexpr std::chrono::milliseconds kWaitForInitTimeout(2000);
static constexpr std::chrono::milliseconds kWaitForHciEventTimeout(2000);
static constexpr std::chrono::milliseconds kWaitForScoDataTimeout(1000);
static constexpr std::chrono::milliseconds kWaitForAclDataTimeout(1000);
static constexpr std::chrono::milliseconds kInterfaceCloseDelayMs(200);
static constexpr uint8_t kCommandHciShouldBeUnknown[] = {
0xff, 0x3B, 0x08, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
static constexpr uint8_t kCommandHciReadLocalVersionInformation[] = {0x01, 0x10,
0x00};
static constexpr uint8_t kCommandHciReadBufferSize[] = {0x05, 0x10, 0x00};
static constexpr uint8_t kCommandHciWriteLoopbackModeLocal[] = {0x02, 0x18,
0x01, 0x01};
static constexpr uint8_t kCommandHciReset[] = {0x03, 0x0c, 0x00};
static constexpr uint8_t kCommandHciSynchronousFlowControlEnable[] = {
0x2f, 0x0c, 0x01, 0x01};
static constexpr uint8_t kCommandHciWriteLocalName[] = {0x13, 0x0c, 0xf8};
static constexpr uint8_t kHciStatusSuccess = 0x00;
static constexpr uint8_t kHciStatusUnknownHciCommand = 0x01;
static constexpr uint8_t kEventConnectionComplete = 0x03;
static constexpr uint8_t kEventCommandComplete = 0x0e;
static constexpr uint8_t kEventCommandStatus = 0x0f;
static constexpr uint8_t kEventNumberOfCompletedPackets = 0x13;
static constexpr uint8_t kEventLoopbackCommand = 0x19;
static constexpr size_t kEventCodeByte = 0;
static constexpr size_t kEventLengthByte = 1;
static constexpr size_t kEventFirstPayloadByte = 2;
static constexpr size_t kEventCommandStatusStatusByte = 2;
static constexpr size_t kEventCommandStatusOpcodeLsByte = 4; // Bytes 4 and 5
static constexpr size_t kEventCommandCompleteOpcodeLsByte = 3; // Bytes 3 and 4
static constexpr size_t kEventCommandCompleteStatusByte = 5;
static constexpr size_t kEventCommandCompleteFirstParamByte = 6;
static constexpr size_t kEventLocalHciVersionByte =
kEventCommandCompleteFirstParamByte;
static constexpr size_t kEventLocalLmpVersionByte =
kEventLocalHciVersionByte + 3;
static constexpr size_t kEventConnectionCompleteParamLength = 11;
static constexpr size_t kEventConnectionCompleteType = 11;
static constexpr size_t kEventConnectionCompleteTypeSco = 0;
static constexpr size_t kEventConnectionCompleteTypeAcl = 1;
static constexpr size_t kEventConnectionCompleteHandleLsByte = 3;
static constexpr size_t kEventNumberOfCompletedPacketsNumHandles = 2;
static constexpr size_t kAclBroadcastFlagOffset = 6;
static constexpr uint8_t kAclBroadcastFlagPointToPoint = 0x0;
static constexpr uint8_t kAclBroadcastPointToPoint =
(kAclBroadcastFlagPointToPoint << kAclBroadcastFlagOffset);
static constexpr uint8_t kAclPacketBoundaryFlagOffset = 4;
static constexpr uint8_t kAclPacketBoundaryFlagFirstAutoFlushable = 0x2;
static constexpr uint8_t kAclPacketBoundaryFirstAutoFlushable =
kAclPacketBoundaryFlagFirstAutoFlushable << kAclPacketBoundaryFlagOffset;
// To discard Qualcomm ACL debugging
static constexpr uint16_t kAclHandleQcaDebugMessage = 0xedc;
class ThroughputLogger {
public:
ThroughputLogger(std::string task)
: total_bytes_(0),
task_(task),
start_time_(std::chrono::steady_clock::now()) {}
~ThroughputLogger() {
if (total_bytes_ == 0) {
return;
}
std::chrono::duration<double> duration =
std::chrono::steady_clock::now() - start_time_;
double s = duration.count();
if (s == 0) {
return;
}
double rate_kb = (static_cast<double>(total_bytes_) / s) / 1024;
ALOGD("%s %.1f KB/s (%zu bytes in %.3fs)", task_.c_str(), rate_kb,
total_bytes_, s);
}
void setTotalBytes(size_t total_bytes) { total_bytes_ = total_bytes; }
private:
size_t total_bytes_;
std::string task_;
std::chrono::steady_clock::time_point start_time_;
};
// The main test class for Bluetooth HAL.
class BluetoothAidlTest : public ::testing::TestWithParam<std::string> {
public:
virtual void SetUp() override {
// currently test passthrough mode only
hci = IBluetoothHci::fromBinder(
SpAIBinder(AServiceManager_waitForService(GetParam().c_str())));
ASSERT_NE(hci, nullptr);
ALOGI("%s: getService() for bluetooth hci is %s", __func__,
hci->isRemote() ? "remote" : "local");
// Lambda function
auto on_binder_death = [](void* /*cookie*/) { FAIL(); };
bluetooth_hci_death_recipient =
AIBinder_DeathRecipient_new(on_binder_death);
ASSERT_NE(bluetooth_hci_death_recipient, nullptr);
ASSERT_EQ(STATUS_OK,
AIBinder_linkToDeath(hci->asBinder().get(),
bluetooth_hci_death_recipient, 0));
hci_cb = ndk::SharedRefBase::make<BluetoothHciCallbacks>(*this);
ASSERT_NE(hci_cb, nullptr);
max_acl_data_packet_length = 0;
max_sco_data_packet_length = 0;
max_acl_data_packets = 0;
max_sco_data_packets = 0;
event_cb_count = 0;
acl_cb_count = 0;
sco_cb_count = 0;
ASSERT_TRUE(hci->initialize(hci_cb).isOk());
auto future = initialized_promise.get_future();
auto timeout_status = future.wait_for(kWaitForInitTimeout);
ASSERT_EQ(timeout_status, std::future_status::ready);
ASSERT_TRUE(future.get());
}
virtual void TearDown() override {
ALOGI("TearDown");
// Should not be checked in production code
ASSERT_TRUE(hci->close().isOk());
std::this_thread::sleep_for(kInterfaceCloseDelayMs);
handle_no_ops();
discard_qca_debugging();
EXPECT_EQ(static_cast<size_t>(0), event_queue.size());
EXPECT_EQ(static_cast<size_t>(0), sco_queue.size());
EXPECT_EQ(static_cast<size_t>(0), acl_queue.size());
EXPECT_EQ(static_cast<size_t>(0), iso_queue.size());
}
void setBufferSizes();
void setSynchronousFlowControlEnable();
// Functions called from within tests in loopback mode
void sendAndCheckHci(int num_packets);
void sendAndCheckSco(int num_packets, size_t size, uint16_t handle);
void sendAndCheckAcl(int num_packets, size_t size, uint16_t handle);
// Helper functions to try to get a handle on verbosity
void enterLoopbackMode();
void handle_no_ops();
void discard_qca_debugging();
void wait_for_event(bool timeout_is_error);
void wait_for_command_complete_event(std::vector<uint8_t> cmd);
int wait_for_completed_packets_event(uint16_t handle);
// A simple test implementation of BluetoothHciCallbacks.
class BluetoothHciCallbacks
: public aidl::android::hardware::bluetooth::BnBluetoothHciCallbacks {
BluetoothAidlTest& parent_;
public:
BluetoothHciCallbacks(BluetoothAidlTest& parent) : parent_(parent){};
virtual ~BluetoothHciCallbacks() = default;
ndk::ScopedAStatus initializationComplete(Status status) {
parent_.initialized_promise.set_value(status == Status::SUCCESS);
ALOGV("%s (status = %d)", __func__, static_cast<int>(status));
return ScopedAStatus::ok();
};
ndk::ScopedAStatus hciEventReceived(const std::vector<uint8_t>& event) {
parent_.event_cb_count++;
parent_.event_queue.push(event);
ALOGV("Event received (length = %d)", static_cast<int>(event.size()));
return ScopedAStatus::ok();
};
ndk::ScopedAStatus aclDataReceived(const std::vector<uint8_t>& data) {
parent_.acl_cb_count++;
parent_.acl_queue.push(data);
return ScopedAStatus::ok();
};
ndk::ScopedAStatus scoDataReceived(const std::vector<uint8_t>& data) {
parent_.sco_cb_count++;
parent_.sco_queue.push(data);
return ScopedAStatus::ok();
};
ndk::ScopedAStatus isoDataReceived(const std::vector<uint8_t>& data) {
parent_.iso_cb_count++;
parent_.iso_queue.push(data);
return ScopedAStatus::ok();
};
};
template <class T>
class WaitQueue {
public:
WaitQueue(){};
virtual ~WaitQueue() = default;
bool empty() const {
std::lock_guard<std::mutex> lock(m_);
return q_.empty();
};
size_t size() const {
std::lock_guard<std::mutex> lock(m_);
return q_.size();
};
void push(const T& v) {
std::lock_guard<std::mutex> lock(m_);
q_.push(v);
ready_.notify_one();
};
bool pop(T& v) {
std::lock_guard<std::mutex> lock(m_);
if (q_.empty()) {
return false;
}
v = std::move(q_.front());
q_.pop();
return true;
};
bool front(T& v) {
std::lock_guard<std::mutex> lock(m_);
if (q_.empty()) {
return false;
}
v = q_.front();
return true;
};
void wait() {
std::unique_lock<std::mutex> lock(m_);
while (q_.empty()) {
ready_.wait(lock);
}
};
bool waitWithTimeout(std::chrono::milliseconds timeout) {
std::unique_lock<std::mutex> lock(m_);
while (q_.empty()) {
if (ready_.wait_for(lock, timeout) == std::cv_status::timeout) {
return false;
}
}
return true;
};
bool tryPopWithTimeout(T& v, std::chrono::milliseconds timeout) {
std::unique_lock<std::mutex> lock(m_);
while (q_.empty()) {
if (ready_.wait_for(lock, timeout) == std::cv_status::timeout) {
return false;
}
}
v = std::move(q_.front());
q_.pop();
return true;
};
private:
mutable std::mutex m_;
std::queue<T> q_;
std::condition_variable_any ready_;
};
std::shared_ptr<IBluetoothHci> hci;
std::shared_ptr<BluetoothHciCallbacks> hci_cb;
AIBinder_DeathRecipient* bluetooth_hci_death_recipient;
WaitQueue<std::vector<uint8_t>> event_queue;
WaitQueue<std::vector<uint8_t>> acl_queue;
WaitQueue<std::vector<uint8_t>> sco_queue;
WaitQueue<std::vector<uint8_t>> iso_queue;
std::promise<bool> initialized_promise;
int event_cb_count;
int sco_cb_count;
int acl_cb_count;
int iso_cb_count;
int max_acl_data_packet_length;
int max_sco_data_packet_length;
int max_acl_data_packets;
int max_sco_data_packets;
std::vector<uint16_t> sco_connection_handles;
std::vector<uint16_t> acl_connection_handles;
};
// Discard NO-OPs from the event queue.
void BluetoothAidlTest::handle_no_ops() {
while (!event_queue.empty()) {
std::vector<uint8_t> event;
event_queue.front(event);
ASSERT_GE(event.size(),
static_cast<size_t>(kEventCommandCompleteStatusByte));
bool event_is_no_op =
(event[kEventCodeByte] == kEventCommandComplete) &&
(event[kEventCommandCompleteOpcodeLsByte] == 0x00) &&
(event[kEventCommandCompleteOpcodeLsByte + 1] == 0x00);
event_is_no_op |= (event[kEventCodeByte] == kEventCommandStatus) &&
(event[kEventCommandStatusOpcodeLsByte] == 0x00) &&
(event[kEventCommandStatusOpcodeLsByte + 1] == 0x00);
if (event_is_no_op) {
event_queue.pop(event);
} else {
break;
}
}
}
// Discard Qualcomm ACL debugging
void BluetoothAidlTest::discard_qca_debugging() {
while (!acl_queue.empty()) {
std::vector<uint8_t> acl_packet;
acl_queue.front(acl_packet);
uint16_t connection_handle = acl_packet[1] & 0xF;
connection_handle <<= 8;
connection_handle |= acl_packet[0];
bool packet_is_no_op = connection_handle == kAclHandleQcaDebugMessage;
if (packet_is_no_op) {
acl_queue.pop(acl_packet);
} else {
break;
}
}
}
// Receive an event, discarding NO-OPs.
void BluetoothAidlTest::wait_for_event(bool timeout_is_error = true) {
// Wait until we get something that's not a no-op.
while (true) {
bool event_ready = event_queue.waitWithTimeout(kWaitForHciEventTimeout);
ASSERT_TRUE(event_ready || !timeout_is_error);
if (event_queue.empty()) {
// waitWithTimeout timed out
return;
}
handle_no_ops();
if (!event_queue.empty()) {
// There's an event in the queue that's not a no-op.
return;
}
}
}
// Wait until a command complete is received.
void BluetoothAidlTest::wait_for_command_complete_event(
std::vector<uint8_t> cmd) {
ASSERT_NO_FATAL_FAILURE(wait_for_event());
std::vector<uint8_t> event;
ASSERT_FALSE(event_queue.empty());
ASSERT_TRUE(event_queue.pop(event));
ASSERT_GT(event.size(), static_cast<size_t>(kEventCommandCompleteStatusByte));
ASSERT_EQ(kEventCommandComplete, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusSuccess, event[kEventCommandCompleteStatusByte]);
}
// Send the command to read the controller's buffer sizes.
void BluetoothAidlTest::setBufferSizes() {
std::vector<uint8_t> cmd{
kCommandHciReadBufferSize,
kCommandHciReadBufferSize + sizeof(kCommandHciReadBufferSize)};
hci->sendHciCommand(cmd);
ASSERT_NO_FATAL_FAILURE(wait_for_event());
if (event_queue.empty()) {
return;
}
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_EQ(kEventCommandComplete, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusSuccess, event[kEventCommandCompleteStatusByte]);
max_acl_data_packet_length =
event[kEventCommandCompleteStatusByte + 1] +
(event[kEventCommandCompleteStatusByte + 2] << 8);
max_sco_data_packet_length = event[kEventCommandCompleteStatusByte + 3];
max_acl_data_packets = event[kEventCommandCompleteStatusByte + 4] +
(event[kEventCommandCompleteStatusByte + 5] << 8);
max_sco_data_packets = event[kEventCommandCompleteStatusByte + 6] +
(event[kEventCommandCompleteStatusByte + 7] << 8);
ALOGD("%s: ACL max %d num %d SCO max %d num %d", __func__,
static_cast<int>(max_acl_data_packet_length),
static_cast<int>(max_acl_data_packets),
static_cast<int>(max_sco_data_packet_length),
static_cast<int>(max_sco_data_packets));
}
// Enable flow control packets for SCO
void BluetoothAidlTest::setSynchronousFlowControlEnable() {
std::vector<uint8_t> cmd{kCommandHciSynchronousFlowControlEnable,
kCommandHciSynchronousFlowControlEnable +
sizeof(kCommandHciSynchronousFlowControlEnable)};
hci->sendHciCommand(cmd);
wait_for_command_complete_event(cmd);
}
// Send an HCI command (in Loopback mode) and check the response.
void BluetoothAidlTest::sendAndCheckHci(int num_packets) {
ThroughputLogger logger = {__func__};
int command_size = 0;
for (int n = 0; n < num_packets; n++) {
// Send an HCI packet
std::vector<uint8_t> write_name{
kCommandHciWriteLocalName,
kCommandHciWriteLocalName + sizeof(kCommandHciWriteLocalName)};
// With a name
char new_name[] = "John Jacob Jingleheimer Schmidt ___________________0";
size_t new_name_length = strlen(new_name);
for (size_t i = 0; i < new_name_length; i++) {
write_name.push_back(static_cast<uint8_t>(new_name[i]));
}
// And the packet number
size_t i = new_name_length - 1;
for (int digits = n; digits > 0; digits = digits / 10, i--) {
write_name[i] = static_cast<uint8_t>('0' + digits % 10);
}
// And padding
for (size_t i = 0; i < 248 - new_name_length; i++) {
write_name.push_back(static_cast<uint8_t>(0));
}
hci->sendHciCommand(write_name);
// Check the loopback of the HCI packet
ASSERT_NO_FATAL_FAILURE(wait_for_event());
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
size_t compare_length = (write_name.size() > static_cast<size_t>(0xff)
? static_cast<size_t>(0xff)
: write_name.size());
ASSERT_GT(event.size(), compare_length + kEventFirstPayloadByte - 1);
ASSERT_EQ(kEventLoopbackCommand, event[kEventCodeByte]);
ASSERT_EQ(compare_length, event[kEventLengthByte]);
// Don't compare past the end of the event.
if (compare_length + kEventFirstPayloadByte > event.size()) {
compare_length = event.size() - kEventFirstPayloadByte;
ALOGE("Only comparing %d bytes", static_cast<int>(compare_length));
}
if (n == num_packets - 1) {
command_size = write_name.size();
}
for (size_t i = 0; i < compare_length; i++) {
ASSERT_EQ(write_name[i], event[kEventFirstPayloadByte + i]);
}
}
logger.setTotalBytes(command_size * num_packets * 2);
}
// Send a SCO data packet (in Loopback mode) and check the response.
void BluetoothAidlTest::sendAndCheckSco(int num_packets, size_t size,
uint16_t handle) {
ThroughputLogger logger = {__func__};
for (int n = 0; n < num_packets; n++) {
// Send a SCO packet
std::vector<uint8_t> sco_packet;
sco_packet.push_back(static_cast<uint8_t>(handle & 0xff));
sco_packet.push_back(static_cast<uint8_t>((handle & 0x0f00) >> 8));
sco_packet.push_back(static_cast<uint8_t>(size & 0xff));
for (size_t i = 0; i < size; i++) {
sco_packet.push_back(static_cast<uint8_t>(i + n));
}
hci->sendScoData(sco_packet);
// Check the loopback of the SCO packet
std::vector<uint8_t> sco_loopback;
ASSERT_TRUE(
sco_queue.tryPopWithTimeout(sco_loopback, kWaitForScoDataTimeout));
ASSERT_EQ(sco_packet.size(), sco_loopback.size());
size_t successful_bytes = 0;
for (size_t i = 0; i < sco_packet.size(); i++) {
if (sco_packet[i] == sco_loopback[i]) {
successful_bytes = i;
} else {
ALOGE("Miscompare at %d (expected %x, got %x)", static_cast<int>(i),
sco_packet[i], sco_loopback[i]);
ALOGE("At %d (expected %x, got %x)", static_cast<int>(i + 1),
sco_packet[i + 1], sco_loopback[i + 1]);
break;
}
}
ASSERT_EQ(sco_packet.size(), successful_bytes + 1);
}
logger.setTotalBytes(num_packets * size * 2);
}
// Send an ACL data packet (in Loopback mode) and check the response.
void BluetoothAidlTest::sendAndCheckAcl(int num_packets, size_t size,
uint16_t handle) {
ThroughputLogger logger = {__func__};
for (int n = 0; n < num_packets; n++) {
// Send an ACL packet
std::vector<uint8_t> acl_packet;
acl_packet.push_back(static_cast<uint8_t>(handle & 0xff));
acl_packet.push_back(static_cast<uint8_t>((handle & 0x0f00) >> 8) |
kAclBroadcastPointToPoint |
kAclPacketBoundaryFirstAutoFlushable);
acl_packet.push_back(static_cast<uint8_t>(size & 0xff));
acl_packet.push_back(static_cast<uint8_t>((size & 0xff00) >> 8));
for (size_t i = 0; i < size; i++) {
acl_packet.push_back(static_cast<uint8_t>(i + n));
}
hci->sendAclData(acl_packet);
std::vector<uint8_t> acl_loopback;
// Check the loopback of the ACL packet
ASSERT_TRUE(
acl_queue.tryPopWithTimeout(acl_loopback, kWaitForAclDataTimeout));
ASSERT_EQ(acl_packet.size(), acl_loopback.size());
size_t successful_bytes = 0;
for (size_t i = 0; i < acl_packet.size(); i++) {
if (acl_packet[i] == acl_loopback[i]) {
successful_bytes = i;
} else {
ALOGE("Miscompare at %d (expected %x, got %x)", static_cast<int>(i),
acl_packet[i], acl_loopback[i]);
ALOGE("At %d (expected %x, got %x)", static_cast<int>(i + 1),
acl_packet[i + 1], acl_loopback[i + 1]);
break;
}
}
ASSERT_EQ(acl_packet.size(), successful_bytes + 1);
}
logger.setTotalBytes(num_packets * size * 2);
}
// Return the number of completed packets reported by the controller.
int BluetoothAidlTest::wait_for_completed_packets_event(uint16_t handle) {
int packets_processed = 0;
while (true) {
// There should be at least one event.
wait_for_event(packets_processed == 0);
if (event_queue.empty()) {
if (packets_processed == 0) {
ALOGW("%s: waitForBluetoothCallback timed out.", __func__);
}
return packets_processed;
}
std::vector<uint8_t> event;
EXPECT_TRUE(event_queue.pop(event));
EXPECT_EQ(kEventNumberOfCompletedPackets, event[kEventCodeByte]);
EXPECT_EQ(1, event[kEventNumberOfCompletedPacketsNumHandles]);
uint16_t event_handle = event[3] + (event[4] << 8);
EXPECT_EQ(handle, event_handle);
packets_processed += event[5] + (event[6] << 8);
}
return packets_processed;
}
// Send local loopback command and initialize SCO and ACL handles.
void BluetoothAidlTest::enterLoopbackMode() {
std::vector<uint8_t> cmd{kCommandHciWriteLoopbackModeLocal,
kCommandHciWriteLoopbackModeLocal +
sizeof(kCommandHciWriteLoopbackModeLocal)};
hci->sendHciCommand(cmd);
// Receive connection complete events with data channels
int connection_event_count = 0;
bool command_complete_received = false;
while (true) {
wait_for_event(false);
if (event_queue.empty()) {
// Fail if there was no event received or no connections completed.
ASSERT_TRUE(command_complete_received);
ASSERT_LT(0, connection_event_count);
return;
}
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_GT(event.size(),
static_cast<size_t>(kEventCommandCompleteStatusByte));
if (event[kEventCodeByte] == kEventConnectionComplete) {
ASSERT_GT(event.size(),
static_cast<size_t>(kEventConnectionCompleteType));
ASSERT_EQ(event[kEventLengthByte], kEventConnectionCompleteParamLength);
uint8_t connection_type = event[kEventConnectionCompleteType];
ASSERT_TRUE(connection_type == kEventConnectionCompleteTypeSco ||
connection_type == kEventConnectionCompleteTypeAcl);
// Save handles
uint16_t handle = event[kEventConnectionCompleteHandleLsByte] |
event[kEventConnectionCompleteHandleLsByte + 1] << 8;
if (connection_type == kEventConnectionCompleteTypeSco) {
sco_connection_handles.push_back(handle);
} else {
acl_connection_handles.push_back(handle);
}
ALOGD("Connect complete type = %d handle = %d",
event[kEventConnectionCompleteType], handle);
connection_event_count++;
} else {
ASSERT_EQ(kEventCommandComplete, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusSuccess, event[kEventCommandCompleteStatusByte]);
command_complete_received = true;
}
}
}
// Empty test: Initialize()/Close() are called in SetUp()/TearDown().
TEST_P(BluetoothAidlTest, InitializeAndClose) {}
// Send an HCI Reset with sendHciCommand and wait for a command complete event.
TEST_P(BluetoothAidlTest, HciReset) {
std::vector<uint8_t> reset{kCommandHciReset,
kCommandHciReset + sizeof(kCommandHciReset)};
hci->sendHciCommand(reset);
wait_for_command_complete_event(reset);
}
// Read and check the HCI version of the controller.
TEST_P(BluetoothAidlTest, HciVersionTest) {
std::vector<uint8_t> cmd{kCommandHciReadLocalVersionInformation,
kCommandHciReadLocalVersionInformation +
sizeof(kCommandHciReadLocalVersionInformation)};
hci->sendHciCommand(cmd);
ASSERT_NO_FATAL_FAILURE(wait_for_event());
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_GT(event.size(), static_cast<size_t>(kEventLocalLmpVersionByte));
ASSERT_EQ(kEventCommandComplete, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusSuccess, event[kEventCommandCompleteStatusByte]);
ASSERT_LE(kHciMinimumHciVersion, event[kEventLocalHciVersionByte]);
ASSERT_LE(kHciMinimumLmpVersion, event[kEventLocalLmpVersionByte]);
}
// Send an unknown HCI command and wait for the error message.
TEST_P(BluetoothAidlTest, HciUnknownCommand) {
std::vector<uint8_t> cmd{
kCommandHciShouldBeUnknown,
kCommandHciShouldBeUnknown + sizeof(kCommandHciShouldBeUnknown)};
hci->sendHciCommand(cmd);
ASSERT_NO_FATAL_FAILURE(wait_for_event());
std::vector<uint8_t> event;
ASSERT_TRUE(event_queue.pop(event));
ASSERT_GT(event.size(), static_cast<size_t>(kEventCommandCompleteStatusByte));
if (event[kEventCodeByte] == kEventCommandComplete) {
ASSERT_EQ(cmd[0], event[kEventCommandCompleteOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandCompleteOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusUnknownHciCommand,
event[kEventCommandCompleteStatusByte]);
} else {
ASSERT_EQ(kEventCommandStatus, event[kEventCodeByte]);
ASSERT_EQ(cmd[0], event[kEventCommandStatusOpcodeLsByte]);
ASSERT_EQ(cmd[1], event[kEventCommandStatusOpcodeLsByte + 1]);
ASSERT_EQ(kHciStatusUnknownHciCommand,
event[kEventCommandStatusStatusByte]);
}
}
// Enter loopback mode, but don't send any packets.
TEST_P(BluetoothAidlTest, WriteLoopbackMode) { enterLoopbackMode(); }
// Enter loopback mode and send a single command.
TEST_P(BluetoothAidlTest, LoopbackModeSingleCommand) {
setBufferSizes();
enterLoopbackMode();
sendAndCheckHci(1);
}
// Enter loopback mode and send a single SCO packet.
TEST_P(BluetoothAidlTest, LoopbackModeSingleSco) {
setBufferSizes();
setSynchronousFlowControlEnable();
enterLoopbackMode();
if (!sco_connection_handles.empty()) {
ASSERT_LT(0, max_sco_data_packet_length);
sendAndCheckSco(1, max_sco_data_packet_length, sco_connection_handles[0]);
int sco_packets_sent = 1;
int completed_packets =
wait_for_completed_packets_event(sco_connection_handles[0]);
if (sco_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
sco_packets_sent, completed_packets);
}
}
}
// Enter loopback mode and send a single ACL packet.
TEST_P(BluetoothAidlTest, LoopbackModeSingleAcl) {
setBufferSizes();
enterLoopbackMode();
if (!acl_connection_handles.empty()) {
ASSERT_LT(0, max_acl_data_packet_length);
sendAndCheckAcl(1, max_acl_data_packet_length - 1,
acl_connection_handles[0]);
int acl_packets_sent = 1;
int completed_packets =
wait_for_completed_packets_event(acl_connection_handles[0]);
if (acl_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
acl_packets_sent, completed_packets);
}
}
ASSERT_GE(acl_cb_count, 1);
}
// Enter loopback mode and send command packets for bandwidth measurements.
TEST_P(BluetoothAidlTest, LoopbackModeCommandBandwidth) {
setBufferSizes();
enterLoopbackMode();
sendAndCheckHci(kNumHciCommandsBandwidth);
}
// Enter loopback mode and send SCO packets for bandwidth measurements.
TEST_P(BluetoothAidlTest, LoopbackModeScoBandwidth) {
setBufferSizes();
setSynchronousFlowControlEnable();
enterLoopbackMode();
if (!sco_connection_handles.empty()) {
ASSERT_LT(0, max_sco_data_packet_length);
sendAndCheckSco(kNumScoPacketsBandwidth, max_sco_data_packet_length,
sco_connection_handles[0]);
int sco_packets_sent = kNumScoPacketsBandwidth;
int completed_packets =
wait_for_completed_packets_event(sco_connection_handles[0]);
if (sco_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
sco_packets_sent, completed_packets);
}
}
}
// Enter loopback mode and send packets for ACL bandwidth measurements.
TEST_P(BluetoothAidlTest, LoopbackModeAclBandwidth) {
setBufferSizes();
enterLoopbackMode();
if (!acl_connection_handles.empty()) {
ASSERT_LT(0, max_acl_data_packet_length);
sendAndCheckAcl(kNumAclPacketsBandwidth, max_acl_data_packet_length - 1,
acl_connection_handles[0]);
int acl_packets_sent = kNumAclPacketsBandwidth;
int completed_packets =
wait_for_completed_packets_event(acl_connection_handles[0]);
if (acl_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
acl_packets_sent, completed_packets);
}
}
}
// Set all bits in the event mask
TEST_P(BluetoothAidlTest, SetEventMask) {
std::vector<uint8_t> set_event_mask{
0x01, 0x0c, 0x08 /*parameter bytes*/, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff};
hci->sendHciCommand({set_event_mask});
wait_for_command_complete_event(set_event_mask);
}
// Set all bits in the LE event mask
TEST_P(BluetoothAidlTest, SetLeEventMask) {
std::vector<uint8_t> set_event_mask{
0x20, 0x0c, 0x08 /*parameter bytes*/, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff};
hci->sendHciCommand({set_event_mask});
wait_for_command_complete_event(set_event_mask);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(BluetoothAidlTest);
INSTANTIATE_TEST_SUITE_P(PerInstance, BluetoothAidlTest,
testing::ValuesIn(android::getAidlHalInstanceNames(
IBluetoothHci::descriptor)),
android::PrintInstanceNameToString);
int main(int argc, char** argv) {
ABinderProcess_startThreadPool();
::testing::InitGoogleTest(&argc, argv);
int status = RUN_ALL_TESTS();
ALOGI("Test result = %d", status);
return status;
}