Add utils for AIDL types conversions

Add conversions between canonical types and NNAPI AIDL interface types
that are needed for AIDL sample driver implementation.

Bug: 172922059
Test: VtsNeuralnetworksTargetTest
Change-Id: I02803302e02457e52c752114b47b94239eff20e9
Merged-In: I02803302e02457e52c752114b47b94239eff20e9
(cherry picked from commit 532136b9d42e22a9c8280b8c62a3f5e91822e5b6)
diff --git a/neuralnetworks/aidl/Android.bp b/neuralnetworks/aidl/Android.bp
index 308f89f..0557e43 100644
--- a/neuralnetworks/aidl/Android.bp
+++ b/neuralnetworks/aidl/Android.bp
@@ -15,5 +15,13 @@
         cpp: {
             enabled: false,
         },
+        ndk: {
+            apex_available: [
+                "//apex_available:platform",
+                "com.android.neuralnetworks",
+                "test_com.android.neuralnetworks",
+            ],
+            min_sdk_version: "30",
+        },
     },
 }
diff --git a/neuralnetworks/aidl/utils/Android.bp b/neuralnetworks/aidl/utils/Android.bp
new file mode 100644
index 0000000..56017da
--- /dev/null
+++ b/neuralnetworks/aidl/utils/Android.bp
@@ -0,0 +1,32 @@
+//
+// Copyright (C) 2021 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_library_static {
+    name: "neuralnetworks_utils_hal_aidl",
+    defaults: ["neuralnetworks_utils_defaults"],
+    srcs: ["src/*"],
+    local_include_dirs: ["include/nnapi/hal/aidl/"],
+    export_include_dirs: ["include"],
+    static_libs: [
+        "neuralnetworks_types",
+        "neuralnetworks_utils_hal_common",
+    ],
+    shared_libs: [
+        "libhidlbase",
+        "android.hardware.neuralnetworks-V1-ndk_platform",
+        "libbinder_ndk",
+    ],
+}
diff --git a/neuralnetworks/aidl/utils/OWNERS b/neuralnetworks/aidl/utils/OWNERS
new file mode 100644
index 0000000..e4feee3
--- /dev/null
+++ b/neuralnetworks/aidl/utils/OWNERS
@@ -0,0 +1,11 @@
+# Neuralnetworks team
+butlermichael@google.com
+dgross@google.com
+galarragas@google.com
+jeanluc@google.com
+levp@google.com
+miaowang@google.com
+pszczepaniak@google.com
+slavash@google.com
+vddang@google.com
+xusongw@google.com
diff --git a/neuralnetworks/aidl/utils/include/nnapi/hal/aidl/Conversions.h b/neuralnetworks/aidl/utils/include/nnapi/hal/aidl/Conversions.h
new file mode 100644
index 0000000..35de5be
--- /dev/null
+++ b/neuralnetworks/aidl/utils/include/nnapi/hal/aidl/Conversions.h
@@ -0,0 +1,134 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_CONVERSIONS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_CONVERSIONS_H
+
+#include <aidl/android/hardware/neuralnetworks/BufferDesc.h>
+#include <aidl/android/hardware/neuralnetworks/BufferRole.h>
+#include <aidl/android/hardware/neuralnetworks/Capabilities.h>
+#include <aidl/android/hardware/neuralnetworks/DataLocation.h>
+#include <aidl/android/hardware/neuralnetworks/DeviceType.h>
+#include <aidl/android/hardware/neuralnetworks/ErrorStatus.h>
+#include <aidl/android/hardware/neuralnetworks/ExecutionPreference.h>
+#include <aidl/android/hardware/neuralnetworks/Extension.h>
+#include <aidl/android/hardware/neuralnetworks/ExtensionNameAndPrefix.h>
+#include <aidl/android/hardware/neuralnetworks/ExtensionOperandTypeInformation.h>
+#include <aidl/android/hardware/neuralnetworks/Memory.h>
+#include <aidl/android/hardware/neuralnetworks/Model.h>
+#include <aidl/android/hardware/neuralnetworks/Operand.h>
+#include <aidl/android/hardware/neuralnetworks/OperandExtraParams.h>
+#include <aidl/android/hardware/neuralnetworks/OperandLifeTime.h>
+#include <aidl/android/hardware/neuralnetworks/OperandPerformance.h>
+#include <aidl/android/hardware/neuralnetworks/OperandType.h>
+#include <aidl/android/hardware/neuralnetworks/Operation.h>
+#include <aidl/android/hardware/neuralnetworks/OperationType.h>
+#include <aidl/android/hardware/neuralnetworks/OutputShape.h>
+#include <aidl/android/hardware/neuralnetworks/PerformanceInfo.h>
+#include <aidl/android/hardware/neuralnetworks/Priority.h>
+#include <aidl/android/hardware/neuralnetworks/Request.h>
+#include <aidl/android/hardware/neuralnetworks/RequestArgument.h>
+#include <aidl/android/hardware/neuralnetworks/RequestMemoryPool.h>
+#include <aidl/android/hardware/neuralnetworks/Subgraph.h>
+#include <aidl/android/hardware/neuralnetworks/SymmPerChannelQuantParams.h>
+#include <aidl/android/hardware/neuralnetworks/Timing.h>
+
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/hal/CommonUtils.h>
+
+#include <vector>
+
+namespace android::nn {
+
+GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType);
+GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType);
+GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType);
+GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority);
+GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities);
+GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
+        const aidl_hal::OperandPerformance& operandPerformance);
+GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert(
+        const aidl_hal::PerformanceInfo& performanceInfo);
+GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location);
+GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand);
+GeneralResult<Operand::ExtraParams> unvalidatedConvert(
+        const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams);
+GeneralResult<Operand::LifeTime> unvalidatedConvert(
+        const aidl_hal::OperandLifeTime& operandLifeTime);
+GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert(
+        const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams);
+GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation);
+GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model);
+GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert(
+        const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix);
+GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues);
+GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph);
+GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape);
+GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming);
+GeneralResult<Memory> unvalidatedConvert(const aidl_hal::Memory& memory);
+GeneralResult<Timing> unvalidatedConvert(const aidl_hal::Timing& timing);
+GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc);
+GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole);
+GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request);
+GeneralResult<Request::Argument> unvalidatedConvert(
+        const aidl_hal::RequestArgument& requestArgument);
+GeneralResult<Request::MemoryPool> unvalidatedConvert(
+        const aidl_hal::RequestMemoryPool& memoryPool);
+GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& errorStatus);
+GeneralResult<ExecutionPreference> unvalidatedConvert(
+        const aidl_hal::ExecutionPreference& executionPreference);
+GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension);
+GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert(
+        const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation);
+GeneralResult<SharedHandle> unvalidatedConvert(
+        const ::aidl::android::hardware::common::NativeHandle& handle);
+
+GeneralResult<ExecutionPreference> convert(
+        const aidl_hal::ExecutionPreference& executionPreference);
+GeneralResult<Memory> convert(const aidl_hal::Memory& memory);
+GeneralResult<Model> convert(const aidl_hal::Model& model);
+GeneralResult<Operand> convert(const aidl_hal::Operand& operand);
+GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType);
+GeneralResult<Priority> convert(const aidl_hal::Priority& priority);
+GeneralResult<Request::MemoryPool> convert(const aidl_hal::RequestMemoryPool& memoryPool);
+GeneralResult<Request> convert(const aidl_hal::Request& request);
+
+GeneralResult<std::vector<Operation>> convert(const std::vector<aidl_hal::Operation>& outputShapes);
+GeneralResult<std::vector<Memory>> convert(const std::vector<aidl_hal::Memory>& memories);
+
+GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec);
+
+}  // namespace android::nn
+
+namespace aidl::android::hardware::neuralnetworks::utils {
+
+namespace nn = ::android::nn;
+
+nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory& memory);
+nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape);
+nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus);
+
+nn::GeneralResult<Memory> convert(const nn::Memory& memory);
+nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus);
+nn::GeneralResult<std::vector<OutputShape>> convert(
+        const std::vector<nn::OutputShape>& outputShapes);
+
+nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec);
+
+}  // namespace aidl::android::hardware::neuralnetworks::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_CONVERSIONS_H
diff --git a/neuralnetworks/aidl/utils/include/nnapi/hal/aidl/Utils.h b/neuralnetworks/aidl/utils/include/nnapi/hal/aidl/Utils.h
new file mode 100644
index 0000000..802e703
--- /dev/null
+++ b/neuralnetworks/aidl/utils/include/nnapi/hal/aidl/Utils.h
@@ -0,0 +1,54 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_H
+#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_H
+
+#include "nnapi/hal/aidl/Conversions.h"
+
+#include <android-base/logging.h>
+#include <nnapi/Result.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+
+namespace aidl::android::hardware::neuralnetworks::utils {
+
+constexpr auto kDefaultPriority = Priority::MEDIUM;
+constexpr auto kVersion = nn::Version::ANDROID_S;
+
+template <typename Type>
+nn::Result<void> validate(const Type& halObject) {
+    const auto maybeCanonical = nn::convert(halObject);
+    if (!maybeCanonical.has_value()) {
+        return nn::error() << maybeCanonical.error().message;
+    }
+    return {};
+}
+
+template <typename Type>
+bool valid(const Type& halObject) {
+    const auto result = utils::validate(halObject);
+    if (!result.has_value()) {
+        LOG(ERROR) << result.error();
+    }
+    return result.has_value();
+}
+
+nn::GeneralResult<Model> copyModel(const Model& model);
+
+}  // namespace aidl::android::hardware::neuralnetworks::utils
+
+#endif  // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_H
diff --git a/neuralnetworks/aidl/utils/src/Assertions.cpp b/neuralnetworks/aidl/utils/src/Assertions.cpp
new file mode 100644
index 0000000..0e88091
--- /dev/null
+++ b/neuralnetworks/aidl/utils/src/Assertions.cpp
@@ -0,0 +1,269 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <aidl/android/hardware/neuralnetworks/DeviceType.h>
+#include <aidl/android/hardware/neuralnetworks/ErrorStatus.h>
+#include <aidl/android/hardware/neuralnetworks/ExecutionPreference.h>
+#include <aidl/android/hardware/neuralnetworks/FusedActivationFunc.h>
+#include <aidl/android/hardware/neuralnetworks/IDevice.h>
+#include <aidl/android/hardware/neuralnetworks/OperandLifeTime.h>
+#include <aidl/android/hardware/neuralnetworks/OperandType.h>
+#include <aidl/android/hardware/neuralnetworks/OperationType.h>
+#include <aidl/android/hardware/neuralnetworks/Priority.h>
+
+#include <ControlFlow.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Types.h>
+#include <type_traits>
+
+namespace {
+
+#define COMPARE_ENUMS_TYPES(lhsType, rhsType)                                                   \
+    static_assert(                                                                              \
+            std::is_same_v<                                                                     \
+                    std::underlying_type_t<::aidl::android::hardware::neuralnetworks::lhsType>, \
+                    std::underlying_type_t<::android::nn::rhsType>>,                            \
+            "::aidl::android::hardware::neuralnetworks::" #lhsType                              \
+            " does not have the same underlying type as ::android::nn::" #rhsType)
+
+COMPARE_ENUMS_TYPES(OperandType, OperandType);
+COMPARE_ENUMS_TYPES(OperationType, OperationType);
+COMPARE_ENUMS_TYPES(Priority, Priority);
+COMPARE_ENUMS_TYPES(OperandLifeTime, Operand::LifeTime);
+COMPARE_ENUMS_TYPES(ErrorStatus, ErrorStatus);
+
+#undef COMPARE_ENUMS_TYPES
+
+#define COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, lhsType, rhsType)                               \
+    static_assert(                                                                               \
+            static_cast<                                                                         \
+                    std::underlying_type_t<::aidl::android::hardware::neuralnetworks::lhsType>>( \
+                    ::aidl::android::hardware::neuralnetworks::lhsType::lhsSymbol) ==            \
+                    static_cast<std::underlying_type_t<::android::nn::rhsType>>(                 \
+                            ::android::nn::rhsType::rhsSymbol),                                  \
+            "::aidl::android::hardware::neuralnetworks::" #lhsType "::" #lhsSymbol               \
+            " does not match ::android::nn::" #rhsType "::" #rhsSymbol)
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperandType, OperandType)
+
+COMPARE_ENUMS(FLOAT32);
+COMPARE_ENUMS(INT32);
+COMPARE_ENUMS(UINT32);
+COMPARE_ENUMS(TENSOR_FLOAT32);
+COMPARE_ENUMS(TENSOR_INT32);
+COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
+COMPARE_ENUMS(BOOL);
+COMPARE_ENUMS(TENSOR_QUANT16_SYMM);
+COMPARE_ENUMS(TENSOR_FLOAT16);
+COMPARE_ENUMS(TENSOR_BOOL8);
+COMPARE_ENUMS(FLOAT16);
+COMPARE_ENUMS(TENSOR_QUANT8_SYMM_PER_CHANNEL);
+COMPARE_ENUMS(TENSOR_QUANT16_ASYMM);
+COMPARE_ENUMS(TENSOR_QUANT8_SYMM);
+COMPARE_ENUMS(TENSOR_QUANT8_ASYMM_SIGNED);
+COMPARE_ENUMS(SUBGRAPH);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperationType, OperationType)
+
+COMPARE_ENUMS(ADD);
+COMPARE_ENUMS(AVERAGE_POOL_2D);
+COMPARE_ENUMS(CONCATENATION);
+COMPARE_ENUMS(CONV_2D);
+COMPARE_ENUMS(DEPTHWISE_CONV_2D);
+COMPARE_ENUMS(DEPTH_TO_SPACE);
+COMPARE_ENUMS(DEQUANTIZE);
+COMPARE_ENUMS(EMBEDDING_LOOKUP);
+COMPARE_ENUMS(FLOOR);
+COMPARE_ENUMS(FULLY_CONNECTED);
+COMPARE_ENUMS(HASHTABLE_LOOKUP);
+COMPARE_ENUMS(L2_NORMALIZATION);
+COMPARE_ENUMS(L2_POOL_2D);
+COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
+COMPARE_ENUMS(LOGISTIC);
+COMPARE_ENUMS(LSH_PROJECTION);
+COMPARE_ENUMS(LSTM);
+COMPARE_ENUMS(MAX_POOL_2D);
+COMPARE_ENUMS(MUL);
+COMPARE_ENUMS(RELU);
+COMPARE_ENUMS(RELU1);
+COMPARE_ENUMS(RELU6);
+COMPARE_ENUMS(RESHAPE);
+COMPARE_ENUMS(RESIZE_BILINEAR);
+COMPARE_ENUMS(RNN);
+COMPARE_ENUMS(SOFTMAX);
+COMPARE_ENUMS(SPACE_TO_DEPTH);
+COMPARE_ENUMS(SVDF);
+COMPARE_ENUMS(TANH);
+COMPARE_ENUMS(BATCH_TO_SPACE_ND);
+COMPARE_ENUMS(DIV);
+COMPARE_ENUMS(MEAN);
+COMPARE_ENUMS(PAD);
+COMPARE_ENUMS(SPACE_TO_BATCH_ND);
+COMPARE_ENUMS(SQUEEZE);
+COMPARE_ENUMS(STRIDED_SLICE);
+COMPARE_ENUMS(SUB);
+COMPARE_ENUMS(TRANSPOSE);
+COMPARE_ENUMS(ABS);
+COMPARE_ENUMS(ARGMAX);
+COMPARE_ENUMS(ARGMIN);
+COMPARE_ENUMS(AXIS_ALIGNED_BBOX_TRANSFORM);
+COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_LSTM);
+COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_RNN);
+COMPARE_ENUMS(BOX_WITH_NMS_LIMIT);
+COMPARE_ENUMS(CAST);
+COMPARE_ENUMS(CHANNEL_SHUFFLE);
+COMPARE_ENUMS(DETECTION_POSTPROCESSING);
+COMPARE_ENUMS(EQUAL);
+COMPARE_ENUMS(EXP);
+COMPARE_ENUMS(EXPAND_DIMS);
+COMPARE_ENUMS(GATHER);
+COMPARE_ENUMS(GENERATE_PROPOSALS);
+COMPARE_ENUMS(GREATER);
+COMPARE_ENUMS(GREATER_EQUAL);
+COMPARE_ENUMS(GROUPED_CONV_2D);
+COMPARE_ENUMS(HEATMAP_MAX_KEYPOINT);
+COMPARE_ENUMS(INSTANCE_NORMALIZATION);
+COMPARE_ENUMS(LESS);
+COMPARE_ENUMS(LESS_EQUAL);
+COMPARE_ENUMS(LOG);
+COMPARE_ENUMS(LOGICAL_AND);
+COMPARE_ENUMS(LOGICAL_NOT);
+COMPARE_ENUMS(LOGICAL_OR);
+COMPARE_ENUMS(LOG_SOFTMAX);
+COMPARE_ENUMS(MAXIMUM);
+COMPARE_ENUMS(MINIMUM);
+COMPARE_ENUMS(NEG);
+COMPARE_ENUMS(NOT_EQUAL);
+COMPARE_ENUMS(PAD_V2);
+COMPARE_ENUMS(POW);
+COMPARE_ENUMS(PRELU);
+COMPARE_ENUMS(QUANTIZE);
+COMPARE_ENUMS(QUANTIZED_16BIT_LSTM);
+COMPARE_ENUMS(RANDOM_MULTINOMIAL);
+COMPARE_ENUMS(REDUCE_ALL);
+COMPARE_ENUMS(REDUCE_ANY);
+COMPARE_ENUMS(REDUCE_MAX);
+COMPARE_ENUMS(REDUCE_MIN);
+COMPARE_ENUMS(REDUCE_PROD);
+COMPARE_ENUMS(REDUCE_SUM);
+COMPARE_ENUMS(ROI_ALIGN);
+COMPARE_ENUMS(ROI_POOLING);
+COMPARE_ENUMS(RSQRT);
+COMPARE_ENUMS(SELECT);
+COMPARE_ENUMS(SIN);
+COMPARE_ENUMS(SLICE);
+COMPARE_ENUMS(SPLIT);
+COMPARE_ENUMS(SQRT);
+COMPARE_ENUMS(TILE);
+COMPARE_ENUMS(TOPK_V2);
+COMPARE_ENUMS(TRANSPOSE_CONV_2D);
+COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_LSTM);
+COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_RNN);
+COMPARE_ENUMS(RESIZE_NEAREST_NEIGHBOR);
+COMPARE_ENUMS(QUANTIZED_LSTM);
+COMPARE_ENUMS(IF);
+COMPARE_ENUMS(WHILE);
+COMPARE_ENUMS(ELU);
+COMPARE_ENUMS(HARD_SWISH);
+COMPARE_ENUMS(FILL);
+COMPARE_ENUMS(RANK);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, Priority, Priority)
+
+COMPARE_ENUMS(LOW);
+COMPARE_ENUMS(MEDIUM);
+COMPARE_ENUMS(HIGH);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(lhsSymbol, rhsSymbol) \
+    COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, OperandLifeTime, Operand::LifeTime)
+
+COMPARE_ENUMS(TEMPORARY_VARIABLE, TEMPORARY_VARIABLE);
+COMPARE_ENUMS(SUBGRAPH_INPUT, SUBGRAPH_INPUT);
+COMPARE_ENUMS(SUBGRAPH_OUTPUT, SUBGRAPH_OUTPUT);
+COMPARE_ENUMS(CONSTANT_COPY, CONSTANT_COPY);
+COMPARE_ENUMS(CONSTANT_POOL, CONSTANT_REFERENCE);
+COMPARE_ENUMS(NO_VALUE, NO_VALUE);
+COMPARE_ENUMS(SUBGRAPH, SUBGRAPH);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, ErrorStatus, ErrorStatus)
+
+COMPARE_ENUMS(NONE);
+COMPARE_ENUMS(DEVICE_UNAVAILABLE);
+COMPARE_ENUMS(GENERAL_FAILURE);
+COMPARE_ENUMS(OUTPUT_INSUFFICIENT_SIZE);
+COMPARE_ENUMS(INVALID_ARGUMENT);
+COMPARE_ENUMS(MISSED_DEADLINE_TRANSIENT);
+COMPARE_ENUMS(MISSED_DEADLINE_PERSISTENT);
+COMPARE_ENUMS(RESOURCE_EXHAUSTED_TRANSIENT);
+COMPARE_ENUMS(RESOURCE_EXHAUSTED_PERSISTENT);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) \
+    COMPARE_ENUMS_FULL(symbol, symbol, ExecutionPreference, ExecutionPreference)
+
+COMPARE_ENUMS(LOW_POWER);
+COMPARE_ENUMS(FAST_SINGLE_ANSWER);
+COMPARE_ENUMS(SUSTAINED_SPEED);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, DeviceType, DeviceType)
+
+COMPARE_ENUMS(OTHER);
+COMPARE_ENUMS(CPU);
+COMPARE_ENUMS(GPU);
+COMPARE_ENUMS(ACCELERATOR);
+
+#undef COMPARE_ENUMS
+
+#define COMPARE_ENUMS(symbol) \
+    COMPARE_ENUMS_FULL(symbol, symbol, FusedActivationFunc, FusedActivationFunc)
+
+COMPARE_ENUMS(NONE);
+COMPARE_ENUMS(RELU);
+COMPARE_ENUMS(RELU1);
+COMPARE_ENUMS(RELU6);
+
+#undef COMPARE_ENUMS
+
+#undef COMPARE_ENUMS_FULL
+
+#define COMPARE_CONSTANTS(halSymbol, canonicalSymbol)                     \
+    static_assert(::aidl::android::hardware::neuralnetworks::halSymbol == \
+                  ::android::nn::canonicalSymbol);
+
+COMPARE_CONSTANTS(IDevice::BYTE_SIZE_OF_CACHE_TOKEN, kByteSizeOfCacheToken);
+COMPARE_CONSTANTS(IDevice::MAX_NUMBER_OF_CACHE_FILES, kMaxNumberOfCacheFiles);
+COMPARE_CONSTANTS(IDevice::EXTENSION_TYPE_HIGH_BITS_PREFIX, kExtensionPrefixBits - 1);
+COMPARE_CONSTANTS(IDevice::EXTENSION_TYPE_LOW_BITS_TYPE, kExtensionTypeBits);
+COMPARE_CONSTANTS(IPreparedModel::DEFAULT_LOOP_TIMEOUT_DURATION_NS,
+                  operation_while::kTimeoutNsDefault);
+COMPARE_CONSTANTS(IPreparedModel::MAXIMUM_LOOP_TIMEOUT_DURATION_NS,
+                  operation_while::kTimeoutNsMaximum);
+
+#undef COMPARE_CONSTANTS
+
+}  // anonymous namespace
diff --git a/neuralnetworks/aidl/utils/src/Conversions.cpp b/neuralnetworks/aidl/utils/src/Conversions.cpp
new file mode 100644
index 0000000..0e93b02
--- /dev/null
+++ b/neuralnetworks/aidl/utils/src/Conversions.cpp
@@ -0,0 +1,582 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Conversions.h"
+
+#include <aidl/android/hardware/common/NativeHandle.h>
+#include <android-base/logging.h>
+#include <nnapi/OperandTypes.h>
+#include <nnapi/OperationTypes.h>
+#include <nnapi/Result.h>
+#include <nnapi/SharedMemory.h>
+#include <nnapi/TypeUtils.h>
+#include <nnapi/Types.h>
+#include <nnapi/Validation.h>
+#include <nnapi/hal/CommonUtils.h>
+#include <nnapi/hal/HandleError.h>
+
+#include <algorithm>
+#include <chrono>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <type_traits>
+#include <utility>
+
+#define VERIFY_NON_NEGATIVE(value) \
+    while (UNLIKELY(value < 0)) return NN_ERROR()
+
+namespace {
+
+template <typename Type>
+constexpr std::underlying_type_t<Type> underlyingType(Type value) {
+    return static_cast<std::underlying_type_t<Type>>(value);
+}
+
+constexpr auto kVersion = android::nn::Version::ANDROID_S;
+
+}  // namespace
+
+namespace android::nn {
+namespace {
+
+constexpr auto validOperandType(nn::OperandType operandType) {
+    switch (operandType) {
+        case nn::OperandType::FLOAT32:
+        case nn::OperandType::INT32:
+        case nn::OperandType::UINT32:
+        case nn::OperandType::TENSOR_FLOAT32:
+        case nn::OperandType::TENSOR_INT32:
+        case nn::OperandType::TENSOR_QUANT8_ASYMM:
+        case nn::OperandType::BOOL:
+        case nn::OperandType::TENSOR_QUANT16_SYMM:
+        case nn::OperandType::TENSOR_FLOAT16:
+        case nn::OperandType::TENSOR_BOOL8:
+        case nn::OperandType::FLOAT16:
+        case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+        case nn::OperandType::TENSOR_QUANT16_ASYMM:
+        case nn::OperandType::TENSOR_QUANT8_SYMM:
+        case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
+        case nn::OperandType::SUBGRAPH:
+            return true;
+        case nn::OperandType::OEM:
+        case nn::OperandType::TENSOR_OEM_BYTE:
+            return false;
+    }
+    return nn::isExtension(operandType);
+}
+
+template <typename Input>
+using UnvalidatedConvertOutput =
+        std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
+
+template <typename Type>
+GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
+        const std::vector<Type>& arguments) {
+    std::vector<UnvalidatedConvertOutput<Type>> canonical;
+    canonical.reserve(arguments.size());
+    for (const auto& argument : arguments) {
+        canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument)));
+    }
+    return canonical;
+}
+
+template <typename Type>
+GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
+        const std::vector<Type>& arguments) {
+    return unvalidatedConvertVec(arguments);
+}
+
+template <typename Type>
+GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) {
+    auto canonical = NN_TRY(nn::unvalidatedConvert(halObject));
+    const auto maybeVersion = validate(canonical);
+    if (!maybeVersion.has_value()) {
+        return error() << maybeVersion.error();
+    }
+    const auto version = maybeVersion.value();
+    if (version > kVersion) {
+        return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
+    }
+    return canonical;
+}
+
+template <typename Type>
+GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
+        const std::vector<Type>& arguments) {
+    std::vector<UnvalidatedConvertOutput<Type>> canonical;
+    canonical.reserve(arguments.size());
+    for (const auto& argument : arguments) {
+        canonical.push_back(NN_TRY(validatedConvert(argument)));
+    }
+    return canonical;
+}
+
+}  // anonymous namespace
+
+GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType) {
+    VERIFY_NON_NEGATIVE(underlyingType(operandType)) << "Negative operand types are not allowed.";
+    return static_cast<OperandType>(operandType);
+}
+
+GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType) {
+    VERIFY_NON_NEGATIVE(underlyingType(operationType))
+            << "Negative operation types are not allowed.";
+    return static_cast<OperationType>(operationType);
+}
+
+GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType) {
+    return static_cast<DeviceType>(deviceType);
+}
+
+GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority) {
+    return static_cast<Priority>(priority);
+}
+
+GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities) {
+    const bool validOperandTypes = std::all_of(
+            capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
+            [](const aidl_hal::OperandPerformance& operandPerformance) {
+                const auto maybeType = unvalidatedConvert(operandPerformance.type);
+                return !maybeType.has_value() ? false : validOperandType(maybeType.value());
+            });
+    if (!validOperandTypes) {
+        return NN_ERROR() << "Invalid OperandType when unvalidatedConverting OperandPerformance in "
+                             "Capabilities";
+    }
+
+    auto operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance));
+    auto table = NN_TRY(hal::utils::makeGeneralFailure(
+            Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)),
+            nn::ErrorStatus::GENERAL_FAILURE));
+
+    return Capabilities{
+            .relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
+                    unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
+            .relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
+                    unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
+            .operandPerformance = std::move(table),
+            .ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
+            .whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
+    };
+}
+
+GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
+        const aidl_hal::OperandPerformance& operandPerformance) {
+    return Capabilities::OperandPerformance{
+            .type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
+            .info = NN_TRY(unvalidatedConvert(operandPerformance.info)),
+    };
+}
+
+GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert(
+        const aidl_hal::PerformanceInfo& performanceInfo) {
+    return Capabilities::PerformanceInfo{
+            .execTime = performanceInfo.execTime,
+            .powerUsage = performanceInfo.powerUsage,
+    };
+}
+
+GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location) {
+    VERIFY_NON_NEGATIVE(location.poolIndex) << "DataLocation: pool index must not be negative";
+    VERIFY_NON_NEGATIVE(location.offset) << "DataLocation: offset must not be negative";
+    VERIFY_NON_NEGATIVE(location.length) << "DataLocation: length must not be negative";
+    if (location.offset > std::numeric_limits<uint32_t>::max()) {
+        return NN_ERROR() << "DataLocation: offset must be <= std::numeric_limits<uint32_t>::max()";
+    }
+    if (location.length > std::numeric_limits<uint32_t>::max()) {
+        return NN_ERROR() << "DataLocation: length must be <= std::numeric_limits<uint32_t>::max()";
+    }
+    return DataLocation{
+            .poolIndex = static_cast<uint32_t>(location.poolIndex),
+            .offset = static_cast<uint32_t>(location.offset),
+            .length = static_cast<uint32_t>(location.length),
+    };
+}
+
+GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation) {
+    return Operation{
+            .type = NN_TRY(unvalidatedConvert(operation.type)),
+            .inputs = NN_TRY(toUnsigned(operation.inputs)),
+            .outputs = NN_TRY(toUnsigned(operation.outputs)),
+    };
+}
+
+GeneralResult<Operand::LifeTime> unvalidatedConvert(
+        const aidl_hal::OperandLifeTime& operandLifeTime) {
+    return static_cast<Operand::LifeTime>(operandLifeTime);
+}
+
+GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand) {
+    return Operand{
+            .type = NN_TRY(unvalidatedConvert(operand.type)),
+            .dimensions = NN_TRY(toUnsigned(operand.dimensions)),
+            .scale = operand.scale,
+            .zeroPoint = operand.zeroPoint,
+            .lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
+            .location = NN_TRY(unvalidatedConvert(operand.location)),
+            .extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
+    };
+}
+
+GeneralResult<Operand::ExtraParams> unvalidatedConvert(
+        const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams) {
+    if (!optionalExtraParams.has_value()) {
+        return Operand::NoParams{};
+    }
+    const auto& extraParams = optionalExtraParams.value();
+    using Tag = aidl_hal::OperandExtraParams::Tag;
+    switch (extraParams.getTag()) {
+        case Tag::channelQuant:
+            return unvalidatedConvert(extraParams.get<Tag::channelQuant>());
+        case Tag::extension:
+            return extraParams.get<Tag::extension>();
+    }
+    return NN_ERROR() << "Unrecognized Operand::ExtraParams tag: "
+                      << underlyingType(extraParams.getTag());
+}
+
+GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert(
+        const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
+    VERIFY_NON_NEGATIVE(symmPerChannelQuantParams.channelDim)
+            << "Per-channel quantization channel dimension must not be negative.";
+    return Operand::SymmPerChannelQuantParams{
+            .scales = symmPerChannelQuantParams.scales,
+            .channelDim = static_cast<uint32_t>(symmPerChannelQuantParams.channelDim),
+    };
+}
+
+GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model) {
+    return Model{
+            .main = NN_TRY(unvalidatedConvert(model.main)),
+            .referenced = NN_TRY(unvalidatedConvert(model.referenced)),
+            .operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
+            .pools = NN_TRY(unvalidatedConvert(model.pools)),
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+            .extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
+    };
+}
+
+GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph) {
+    return Model::Subgraph{
+            .operands = NN_TRY(unvalidatedConvert(subgraph.operands)),
+            .operations = NN_TRY(unvalidatedConvert(subgraph.operations)),
+            .inputIndexes = NN_TRY(toUnsigned(subgraph.inputIndexes)),
+            .outputIndexes = NN_TRY(toUnsigned(subgraph.outputIndexes)),
+    };
+}
+
+GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert(
+        const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix) {
+    return Model::ExtensionNameAndPrefix{
+            .name = extensionNameAndPrefix.name,
+            .prefix = extensionNameAndPrefix.prefix,
+    };
+}
+
+GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension) {
+    return Extension{
+            .name = extension.name,
+            .operandTypes = NN_TRY(unvalidatedConvert(extension.operandTypes)),
+    };
+}
+
+GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert(
+        const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation) {
+    VERIFY_NON_NEGATIVE(operandTypeInformation.byteSize)
+            << "Extension operand type byte size must not be negative";
+    return Extension::OperandTypeInformation{
+            .type = operandTypeInformation.type,
+            .isTensor = operandTypeInformation.isTensor,
+            .byteSize = static_cast<uint32_t>(operandTypeInformation.byteSize),
+    };
+}
+
+GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape) {
+    return OutputShape{
+            .dimensions = NN_TRY(toUnsigned(outputShape.dimensions)),
+            .isSufficient = outputShape.isSufficient,
+    };
+}
+
+GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming) {
+    return measureTiming ? MeasureTiming::YES : MeasureTiming::NO;
+}
+
+GeneralResult<Memory> unvalidatedConvert(const aidl_hal::Memory& memory) {
+    VERIFY_NON_NEGATIVE(memory.size) << "Memory size must not be negative";
+    return Memory{
+            .handle = NN_TRY(unvalidatedConvert(memory.handle)),
+            .size = static_cast<uint32_t>(memory.size),
+            .name = memory.name,
+    };
+}
+
+GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues) {
+    return Model::OperandValues(operandValues.data(), operandValues.size());
+}
+
+GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc) {
+    return BufferDesc{.dimensions = NN_TRY(toUnsigned(bufferDesc.dimensions))};
+}
+
+GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole) {
+    VERIFY_NON_NEGATIVE(bufferRole.modelIndex) << "BufferRole: modelIndex must not be negative";
+    VERIFY_NON_NEGATIVE(bufferRole.ioIndex) << "BufferRole: ioIndex must not be negative";
+    return BufferRole{
+            .modelIndex = static_cast<uint32_t>(bufferRole.modelIndex),
+            .ioIndex = static_cast<uint32_t>(bufferRole.ioIndex),
+            .frequency = bufferRole.frequency,
+    };
+}
+
+GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request) {
+    return Request{
+            .inputs = NN_TRY(unvalidatedConvert(request.inputs)),
+            .outputs = NN_TRY(unvalidatedConvert(request.outputs)),
+            .pools = NN_TRY(unvalidatedConvert(request.pools)),
+    };
+}
+
+GeneralResult<Request::Argument> unvalidatedConvert(const aidl_hal::RequestArgument& argument) {
+    const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE
+                                              : Request::Argument::LifeTime::POOL;
+    return Request::Argument{
+            .lifetime = lifetime,
+            .location = NN_TRY(unvalidatedConvert(argument.location)),
+            .dimensions = NN_TRY(toUnsigned(argument.dimensions)),
+    };
+}
+
+GeneralResult<Request::MemoryPool> unvalidatedConvert(
+        const aidl_hal::RequestMemoryPool& memoryPool) {
+    using Tag = aidl_hal::RequestMemoryPool::Tag;
+    switch (memoryPool.getTag()) {
+        case Tag::pool:
+            return unvalidatedConvert(memoryPool.get<Tag::pool>());
+        case Tag::token: {
+            const auto token = memoryPool.get<Tag::token>();
+            VERIFY_NON_NEGATIVE(token) << "Memory pool token must not be negative";
+            return static_cast<Request::MemoryDomainToken>(token);
+        }
+    }
+    return NN_ERROR() << "Invalid Request::MemoryPool tag " << underlyingType(memoryPool.getTag());
+}
+
+GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& status) {
+    switch (status) {
+        case aidl_hal::ErrorStatus::NONE:
+        case aidl_hal::ErrorStatus::DEVICE_UNAVAILABLE:
+        case aidl_hal::ErrorStatus::GENERAL_FAILURE:
+        case aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+        case aidl_hal::ErrorStatus::INVALID_ARGUMENT:
+        case aidl_hal::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
+        case aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
+        case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
+        case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
+            return static_cast<ErrorStatus>(status);
+    }
+    return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
+}
+
+GeneralResult<ExecutionPreference> unvalidatedConvert(
+        const aidl_hal::ExecutionPreference& executionPreference) {
+    return static_cast<ExecutionPreference>(executionPreference);
+}
+
+GeneralResult<SharedHandle> unvalidatedConvert(
+        const ::aidl::android::hardware::common::NativeHandle& aidlNativeHandle) {
+    std::vector<base::unique_fd> fds;
+    fds.reserve(aidlNativeHandle.fds.size());
+    for (const auto& fd : aidlNativeHandle.fds) {
+        int dupFd = dup(fd.get());
+        if (dupFd == -1) {
+            // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
+            // here?
+            return NN_ERROR() << "Failed to dup the fd";
+        }
+        fds.emplace_back(dupFd);
+    }
+
+    return std::make_shared<const Handle>(Handle{
+            .fds = std::move(fds),
+            .ints = aidlNativeHandle.ints,
+    });
+}
+
+GeneralResult<ExecutionPreference> convert(
+        const aidl_hal::ExecutionPreference& executionPreference) {
+    return validatedConvert(executionPreference);
+}
+
+GeneralResult<Memory> convert(const aidl_hal::Memory& operand) {
+    return validatedConvert(operand);
+}
+
+GeneralResult<Model> convert(const aidl_hal::Model& model) {
+    return validatedConvert(model);
+}
+
+GeneralResult<Operand> convert(const aidl_hal::Operand& operand) {
+    return unvalidatedConvert(operand);
+}
+
+GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType) {
+    return unvalidatedConvert(operandType);
+}
+
+GeneralResult<Priority> convert(const aidl_hal::Priority& priority) {
+    return validatedConvert(priority);
+}
+
+GeneralResult<Request::MemoryPool> convert(const aidl_hal::RequestMemoryPool& memoryPool) {
+    return unvalidatedConvert(memoryPool);
+}
+
+GeneralResult<Request> convert(const aidl_hal::Request& request) {
+    return validatedConvert(request);
+}
+
+GeneralResult<std::vector<Operation>> convert(const std::vector<aidl_hal::Operation>& operations) {
+    return unvalidatedConvert(operations);
+}
+
+GeneralResult<std::vector<Memory>> convert(const std::vector<aidl_hal::Memory>& memories) {
+    return validatedConvert(memories);
+}
+
+GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec) {
+    if (!std::all_of(vec.begin(), vec.end(), [](int32_t v) { return v >= 0; })) {
+        return NN_ERROR() << "Negative value passed to conversion from signed to unsigned";
+    }
+    return std::vector<uint32_t>(vec.begin(), vec.end());
+}
+
+}  // namespace android::nn
+
+namespace aidl::android::hardware::neuralnetworks::utils {
+namespace {
+
+template <typename Input>
+using UnvalidatedConvertOutput =
+        std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
+
+template <typename Type>
+nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
+        const std::vector<Type>& arguments) {
+    std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
+    for (size_t i = 0; i < arguments.size(); ++i) {
+        halObject[i] = NN_TRY(unvalidatedConvert(arguments[i]));
+    }
+    return halObject;
+}
+
+template <typename Type>
+nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) {
+    const auto maybeVersion = nn::validate(canonical);
+    if (!maybeVersion.has_value()) {
+        return nn::error() << maybeVersion.error();
+    }
+    const auto version = maybeVersion.value();
+    if (version > kVersion) {
+        return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
+    }
+    return utils::unvalidatedConvert(canonical);
+}
+
+template <typename Type>
+nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
+        const std::vector<Type>& arguments) {
+    std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
+    for (size_t i = 0; i < arguments.size(); ++i) {
+        halObject[i] = NN_TRY(validatedConvert(arguments[i]));
+    }
+    return halObject;
+}
+
+}  // namespace
+
+nn::GeneralResult<common::NativeHandle> unvalidatedConvert(const nn::SharedHandle& sharedHandle) {
+    common::NativeHandle aidlNativeHandle;
+    aidlNativeHandle.fds.reserve(sharedHandle->fds.size());
+    for (const auto& fd : sharedHandle->fds) {
+        int dupFd = dup(fd.get());
+        if (dupFd == -1) {
+            // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
+            // here?
+            return NN_ERROR() << "Failed to dup the fd";
+        }
+        aidlNativeHandle.fds.emplace_back(dupFd);
+    }
+    aidlNativeHandle.ints = sharedHandle->ints;
+    return aidlNativeHandle;
+}
+
+nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory& memory) {
+    if (memory.size > std::numeric_limits<int64_t>::max()) {
+        return NN_ERROR() << "Memory size doesn't fit into int64_t.";
+    }
+    return Memory{
+            .handle = NN_TRY(unvalidatedConvert(memory.handle)),
+            .size = static_cast<int64_t>(memory.size),
+            .name = memory.name,
+    };
+}
+
+nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus) {
+    switch (errorStatus) {
+        case nn::ErrorStatus::NONE:
+        case nn::ErrorStatus::DEVICE_UNAVAILABLE:
+        case nn::ErrorStatus::GENERAL_FAILURE:
+        case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+        case nn::ErrorStatus::INVALID_ARGUMENT:
+        case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
+        case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
+        case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
+        case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
+            return static_cast<ErrorStatus>(errorStatus);
+        default:
+            return ErrorStatus::GENERAL_FAILURE;
+    }
+}
+
+nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape) {
+    return OutputShape{.dimensions = NN_TRY(toSigned(outputShape.dimensions)),
+                       .isSufficient = outputShape.isSufficient};
+}
+
+nn::GeneralResult<Memory> convert(const nn::Memory& memory) {
+    return validatedConvert(memory);
+}
+
+nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
+    return validatedConvert(errorStatus);
+}
+
+nn::GeneralResult<std::vector<OutputShape>> convert(
+        const std::vector<nn::OutputShape>& outputShapes) {
+    return validatedConvert(outputShapes);
+}
+
+nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec) {
+    if (!std::all_of(vec.begin(), vec.end(),
+                     [](uint32_t v) { return v <= std::numeric_limits<int32_t>::max(); })) {
+        return NN_ERROR() << "Vector contains a value that doesn't fit into int32_t.";
+    }
+    return std::vector<int32_t>(vec.begin(), vec.end());
+}
+
+}  // namespace aidl::android::hardware::neuralnetworks::utils
diff --git a/neuralnetworks/aidl/utils/src/Utils.cpp b/neuralnetworks/aidl/utils/src/Utils.cpp
new file mode 100644
index 0000000..04aa0e9
--- /dev/null
+++ b/neuralnetworks/aidl/utils/src/Utils.cpp
@@ -0,0 +1,56 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Utils.h"
+
+#include <nnapi/Result.h>
+
+namespace aidl::android::hardware::neuralnetworks::utils {
+
+using ::android::nn::GeneralResult;
+
+GeneralResult<Model> copyModel(const Model& model) {
+    Model newModel{
+            .main = model.main,
+            .referenced = model.referenced,
+            .operandValues = model.operandValues,
+            .pools = {},
+            .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
+            .extensionNameToPrefix = model.extensionNameToPrefix,
+    };
+    newModel.pools.reserve(model.pools.size());
+    for (const auto& pool : model.pools) {
+        common::NativeHandle nativeHandle;
+        nativeHandle.ints = pool.handle.ints;
+        nativeHandle.fds.reserve(pool.handle.fds.size());
+        for (const auto& fd : pool.handle.fds) {
+            const int newFd = dup(fd.get());
+            if (newFd == -1) {
+                return NN_ERROR() << "Couldn't dup a file descriptor.";
+            }
+            nativeHandle.fds.emplace_back(newFd);
+        }
+        Memory memory = {
+                .handle = std::move(nativeHandle),
+                .size = pool.size,
+                .name = pool.name,
+        };
+        newModel.pools.push_back(std::move(memory));
+    }
+    return newModel;
+}
+
+}  // namespace aidl::android::hardware::neuralnetworks::utils
diff --git a/neuralnetworks/utils/common/include/nnapi/hal/CommonUtils.h b/neuralnetworks/utils/common/include/nnapi/hal/CommonUtils.h
index b3989e5..fef9d9c 100644
--- a/neuralnetworks/utils/common/include/nnapi/hal/CommonUtils.h
+++ b/neuralnetworks/utils/common/include/nnapi/hal/CommonUtils.h
@@ -24,15 +24,21 @@
 #include <functional>
 #include <vector>
 
-// Shorthand
+// Shorthands
 namespace android::hardware::neuralnetworks {
 namespace hal = ::android::hardware::neuralnetworks;
 }  // namespace android::hardware::neuralnetworks
 
-// Shorthand
+// Shorthands
+namespace aidl::android::hardware::neuralnetworks {
+namespace aidl_hal = ::aidl::android::hardware::neuralnetworks;
+}  // namespace aidl::android::hardware::neuralnetworks
+
+// Shorthands
 namespace android::nn {
 namespace hal = ::android::hardware::neuralnetworks;
-}
+namespace aidl_hal = ::aidl::android::hardware::neuralnetworks;
+}  // namespace android::nn
 
 namespace android::hardware::neuralnetworks::utils {