| /* |
| * Copyright (C) 2021 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Conversions.h" |
| |
| #include <aidl/android/hardware/common/NativeHandle.h> |
| #include <android-base/logging.h> |
| #include <nnapi/OperandTypes.h> |
| #include <nnapi/OperationTypes.h> |
| #include <nnapi/Result.h> |
| #include <nnapi/SharedMemory.h> |
| #include <nnapi/TypeUtils.h> |
| #include <nnapi/Types.h> |
| #include <nnapi/Validation.h> |
| #include <nnapi/hal/CommonUtils.h> |
| #include <nnapi/hal/HandleError.h> |
| |
| #include <algorithm> |
| #include <chrono> |
| #include <functional> |
| #include <iterator> |
| #include <limits> |
| #include <type_traits> |
| #include <utility> |
| |
| #define VERIFY_NON_NEGATIVE(value) \ |
| while (UNLIKELY(value < 0)) return NN_ERROR() |
| |
| namespace { |
| |
| template <typename Type> |
| constexpr std::underlying_type_t<Type> underlyingType(Type value) { |
| return static_cast<std::underlying_type_t<Type>>(value); |
| } |
| |
| constexpr auto kVersion = android::nn::Version::ANDROID_S; |
| |
| } // namespace |
| |
| namespace android::nn { |
| namespace { |
| |
| constexpr auto validOperandType(nn::OperandType operandType) { |
| switch (operandType) { |
| case nn::OperandType::FLOAT32: |
| case nn::OperandType::INT32: |
| case nn::OperandType::UINT32: |
| case nn::OperandType::TENSOR_FLOAT32: |
| case nn::OperandType::TENSOR_INT32: |
| case nn::OperandType::TENSOR_QUANT8_ASYMM: |
| case nn::OperandType::BOOL: |
| case nn::OperandType::TENSOR_QUANT16_SYMM: |
| case nn::OperandType::TENSOR_FLOAT16: |
| case nn::OperandType::TENSOR_BOOL8: |
| case nn::OperandType::FLOAT16: |
| case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: |
| case nn::OperandType::TENSOR_QUANT16_ASYMM: |
| case nn::OperandType::TENSOR_QUANT8_SYMM: |
| case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED: |
| case nn::OperandType::SUBGRAPH: |
| return true; |
| case nn::OperandType::OEM: |
| case nn::OperandType::TENSOR_OEM_BYTE: |
| return false; |
| } |
| return nn::isExtension(operandType); |
| } |
| |
| template <typename Input> |
| using UnvalidatedConvertOutput = |
| std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>; |
| |
| template <typename Type> |
| GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec( |
| const std::vector<Type>& arguments) { |
| std::vector<UnvalidatedConvertOutput<Type>> canonical; |
| canonical.reserve(arguments.size()); |
| for (const auto& argument : arguments) { |
| canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument))); |
| } |
| return canonical; |
| } |
| |
| template <typename Type> |
| GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert( |
| const std::vector<Type>& arguments) { |
| return unvalidatedConvertVec(arguments); |
| } |
| |
| template <typename Type> |
| GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) { |
| auto canonical = NN_TRY(nn::unvalidatedConvert(halObject)); |
| const auto maybeVersion = validate(canonical); |
| if (!maybeVersion.has_value()) { |
| return error() << maybeVersion.error(); |
| } |
| const auto version = maybeVersion.value(); |
| if (version > kVersion) { |
| return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion; |
| } |
| return canonical; |
| } |
| |
| template <typename Type> |
| GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert( |
| const std::vector<Type>& arguments) { |
| std::vector<UnvalidatedConvertOutput<Type>> canonical; |
| canonical.reserve(arguments.size()); |
| for (const auto& argument : arguments) { |
| canonical.push_back(NN_TRY(validatedConvert(argument))); |
| } |
| return canonical; |
| } |
| |
| } // anonymous namespace |
| |
| GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType) { |
| VERIFY_NON_NEGATIVE(underlyingType(operandType)) << "Negative operand types are not allowed."; |
| return static_cast<OperandType>(operandType); |
| } |
| |
| GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType) { |
| VERIFY_NON_NEGATIVE(underlyingType(operationType)) |
| << "Negative operation types are not allowed."; |
| return static_cast<OperationType>(operationType); |
| } |
| |
| GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType) { |
| return static_cast<DeviceType>(deviceType); |
| } |
| |
| GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority) { |
| return static_cast<Priority>(priority); |
| } |
| |
| GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities) { |
| const bool validOperandTypes = std::all_of( |
| capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(), |
| [](const aidl_hal::OperandPerformance& operandPerformance) { |
| const auto maybeType = unvalidatedConvert(operandPerformance.type); |
| return !maybeType.has_value() ? false : validOperandType(maybeType.value()); |
| }); |
| if (!validOperandTypes) { |
| return NN_ERROR() << "Invalid OperandType when unvalidatedConverting OperandPerformance in " |
| "Capabilities"; |
| } |
| |
| auto operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance)); |
| auto table = NN_TRY(hal::utils::makeGeneralFailure( |
| Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)), |
| nn::ErrorStatus::GENERAL_FAILURE)); |
| |
| return Capabilities{ |
| .relaxedFloat32toFloat16PerformanceScalar = NN_TRY( |
| unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)), |
| .relaxedFloat32toFloat16PerformanceTensor = NN_TRY( |
| unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)), |
| .operandPerformance = std::move(table), |
| .ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)), |
| .whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)), |
| }; |
| } |
| |
| GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert( |
| const aidl_hal::OperandPerformance& operandPerformance) { |
| return Capabilities::OperandPerformance{ |
| .type = NN_TRY(unvalidatedConvert(operandPerformance.type)), |
| .info = NN_TRY(unvalidatedConvert(operandPerformance.info)), |
| }; |
| } |
| |
| GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert( |
| const aidl_hal::PerformanceInfo& performanceInfo) { |
| return Capabilities::PerformanceInfo{ |
| .execTime = performanceInfo.execTime, |
| .powerUsage = performanceInfo.powerUsage, |
| }; |
| } |
| |
| GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location) { |
| VERIFY_NON_NEGATIVE(location.poolIndex) << "DataLocation: pool index must not be negative"; |
| VERIFY_NON_NEGATIVE(location.offset) << "DataLocation: offset must not be negative"; |
| VERIFY_NON_NEGATIVE(location.length) << "DataLocation: length must not be negative"; |
| if (location.offset > std::numeric_limits<uint32_t>::max()) { |
| return NN_ERROR() << "DataLocation: offset must be <= std::numeric_limits<uint32_t>::max()"; |
| } |
| if (location.length > std::numeric_limits<uint32_t>::max()) { |
| return NN_ERROR() << "DataLocation: length must be <= std::numeric_limits<uint32_t>::max()"; |
| } |
| return DataLocation{ |
| .poolIndex = static_cast<uint32_t>(location.poolIndex), |
| .offset = static_cast<uint32_t>(location.offset), |
| .length = static_cast<uint32_t>(location.length), |
| }; |
| } |
| |
| GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation) { |
| return Operation{ |
| .type = NN_TRY(unvalidatedConvert(operation.type)), |
| .inputs = NN_TRY(toUnsigned(operation.inputs)), |
| .outputs = NN_TRY(toUnsigned(operation.outputs)), |
| }; |
| } |
| |
| GeneralResult<Operand::LifeTime> unvalidatedConvert( |
| const aidl_hal::OperandLifeTime& operandLifeTime) { |
| return static_cast<Operand::LifeTime>(operandLifeTime); |
| } |
| |
| GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand) { |
| return Operand{ |
| .type = NN_TRY(unvalidatedConvert(operand.type)), |
| .dimensions = NN_TRY(toUnsigned(operand.dimensions)), |
| .scale = operand.scale, |
| .zeroPoint = operand.zeroPoint, |
| .lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)), |
| .location = NN_TRY(unvalidatedConvert(operand.location)), |
| .extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)), |
| }; |
| } |
| |
| GeneralResult<Operand::ExtraParams> unvalidatedConvert( |
| const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams) { |
| if (!optionalExtraParams.has_value()) { |
| return Operand::NoParams{}; |
| } |
| const auto& extraParams = optionalExtraParams.value(); |
| using Tag = aidl_hal::OperandExtraParams::Tag; |
| switch (extraParams.getTag()) { |
| case Tag::channelQuant: |
| return unvalidatedConvert(extraParams.get<Tag::channelQuant>()); |
| case Tag::extension: |
| return extraParams.get<Tag::extension>(); |
| } |
| return NN_ERROR() << "Unrecognized Operand::ExtraParams tag: " |
| << underlyingType(extraParams.getTag()); |
| } |
| |
| GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert( |
| const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams) { |
| VERIFY_NON_NEGATIVE(symmPerChannelQuantParams.channelDim) |
| << "Per-channel quantization channel dimension must not be negative."; |
| return Operand::SymmPerChannelQuantParams{ |
| .scales = symmPerChannelQuantParams.scales, |
| .channelDim = static_cast<uint32_t>(symmPerChannelQuantParams.channelDim), |
| }; |
| } |
| |
| GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model) { |
| return Model{ |
| .main = NN_TRY(unvalidatedConvert(model.main)), |
| .referenced = NN_TRY(unvalidatedConvert(model.referenced)), |
| .operandValues = NN_TRY(unvalidatedConvert(model.operandValues)), |
| .pools = NN_TRY(unvalidatedConvert(model.pools)), |
| .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16, |
| .extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)), |
| }; |
| } |
| |
| GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph) { |
| return Model::Subgraph{ |
| .operands = NN_TRY(unvalidatedConvert(subgraph.operands)), |
| .operations = NN_TRY(unvalidatedConvert(subgraph.operations)), |
| .inputIndexes = NN_TRY(toUnsigned(subgraph.inputIndexes)), |
| .outputIndexes = NN_TRY(toUnsigned(subgraph.outputIndexes)), |
| }; |
| } |
| |
| GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert( |
| const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix) { |
| return Model::ExtensionNameAndPrefix{ |
| .name = extensionNameAndPrefix.name, |
| .prefix = extensionNameAndPrefix.prefix, |
| }; |
| } |
| |
| GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension) { |
| return Extension{ |
| .name = extension.name, |
| .operandTypes = NN_TRY(unvalidatedConvert(extension.operandTypes)), |
| }; |
| } |
| |
| GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert( |
| const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation) { |
| VERIFY_NON_NEGATIVE(operandTypeInformation.byteSize) |
| << "Extension operand type byte size must not be negative"; |
| return Extension::OperandTypeInformation{ |
| .type = operandTypeInformation.type, |
| .isTensor = operandTypeInformation.isTensor, |
| .byteSize = static_cast<uint32_t>(operandTypeInformation.byteSize), |
| }; |
| } |
| |
| GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape) { |
| return OutputShape{ |
| .dimensions = NN_TRY(toUnsigned(outputShape.dimensions)), |
| .isSufficient = outputShape.isSufficient, |
| }; |
| } |
| |
| GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming) { |
| return measureTiming ? MeasureTiming::YES : MeasureTiming::NO; |
| } |
| |
| GeneralResult<Memory> unvalidatedConvert(const aidl_hal::Memory& memory) { |
| VERIFY_NON_NEGATIVE(memory.size) << "Memory size must not be negative"; |
| return Memory{ |
| .handle = NN_TRY(unvalidatedConvert(memory.handle)), |
| .size = static_cast<uint32_t>(memory.size), |
| .name = memory.name, |
| }; |
| } |
| |
| GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues) { |
| return Model::OperandValues(operandValues.data(), operandValues.size()); |
| } |
| |
| GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc) { |
| return BufferDesc{.dimensions = NN_TRY(toUnsigned(bufferDesc.dimensions))}; |
| } |
| |
| GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole) { |
| VERIFY_NON_NEGATIVE(bufferRole.modelIndex) << "BufferRole: modelIndex must not be negative"; |
| VERIFY_NON_NEGATIVE(bufferRole.ioIndex) << "BufferRole: ioIndex must not be negative"; |
| return BufferRole{ |
| .modelIndex = static_cast<uint32_t>(bufferRole.modelIndex), |
| .ioIndex = static_cast<uint32_t>(bufferRole.ioIndex), |
| .frequency = bufferRole.frequency, |
| }; |
| } |
| |
| GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request) { |
| return Request{ |
| .inputs = NN_TRY(unvalidatedConvert(request.inputs)), |
| .outputs = NN_TRY(unvalidatedConvert(request.outputs)), |
| .pools = NN_TRY(unvalidatedConvert(request.pools)), |
| }; |
| } |
| |
| GeneralResult<Request::Argument> unvalidatedConvert(const aidl_hal::RequestArgument& argument) { |
| const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE |
| : Request::Argument::LifeTime::POOL; |
| return Request::Argument{ |
| .lifetime = lifetime, |
| .location = NN_TRY(unvalidatedConvert(argument.location)), |
| .dimensions = NN_TRY(toUnsigned(argument.dimensions)), |
| }; |
| } |
| |
| GeneralResult<Request::MemoryPool> unvalidatedConvert( |
| const aidl_hal::RequestMemoryPool& memoryPool) { |
| using Tag = aidl_hal::RequestMemoryPool::Tag; |
| switch (memoryPool.getTag()) { |
| case Tag::pool: |
| return unvalidatedConvert(memoryPool.get<Tag::pool>()); |
| case Tag::token: { |
| const auto token = memoryPool.get<Tag::token>(); |
| VERIFY_NON_NEGATIVE(token) << "Memory pool token must not be negative"; |
| return static_cast<Request::MemoryDomainToken>(token); |
| } |
| } |
| return NN_ERROR() << "Invalid Request::MemoryPool tag " << underlyingType(memoryPool.getTag()); |
| } |
| |
| GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& status) { |
| switch (status) { |
| case aidl_hal::ErrorStatus::NONE: |
| case aidl_hal::ErrorStatus::DEVICE_UNAVAILABLE: |
| case aidl_hal::ErrorStatus::GENERAL_FAILURE: |
| case aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: |
| case aidl_hal::ErrorStatus::INVALID_ARGUMENT: |
| case aidl_hal::ErrorStatus::MISSED_DEADLINE_TRANSIENT: |
| case aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT: |
| case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT: |
| case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT: |
| return static_cast<ErrorStatus>(status); |
| } |
| return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status); |
| } |
| |
| GeneralResult<ExecutionPreference> unvalidatedConvert( |
| const aidl_hal::ExecutionPreference& executionPreference) { |
| return static_cast<ExecutionPreference>(executionPreference); |
| } |
| |
| GeneralResult<SharedHandle> unvalidatedConvert( |
| const ::aidl::android::hardware::common::NativeHandle& aidlNativeHandle) { |
| std::vector<base::unique_fd> fds; |
| fds.reserve(aidlNativeHandle.fds.size()); |
| for (const auto& fd : aidlNativeHandle.fds) { |
| int dupFd = dup(fd.get()); |
| if (dupFd == -1) { |
| // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return |
| // here? |
| return NN_ERROR() << "Failed to dup the fd"; |
| } |
| fds.emplace_back(dupFd); |
| } |
| |
| return std::make_shared<const Handle>(Handle{ |
| .fds = std::move(fds), |
| .ints = aidlNativeHandle.ints, |
| }); |
| } |
| |
| GeneralResult<ExecutionPreference> convert( |
| const aidl_hal::ExecutionPreference& executionPreference) { |
| return validatedConvert(executionPreference); |
| } |
| |
| GeneralResult<Memory> convert(const aidl_hal::Memory& operand) { |
| return validatedConvert(operand); |
| } |
| |
| GeneralResult<Model> convert(const aidl_hal::Model& model) { |
| return validatedConvert(model); |
| } |
| |
| GeneralResult<Operand> convert(const aidl_hal::Operand& operand) { |
| return unvalidatedConvert(operand); |
| } |
| |
| GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType) { |
| return unvalidatedConvert(operandType); |
| } |
| |
| GeneralResult<Priority> convert(const aidl_hal::Priority& priority) { |
| return validatedConvert(priority); |
| } |
| |
| GeneralResult<Request::MemoryPool> convert(const aidl_hal::RequestMemoryPool& memoryPool) { |
| return unvalidatedConvert(memoryPool); |
| } |
| |
| GeneralResult<Request> convert(const aidl_hal::Request& request) { |
| return validatedConvert(request); |
| } |
| |
| GeneralResult<std::vector<Operation>> convert(const std::vector<aidl_hal::Operation>& operations) { |
| return unvalidatedConvert(operations); |
| } |
| |
| GeneralResult<std::vector<Memory>> convert(const std::vector<aidl_hal::Memory>& memories) { |
| return validatedConvert(memories); |
| } |
| |
| GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec) { |
| if (!std::all_of(vec.begin(), vec.end(), [](int32_t v) { return v >= 0; })) { |
| return NN_ERROR() << "Negative value passed to conversion from signed to unsigned"; |
| } |
| return std::vector<uint32_t>(vec.begin(), vec.end()); |
| } |
| |
| } // namespace android::nn |
| |
| namespace aidl::android::hardware::neuralnetworks::utils { |
| namespace { |
| |
| template <typename Input> |
| using UnvalidatedConvertOutput = |
| std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>; |
| |
| template <typename Type> |
| nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec( |
| const std::vector<Type>& arguments) { |
| std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size()); |
| for (size_t i = 0; i < arguments.size(); ++i) { |
| halObject[i] = NN_TRY(unvalidatedConvert(arguments[i])); |
| } |
| return halObject; |
| } |
| |
| template <typename Type> |
| nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) { |
| const auto maybeVersion = nn::validate(canonical); |
| if (!maybeVersion.has_value()) { |
| return nn::error() << maybeVersion.error(); |
| } |
| const auto version = maybeVersion.value(); |
| if (version > kVersion) { |
| return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion; |
| } |
| return utils::unvalidatedConvert(canonical); |
| } |
| |
| template <typename Type> |
| nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert( |
| const std::vector<Type>& arguments) { |
| std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size()); |
| for (size_t i = 0; i < arguments.size(); ++i) { |
| halObject[i] = NN_TRY(validatedConvert(arguments[i])); |
| } |
| return halObject; |
| } |
| |
| } // namespace |
| |
| nn::GeneralResult<common::NativeHandle> unvalidatedConvert(const nn::SharedHandle& sharedHandle) { |
| common::NativeHandle aidlNativeHandle; |
| aidlNativeHandle.fds.reserve(sharedHandle->fds.size()); |
| for (const auto& fd : sharedHandle->fds) { |
| int dupFd = dup(fd.get()); |
| if (dupFd == -1) { |
| // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return |
| // here? |
| return NN_ERROR() << "Failed to dup the fd"; |
| } |
| aidlNativeHandle.fds.emplace_back(dupFd); |
| } |
| aidlNativeHandle.ints = sharedHandle->ints; |
| return aidlNativeHandle; |
| } |
| |
| nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory& memory) { |
| if (memory.size > std::numeric_limits<int64_t>::max()) { |
| return NN_ERROR() << "Memory size doesn't fit into int64_t."; |
| } |
| return Memory{ |
| .handle = NN_TRY(unvalidatedConvert(memory.handle)), |
| .size = static_cast<int64_t>(memory.size), |
| .name = memory.name, |
| }; |
| } |
| |
| nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus) { |
| switch (errorStatus) { |
| case nn::ErrorStatus::NONE: |
| case nn::ErrorStatus::DEVICE_UNAVAILABLE: |
| case nn::ErrorStatus::GENERAL_FAILURE: |
| case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: |
| case nn::ErrorStatus::INVALID_ARGUMENT: |
| case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT: |
| case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT: |
| case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT: |
| case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT: |
| return static_cast<ErrorStatus>(errorStatus); |
| default: |
| return ErrorStatus::GENERAL_FAILURE; |
| } |
| } |
| |
| nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape) { |
| return OutputShape{.dimensions = NN_TRY(toSigned(outputShape.dimensions)), |
| .isSufficient = outputShape.isSufficient}; |
| } |
| |
| nn::GeneralResult<Memory> convert(const nn::Memory& memory) { |
| return validatedConvert(memory); |
| } |
| |
| nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) { |
| return validatedConvert(errorStatus); |
| } |
| |
| nn::GeneralResult<std::vector<OutputShape>> convert( |
| const std::vector<nn::OutputShape>& outputShapes) { |
| return validatedConvert(outputShapes); |
| } |
| |
| nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec) { |
| if (!std::all_of(vec.begin(), vec.end(), |
| [](uint32_t v) { return v <= std::numeric_limits<int32_t>::max(); })) { |
| return NN_ERROR() << "Vector contains a value that doesn't fit into int32_t."; |
| } |
| return std::vector<int32_t>(vec.begin(), vec.end()); |
| } |
| |
| } // namespace aidl::android::hardware::neuralnetworks::utils |