blob: 0e93b02a1e1b0355ec9a888a608965081baad314 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <aidl/android/hardware/common/NativeHandle.h>
#include <android-base/logging.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/CommonUtils.h>
#include <nnapi/hal/HandleError.h>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>
#define VERIFY_NON_NEGATIVE(value) \
while (UNLIKELY(value < 0)) return NN_ERROR()
namespace {
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
constexpr auto kVersion = android::nn::Version::ANDROID_S;
} // namespace
namespace android::nn {
namespace {
constexpr auto validOperandType(nn::OperandType operandType) {
switch (operandType) {
case nn::OperandType::FLOAT32:
case nn::OperandType::INT32:
case nn::OperandType::UINT32:
case nn::OperandType::TENSOR_FLOAT32:
case nn::OperandType::TENSOR_INT32:
case nn::OperandType::TENSOR_QUANT8_ASYMM:
case nn::OperandType::BOOL:
case nn::OperandType::TENSOR_QUANT16_SYMM:
case nn::OperandType::TENSOR_FLOAT16:
case nn::OperandType::TENSOR_BOOL8:
case nn::OperandType::FLOAT16:
case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case nn::OperandType::TENSOR_QUANT16_ASYMM:
case nn::OperandType::TENSOR_QUANT8_SYMM:
case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case nn::OperandType::SUBGRAPH:
return true;
case nn::OperandType::OEM:
case nn::OperandType::TENSOR_OEM_BYTE:
return false;
}
return nn::isExtension(operandType);
}
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument)));
}
return canonical;
}
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const std::vector<Type>& arguments) {
return unvalidatedConvertVec(arguments);
}
template <typename Type>
GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) {
auto canonical = NN_TRY(nn::unvalidatedConvert(halObject));
const auto maybeVersion = validate(canonical);
if (!maybeVersion.has_value()) {
return error() << maybeVersion.error();
}
const auto version = maybeVersion.value();
if (version > kVersion) {
return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
}
return canonical;
}
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(validatedConvert(argument)));
}
return canonical;
}
} // anonymous namespace
GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType) {
VERIFY_NON_NEGATIVE(underlyingType(operandType)) << "Negative operand types are not allowed.";
return static_cast<OperandType>(operandType);
}
GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType) {
VERIFY_NON_NEGATIVE(underlyingType(operationType))
<< "Negative operation types are not allowed.";
return static_cast<OperationType>(operationType);
}
GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType) {
return static_cast<DeviceType>(deviceType);
}
GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority) {
return static_cast<Priority>(priority);
}
GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities) {
const bool validOperandTypes = std::all_of(
capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
[](const aidl_hal::OperandPerformance& operandPerformance) {
const auto maybeType = unvalidatedConvert(operandPerformance.type);
return !maybeType.has_value() ? false : validOperandType(maybeType.value());
});
if (!validOperandTypes) {
return NN_ERROR() << "Invalid OperandType when unvalidatedConverting OperandPerformance in "
"Capabilities";
}
auto operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance));
auto table = NN_TRY(hal::utils::makeGeneralFailure(
Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)),
nn::ErrorStatus::GENERAL_FAILURE));
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = std::move(table),
.ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
};
}
GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
const aidl_hal::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
.info = NN_TRY(unvalidatedConvert(operandPerformance.info)),
};
}
GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert(
const aidl_hal::PerformanceInfo& performanceInfo) {
return Capabilities::PerformanceInfo{
.execTime = performanceInfo.execTime,
.powerUsage = performanceInfo.powerUsage,
};
}
GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location) {
VERIFY_NON_NEGATIVE(location.poolIndex) << "DataLocation: pool index must not be negative";
VERIFY_NON_NEGATIVE(location.offset) << "DataLocation: offset must not be negative";
VERIFY_NON_NEGATIVE(location.length) << "DataLocation: length must not be negative";
if (location.offset > std::numeric_limits<uint32_t>::max()) {
return NN_ERROR() << "DataLocation: offset must be <= std::numeric_limits<uint32_t>::max()";
}
if (location.length > std::numeric_limits<uint32_t>::max()) {
return NN_ERROR() << "DataLocation: length must be <= std::numeric_limits<uint32_t>::max()";
}
return DataLocation{
.poolIndex = static_cast<uint32_t>(location.poolIndex),
.offset = static_cast<uint32_t>(location.offset),
.length = static_cast<uint32_t>(location.length),
};
}
GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = NN_TRY(toUnsigned(operation.inputs)),
.outputs = NN_TRY(toUnsigned(operation.outputs)),
};
}
GeneralResult<Operand::LifeTime> unvalidatedConvert(
const aidl_hal::OperandLifeTime& operandLifeTime) {
return static_cast<Operand::LifeTime>(operandLifeTime);
}
GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand) {
return Operand{
.type = NN_TRY(unvalidatedConvert(operand.type)),
.dimensions = NN_TRY(toUnsigned(operand.dimensions)),
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
.location = NN_TRY(unvalidatedConvert(operand.location)),
.extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
};
}
GeneralResult<Operand::ExtraParams> unvalidatedConvert(
const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams) {
if (!optionalExtraParams.has_value()) {
return Operand::NoParams{};
}
const auto& extraParams = optionalExtraParams.value();
using Tag = aidl_hal::OperandExtraParams::Tag;
switch (extraParams.getTag()) {
case Tag::channelQuant:
return unvalidatedConvert(extraParams.get<Tag::channelQuant>());
case Tag::extension:
return extraParams.get<Tag::extension>();
}
return NN_ERROR() << "Unrecognized Operand::ExtraParams tag: "
<< underlyingType(extraParams.getTag());
}
GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert(
const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
VERIFY_NON_NEGATIVE(symmPerChannelQuantParams.channelDim)
<< "Per-channel quantization channel dimension must not be negative.";
return Operand::SymmPerChannelQuantParams{
.scales = symmPerChannelQuantParams.scales,
.channelDim = static_cast<uint32_t>(symmPerChannelQuantParams.channelDim),
};
}
GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model) {
return Model{
.main = NN_TRY(unvalidatedConvert(model.main)),
.referenced = NN_TRY(unvalidatedConvert(model.referenced)),
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
};
}
GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph) {
return Model::Subgraph{
.operands = NN_TRY(unvalidatedConvert(subgraph.operands)),
.operations = NN_TRY(unvalidatedConvert(subgraph.operations)),
.inputIndexes = NN_TRY(toUnsigned(subgraph.inputIndexes)),
.outputIndexes = NN_TRY(toUnsigned(subgraph.outputIndexes)),
};
}
GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert(
const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return Model::ExtensionNameAndPrefix{
.name = extensionNameAndPrefix.name,
.prefix = extensionNameAndPrefix.prefix,
};
}
GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension) {
return Extension{
.name = extension.name,
.operandTypes = NN_TRY(unvalidatedConvert(extension.operandTypes)),
};
}
GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert(
const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation) {
VERIFY_NON_NEGATIVE(operandTypeInformation.byteSize)
<< "Extension operand type byte size must not be negative";
return Extension::OperandTypeInformation{
.type = operandTypeInformation.type,
.isTensor = operandTypeInformation.isTensor,
.byteSize = static_cast<uint32_t>(operandTypeInformation.byteSize),
};
}
GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape) {
return OutputShape{
.dimensions = NN_TRY(toUnsigned(outputShape.dimensions)),
.isSufficient = outputShape.isSufficient,
};
}
GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming) {
return measureTiming ? MeasureTiming::YES : MeasureTiming::NO;
}
GeneralResult<Memory> unvalidatedConvert(const aidl_hal::Memory& memory) {
VERIFY_NON_NEGATIVE(memory.size) << "Memory size must not be negative";
return Memory{
.handle = NN_TRY(unvalidatedConvert(memory.handle)),
.size = static_cast<uint32_t>(memory.size),
.name = memory.name,
};
}
GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues) {
return Model::OperandValues(operandValues.data(), operandValues.size());
}
GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = NN_TRY(toUnsigned(bufferDesc.dimensions))};
}
GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole) {
VERIFY_NON_NEGATIVE(bufferRole.modelIndex) << "BufferRole: modelIndex must not be negative";
VERIFY_NON_NEGATIVE(bufferRole.ioIndex) << "BufferRole: ioIndex must not be negative";
return BufferRole{
.modelIndex = static_cast<uint32_t>(bufferRole.modelIndex),
.ioIndex = static_cast<uint32_t>(bufferRole.ioIndex),
.frequency = bufferRole.frequency,
};
}
GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request) {
return Request{
.inputs = NN_TRY(unvalidatedConvert(request.inputs)),
.outputs = NN_TRY(unvalidatedConvert(request.outputs)),
.pools = NN_TRY(unvalidatedConvert(request.pools)),
};
}
GeneralResult<Request::Argument> unvalidatedConvert(const aidl_hal::RequestArgument& argument) {
const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE
: Request::Argument::LifeTime::POOL;
return Request::Argument{
.lifetime = lifetime,
.location = NN_TRY(unvalidatedConvert(argument.location)),
.dimensions = NN_TRY(toUnsigned(argument.dimensions)),
};
}
GeneralResult<Request::MemoryPool> unvalidatedConvert(
const aidl_hal::RequestMemoryPool& memoryPool) {
using Tag = aidl_hal::RequestMemoryPool::Tag;
switch (memoryPool.getTag()) {
case Tag::pool:
return unvalidatedConvert(memoryPool.get<Tag::pool>());
case Tag::token: {
const auto token = memoryPool.get<Tag::token>();
VERIFY_NON_NEGATIVE(token) << "Memory pool token must not be negative";
return static_cast<Request::MemoryDomainToken>(token);
}
}
return NN_ERROR() << "Invalid Request::MemoryPool tag " << underlyingType(memoryPool.getTag());
}
GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& status) {
switch (status) {
case aidl_hal::ErrorStatus::NONE:
case aidl_hal::ErrorStatus::DEVICE_UNAVAILABLE:
case aidl_hal::ErrorStatus::GENERAL_FAILURE:
case aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case aidl_hal::ErrorStatus::INVALID_ARGUMENT:
case aidl_hal::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(status);
}
return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
}
GeneralResult<ExecutionPreference> unvalidatedConvert(
const aidl_hal::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
GeneralResult<SharedHandle> unvalidatedConvert(
const ::aidl::android::hardware::common::NativeHandle& aidlNativeHandle) {
std::vector<base::unique_fd> fds;
fds.reserve(aidlNativeHandle.fds.size());
for (const auto& fd : aidlNativeHandle.fds) {
int dupFd = dup(fd.get());
if (dupFd == -1) {
// TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
// here?
return NN_ERROR() << "Failed to dup the fd";
}
fds.emplace_back(dupFd);
}
return std::make_shared<const Handle>(Handle{
.fds = std::move(fds),
.ints = aidlNativeHandle.ints,
});
}
GeneralResult<ExecutionPreference> convert(
const aidl_hal::ExecutionPreference& executionPreference) {
return validatedConvert(executionPreference);
}
GeneralResult<Memory> convert(const aidl_hal::Memory& operand) {
return validatedConvert(operand);
}
GeneralResult<Model> convert(const aidl_hal::Model& model) {
return validatedConvert(model);
}
GeneralResult<Operand> convert(const aidl_hal::Operand& operand) {
return unvalidatedConvert(operand);
}
GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType) {
return unvalidatedConvert(operandType);
}
GeneralResult<Priority> convert(const aidl_hal::Priority& priority) {
return validatedConvert(priority);
}
GeneralResult<Request::MemoryPool> convert(const aidl_hal::RequestMemoryPool& memoryPool) {
return unvalidatedConvert(memoryPool);
}
GeneralResult<Request> convert(const aidl_hal::Request& request) {
return validatedConvert(request);
}
GeneralResult<std::vector<Operation>> convert(const std::vector<aidl_hal::Operation>& operations) {
return unvalidatedConvert(operations);
}
GeneralResult<std::vector<Memory>> convert(const std::vector<aidl_hal::Memory>& memories) {
return validatedConvert(memories);
}
GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec) {
if (!std::all_of(vec.begin(), vec.end(), [](int32_t v) { return v >= 0; })) {
return NN_ERROR() << "Negative value passed to conversion from signed to unsigned";
}
return std::vector<uint32_t>(vec.begin(), vec.end());
}
} // namespace android::nn
namespace aidl::android::hardware::neuralnetworks::utils {
namespace {
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(unvalidatedConvert(arguments[i]));
}
return halObject;
}
template <typename Type>
nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) {
const auto maybeVersion = nn::validate(canonical);
if (!maybeVersion.has_value()) {
return nn::error() << maybeVersion.error();
}
const auto version = maybeVersion.value();
if (version > kVersion) {
return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
}
return utils::unvalidatedConvert(canonical);
}
template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(validatedConvert(arguments[i]));
}
return halObject;
}
} // namespace
nn::GeneralResult<common::NativeHandle> unvalidatedConvert(const nn::SharedHandle& sharedHandle) {
common::NativeHandle aidlNativeHandle;
aidlNativeHandle.fds.reserve(sharedHandle->fds.size());
for (const auto& fd : sharedHandle->fds) {
int dupFd = dup(fd.get());
if (dupFd == -1) {
// TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
// here?
return NN_ERROR() << "Failed to dup the fd";
}
aidlNativeHandle.fds.emplace_back(dupFd);
}
aidlNativeHandle.ints = sharedHandle->ints;
return aidlNativeHandle;
}
nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory& memory) {
if (memory.size > std::numeric_limits<int64_t>::max()) {
return NN_ERROR() << "Memory size doesn't fit into int64_t.";
}
return Memory{
.handle = NN_TRY(unvalidatedConvert(memory.handle)),
.size = static_cast<int64_t>(memory.size),
.name = memory.name,
};
}
nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus) {
switch (errorStatus) {
case nn::ErrorStatus::NONE:
case nn::ErrorStatus::DEVICE_UNAVAILABLE:
case nn::ErrorStatus::GENERAL_FAILURE:
case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case nn::ErrorStatus::INVALID_ARGUMENT:
case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(errorStatus);
default:
return ErrorStatus::GENERAL_FAILURE;
}
}
nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape) {
return OutputShape{.dimensions = NN_TRY(toSigned(outputShape.dimensions)),
.isSufficient = outputShape.isSufficient};
}
nn::GeneralResult<Memory> convert(const nn::Memory& memory) {
return validatedConvert(memory);
}
nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
return validatedConvert(errorStatus);
}
nn::GeneralResult<std::vector<OutputShape>> convert(
const std::vector<nn::OutputShape>& outputShapes) {
return validatedConvert(outputShapes);
}
nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec) {
if (!std::all_of(vec.begin(), vec.end(),
[](uint32_t v) { return v <= std::numeric_limits<int32_t>::max(); })) {
return NN_ERROR() << "Vector contains a value that doesn't fit into int32_t.";
}
return std::vector<int32_t>(vec.begin(), vec.end());
}
} // namespace aidl::android::hardware::neuralnetworks::utils