blob: 507f092d7c2adbc461d3266287e894a5a677de9a [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExtCamDevSsn@3.4"
//#define LOG_NDEBUG 0
#include <log/log.h>
#include <inttypes.h>
#include "ExternalCameraDeviceSession.h"
#include "android-base/macros.h"
#include "algorithm"
#include <utils/Timers.h>
#include <cmath>
#include <linux/videodev2.h>
#include <sync/sync.h>
#define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs
#include <libyuv.h>
namespace android {
namespace hardware {
namespace camera {
namespace device {
namespace V3_4 {
namespace implementation {
// Size of request/result metadata fast message queue. Change to 0 to always use hwbinder buffer.
static constexpr size_t kMetadataMsgQueueSize = 1 << 20 /* 1MB */;
const int ExternalCameraDeviceSession::kMaxProcessedStream;
const int ExternalCameraDeviceSession::kMaxStallStream;
const Size kMaxVideoSize = {1920, 1088}; // Maybe this should be programmable
const int kNumVideoBuffers = 4; // number of v4l2 buffers when streaming <= kMaxVideoSize
const int kNumStillBuffers = 2; // number of v4l2 buffers when streaming > kMaxVideoSize
const int kBadFramesAfterStreamOn = 1; // drop x frames after streamOn to get rid of some initial
// bad frames. TODO: develop a better bad frame detection
// method
// Aspect ratio is defined as width/height here and ExternalCameraDevice
// will guarantee all supported sizes has width >= height (so aspect ratio >= 1.0)
#define ASPECT_RATIO(sz) (static_cast<float>((sz).width) / (sz).height)
const float kMaxAspectRatio = std::numeric_limits<float>::max();
const float kMinAspectRatio = 1.f;
HandleImporter ExternalCameraDeviceSession::sHandleImporter;
bool isAspectRatioClose(float ar1, float ar2) {
const float kAspectRatioMatchThres = 0.01f; // This threshold is good enough to distinguish
// 4:3/16:9/20:9
return (std::abs(ar1 - ar2) < kAspectRatioMatchThres);
}
ExternalCameraDeviceSession::ExternalCameraDeviceSession(
const sp<ICameraDeviceCallback>& callback,
const std::vector<SupportedV4L2Format>& supportedFormats,
const common::V1_0::helper::CameraMetadata& chars,
unique_fd v4l2Fd) :
mCallback(callback),
mCameraCharacteristics(chars),
mV4l2Fd(std::move(v4l2Fd)),
mSupportedFormats(sortFormats(supportedFormats)),
mCroppingType(initCroppingType(mSupportedFormats)),
mOutputThread(new OutputThread(this, mCroppingType)) {
mInitFail = initialize();
}
std::vector<SupportedV4L2Format> ExternalCameraDeviceSession::sortFormats(
const std::vector<SupportedV4L2Format>& inFmts) {
std::vector<SupportedV4L2Format> fmts = inFmts;
std::sort(fmts.begin(), fmts.end(),
[](const SupportedV4L2Format& a, const SupportedV4L2Format& b) -> bool {
if (a.width == b.width) {
return a.height < b.height;
}
return a.width < b.width;
});
return fmts;
}
CroppingType ExternalCameraDeviceSession::initCroppingType(
const std::vector<SupportedV4L2Format>& sortedFmts) {
const auto& maxSize = sortedFmts[sortedFmts.size() - 1];
float maxSizeAr = ASPECT_RATIO(maxSize);
float minAr = kMinAspectRatio;
float maxAr = kMaxAspectRatio;
for (const auto& fmt : sortedFmts) {
float ar = ASPECT_RATIO(fmt);
if (ar < minAr) {
minAr = ar;
}
if (ar > maxAr) {
maxAr = ar;
}
}
CroppingType ct = VERTICAL;
if (isAspectRatioClose(maxSizeAr, maxAr)) {
// Ex: 16:9 sensor, cropping horizontally to get to 4:3
ct = HORIZONTAL;
} else if (isAspectRatioClose(maxSizeAr, minAr)) {
// Ex: 4:3 sensor, cropping vertically to get to 16:9
ct = VERTICAL;
} else {
ALOGI("%s: camera maxSizeAr %f is not close to minAr %f or maxAr %f",
__FUNCTION__, maxSizeAr, minAr, maxAr);
if ((maxSizeAr - minAr) < (maxAr - maxSizeAr)) {
ct = VERTICAL;
} else {
ct = HORIZONTAL;
}
}
ALOGI("%s: camera croppingType is %d", __FUNCTION__, ct);
return ct;
}
bool ExternalCameraDeviceSession::initialize() {
if (mV4l2Fd.get() < 0) {
ALOGE("%s: invalid v4l2 device fd %d!", __FUNCTION__, mV4l2Fd.get());
return true;
}
status_t status = initDefaultRequests();
if (status != OK) {
ALOGE("%s: init default requests failed!", __FUNCTION__);
return true;
}
mRequestMetadataQueue = std::make_unique<RequestMetadataQueue>(
kMetadataMsgQueueSize, false /* non blocking */);
if (!mRequestMetadataQueue->isValid()) {
ALOGE("%s: invalid request fmq", __FUNCTION__);
return true;
}
mResultMetadataQueue = std::make_shared<RequestMetadataQueue>(
kMetadataMsgQueueSize, false /* non blocking */);
if (!mResultMetadataQueue->isValid()) {
ALOGE("%s: invalid result fmq", __FUNCTION__);
return true;
}
// TODO: check is PRIORITY_DISPLAY enough?
mOutputThread->run("ExtCamOut", PRIORITY_DISPLAY);
return false;
}
Status ExternalCameraDeviceSession::initStatus() const {
Mutex::Autolock _l(mLock);
Status status = Status::OK;
if (mInitFail || mClosed) {
ALOGI("%s: sesssion initFailed %d closed %d", __FUNCTION__, mInitFail, mClosed);
status = Status::INTERNAL_ERROR;
}
return status;
}
ExternalCameraDeviceSession::~ExternalCameraDeviceSession() {
if (!isClosed()) {
ALOGE("ExternalCameraDeviceSession deleted before close!");
close();
}
}
void ExternalCameraDeviceSession::dumpState(const native_handle_t*) {
// TODO: b/72261676 dump more runtime information
}
Return<void> ExternalCameraDeviceSession::constructDefaultRequestSettings(
V3_2::RequestTemplate type,
V3_2::ICameraDeviceSession::constructDefaultRequestSettings_cb _hidl_cb) {
V3_2::CameraMetadata outMetadata;
Status status = constructDefaultRequestSettingsRaw(
static_cast<RequestTemplate>(type), &outMetadata);
_hidl_cb(status, outMetadata);
return Void();
}
Return<void> ExternalCameraDeviceSession::constructDefaultRequestSettings_3_4(
RequestTemplate type,
ICameraDeviceSession::constructDefaultRequestSettings_cb _hidl_cb) {
V3_2::CameraMetadata outMetadata;
Status status = constructDefaultRequestSettingsRaw(type, &outMetadata);
_hidl_cb(status, outMetadata);
return Void();
}
Status ExternalCameraDeviceSession::constructDefaultRequestSettingsRaw(RequestTemplate type,
V3_2::CameraMetadata *outMetadata) {
CameraMetadata emptyMd;
Status status = initStatus();
if (status != Status::OK) {
return status;
}
switch (type) {
case RequestTemplate::PREVIEW:
case RequestTemplate::STILL_CAPTURE:
case RequestTemplate::VIDEO_RECORD:
case RequestTemplate::VIDEO_SNAPSHOT: {
*outMetadata = mDefaultRequests[type];
break;
}
case RequestTemplate::MANUAL:
case RequestTemplate::ZERO_SHUTTER_LAG:
case RequestTemplate::MOTION_TRACKING_PREVIEW:
case RequestTemplate::MOTION_TRACKING_BEST:
// Don't support MANUAL, ZSL, MOTION_TRACKING_* templates
status = Status::ILLEGAL_ARGUMENT;
break;
default:
ALOGE("%s: unknown request template type %d", __FUNCTION__, static_cast<int>(type));
status = Status::ILLEGAL_ARGUMENT;
break;
}
return status;
}
Return<void> ExternalCameraDeviceSession::configureStreams(
const V3_2::StreamConfiguration& streams,
ICameraDeviceSession::configureStreams_cb _hidl_cb) {
V3_2::HalStreamConfiguration outStreams;
V3_3::HalStreamConfiguration outStreams_v33;
Mutex::Autolock _il(mInterfaceLock);
Status status = configureStreams(streams, &outStreams_v33);
size_t size = outStreams_v33.streams.size();
outStreams.streams.resize(size);
for (size_t i = 0; i < size; i++) {
outStreams.streams[i] = outStreams_v33.streams[i].v3_2;
}
_hidl_cb(status, outStreams);
return Void();
}
Return<void> ExternalCameraDeviceSession::configureStreams_3_3(
const V3_2::StreamConfiguration& streams,
ICameraDeviceSession::configureStreams_3_3_cb _hidl_cb) {
V3_3::HalStreamConfiguration outStreams;
Mutex::Autolock _il(mInterfaceLock);
Status status = configureStreams(streams, &outStreams);
_hidl_cb(status, outStreams);
return Void();
}
Return<void> ExternalCameraDeviceSession::configureStreams_3_4(
const V3_4::StreamConfiguration& requestedConfiguration,
ICameraDeviceSession::configureStreams_3_4_cb _hidl_cb) {
V3_2::StreamConfiguration config_v32;
V3_3::HalStreamConfiguration outStreams_v33;
Mutex::Autolock _il(mInterfaceLock);
config_v32.operationMode = requestedConfiguration.operationMode;
config_v32.streams.resize(requestedConfiguration.streams.size());
for (size_t i = 0; i < config_v32.streams.size(); i++) {
config_v32.streams[i] = requestedConfiguration.streams[i].v3_2;
}
// Ignore requestedConfiguration.sessionParams. External camera does not support it
Status status = configureStreams(config_v32, &outStreams_v33);
V3_4::HalStreamConfiguration outStreams;
outStreams.streams.resize(outStreams_v33.streams.size());
for (size_t i = 0; i < outStreams.streams.size(); i++) {
outStreams.streams[i].v3_3 = outStreams_v33.streams[i];
}
_hidl_cb(status, outStreams);
return Void();
}
Return<void> ExternalCameraDeviceSession::getCaptureRequestMetadataQueue(
ICameraDeviceSession::getCaptureRequestMetadataQueue_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
_hidl_cb(*mRequestMetadataQueue->getDesc());
return Void();
}
Return<void> ExternalCameraDeviceSession::getCaptureResultMetadataQueue(
ICameraDeviceSession::getCaptureResultMetadataQueue_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
_hidl_cb(*mResultMetadataQueue->getDesc());
return Void();
}
Return<void> ExternalCameraDeviceSession::processCaptureRequest(
const hidl_vec<CaptureRequest>& requests,
const hidl_vec<BufferCache>& cachesToRemove,
ICameraDeviceSession::processCaptureRequest_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
updateBufferCaches(cachesToRemove);
uint32_t numRequestProcessed = 0;
Status s = Status::OK;
for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
s = processOneCaptureRequest(requests[i]);
if (s != Status::OK) {
break;
}
}
_hidl_cb(s, numRequestProcessed);
return Void();
}
Return<void> ExternalCameraDeviceSession::processCaptureRequest_3_4(
const hidl_vec<V3_4::CaptureRequest>& requests,
const hidl_vec<V3_2::BufferCache>& cachesToRemove,
ICameraDeviceSession::processCaptureRequest_3_4_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
updateBufferCaches(cachesToRemove);
uint32_t numRequestProcessed = 0;
Status s = Status::OK;
for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
s = processOneCaptureRequest(requests[i].v3_2);
if (s != Status::OK) {
break;
}
}
_hidl_cb(s, numRequestProcessed);
return Void();
}
Return<Status> ExternalCameraDeviceSession::flush() {
return Status::OK;
}
Return<void> ExternalCameraDeviceSession::close() {
Mutex::Autolock _il(mInterfaceLock);
Mutex::Autolock _l(mLock);
if (!mClosed) {
// TODO: b/72261676 Cleanup inflight buffers/V4L2 buffer queue
ALOGV("%s: closing V4L2 camera FD %d", __FUNCTION__, mV4l2Fd.get());
mV4l2Fd.reset();
mOutputThread->requestExit(); // TODO: join?
// free all imported buffers
for(auto& pair : mCirculatingBuffers) {
CirculatingBuffers& buffers = pair.second;
for (auto& p2 : buffers) {
sHandleImporter.freeBuffer(p2.second);
}
}
mClosed = true;
}
return Void();
}
Status ExternalCameraDeviceSession::importRequest(
const CaptureRequest& request,
hidl_vec<buffer_handle_t*>& allBufPtrs,
hidl_vec<int>& allFences) {
size_t numOutputBufs = request.outputBuffers.size();
size_t numBufs = numOutputBufs;
// Validate all I/O buffers
hidl_vec<buffer_handle_t> allBufs;
hidl_vec<uint64_t> allBufIds;
allBufs.resize(numBufs);
allBufIds.resize(numBufs);
allBufPtrs.resize(numBufs);
allFences.resize(numBufs);
std::vector<int32_t> streamIds(numBufs);
for (size_t i = 0; i < numOutputBufs; i++) {
allBufs[i] = request.outputBuffers[i].buffer.getNativeHandle();
allBufIds[i] = request.outputBuffers[i].bufferId;
allBufPtrs[i] = &allBufs[i];
streamIds[i] = request.outputBuffers[i].streamId;
}
for (size_t i = 0; i < numBufs; i++) {
buffer_handle_t buf = allBufs[i];
uint64_t bufId = allBufIds[i];
CirculatingBuffers& cbs = mCirculatingBuffers[streamIds[i]];
if (cbs.count(bufId) == 0) {
if (buf == nullptr) {
ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
return Status::ILLEGAL_ARGUMENT;
}
// Register a newly seen buffer
buffer_handle_t importedBuf = buf;
sHandleImporter.importBuffer(importedBuf);
if (importedBuf == nullptr) {
ALOGE("%s: output buffer %zu is invalid!", __FUNCTION__, i);
return Status::INTERNAL_ERROR;
} else {
cbs[bufId] = importedBuf;
}
}
allBufPtrs[i] = &cbs[bufId];
}
// All buffers are imported. Now validate output buffer acquire fences
for (size_t i = 0; i < numOutputBufs; i++) {
if (!sHandleImporter.importFence(
request.outputBuffers[i].acquireFence, allFences[i])) {
ALOGE("%s: output buffer %zu acquire fence is invalid", __FUNCTION__, i);
cleanupInflightFences(allFences, i);
return Status::INTERNAL_ERROR;
}
}
return Status::OK;
}
void ExternalCameraDeviceSession::cleanupInflightFences(
hidl_vec<int>& allFences, size_t numFences) {
for (size_t j = 0; j < numFences; j++) {
sHandleImporter.closeFence(allFences[j]);
}
}
Status ExternalCameraDeviceSession::processOneCaptureRequest(const CaptureRequest& request) {
Status status = initStatus();
if (status != Status::OK) {
return status;
}
if (request.inputBuffer.streamId != -1) {
ALOGE("%s: external camera does not support reprocessing!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
Mutex::Autolock _l(mLock);
if (!mV4l2Streaming) {
ALOGE("%s: cannot process request in streamOff state!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
const camera_metadata_t *rawSettings = nullptr;
bool converted = true;
CameraMetadata settingsFmq; // settings from FMQ
if (request.fmqSettingsSize > 0) {
// non-blocking read; client must write metadata before calling
// processOneCaptureRequest
settingsFmq.resize(request.fmqSettingsSize);
bool read = mRequestMetadataQueue->read(settingsFmq.data(), request.fmqSettingsSize);
if (read) {
converted = V3_2::implementation::convertFromHidl(settingsFmq, &rawSettings);
} else {
ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__);
converted = false;
}
} else {
converted = V3_2::implementation::convertFromHidl(request.settings, &rawSettings);
}
if (converted && rawSettings != nullptr) {
mLatestReqSetting = rawSettings;
}
if (!converted) {
ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
if (mFirstRequest && rawSettings == nullptr) {
ALOGE("%s: capture request settings must not be null for first request!",
__FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
hidl_vec<buffer_handle_t*> allBufPtrs;
hidl_vec<int> allFences;
size_t numOutputBufs = request.outputBuffers.size();
if (numOutputBufs == 0) {
ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
status = importRequest(request, allBufPtrs, allFences);
if (status != Status::OK) {
return status;
}
// TODO: program fps range per capture request here
// or limit the set of availableFpsRange
sp<V4L2Frame> frameIn = dequeueV4l2FrameLocked();
if ( frameIn == nullptr) {
ALOGE("%s: V4L2 deque frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
// TODO: This can probably be replaced by use v4lbuffer timestamp
// if the device supports it
nsecs_t shutterTs = systemTime(SYSTEM_TIME_MONOTONIC);
// TODO: reduce object copy in this path
HalRequest halReq = {
.frameNumber = request.frameNumber,
.setting = mLatestReqSetting,
.frameIn = frameIn,
.shutterTs = shutterTs};
halReq.buffers.resize(numOutputBufs);
for (size_t i = 0; i < numOutputBufs; i++) {
HalStreamBuffer& halBuf = halReq.buffers[i];
int streamId = halBuf.streamId = request.outputBuffers[i].streamId;
halBuf.bufferId = request.outputBuffers[i].bufferId;
const Stream& stream = mStreamMap[streamId];
halBuf.width = stream.width;
halBuf.height = stream.height;
halBuf.format = stream.format;
halBuf.usage = stream.usage;
halBuf.bufPtr = allBufPtrs[i];
halBuf.acquireFence = allFences[i];
halBuf.fenceTimeout = false;
}
mInflightFrames.insert(halReq.frameNumber);
// Send request to OutputThread for the rest of processing
mOutputThread->submitRequest(halReq);
mFirstRequest = false;
return Status::OK;
}
void ExternalCameraDeviceSession::notifyShutter(uint32_t frameNumber, nsecs_t shutterTs) {
NotifyMsg msg;
msg.type = MsgType::SHUTTER;
msg.msg.shutter.frameNumber = frameNumber;
msg.msg.shutter.timestamp = shutterTs;
mCallback->notify({msg});
}
void ExternalCameraDeviceSession::notifyError(
uint32_t frameNumber, int32_t streamId, ErrorCode ec) {
NotifyMsg msg;
msg.type = MsgType::ERROR;
msg.msg.error.frameNumber = frameNumber;
msg.msg.error.errorStreamId = streamId;
msg.msg.error.errorCode = ec;
mCallback->notify({msg});
}
//TODO: refactor with processCaptureResult
Status ExternalCameraDeviceSession::processCaptureRequestError(HalRequest& req) {
// Return V4L2 buffer to V4L2 buffer queue
enqueueV4l2Frame(req.frameIn);
// NotifyShutter
notifyShutter(req.frameNumber, req.shutterTs);
notifyError(/*frameNum*/req.frameNumber, /*stream*/-1, ErrorCode::ERROR_REQUEST);
// Fill output buffers
hidl_vec<CaptureResult> results;
results.resize(1);
CaptureResult& result = results[0];
result.frameNumber = req.frameNumber;
result.partialResult = 1;
result.inputBuffer.streamId = -1;
result.outputBuffers.resize(req.buffers.size());
for (size_t i = 0; i < req.buffers.size(); i++) {
result.outputBuffers[i].streamId = req.buffers[i].streamId;
result.outputBuffers[i].bufferId = req.buffers[i].bufferId;
result.outputBuffers[i].status = BufferStatus::ERROR;
if (req.buffers[i].acquireFence >= 0) {
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
handle->data[0] = req.buffers[i].acquireFence;
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/true);
}
}
// update inflight records
{
Mutex::Autolock _l(mLock);
mInflightFrames.erase(req.frameNumber);
}
// Callback into framework
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
freeReleaseFences(results);
return Status::OK;
}
Status ExternalCameraDeviceSession::processCaptureResult(HalRequest& req) {
// Return V4L2 buffer to V4L2 buffer queue
enqueueV4l2Frame(req.frameIn);
// NotifyShutter
notifyShutter(req.frameNumber, req.shutterTs);
// Fill output buffers
hidl_vec<CaptureResult> results;
results.resize(1);
CaptureResult& result = results[0];
result.frameNumber = req.frameNumber;
result.partialResult = 1;
result.inputBuffer.streamId = -1;
result.outputBuffers.resize(req.buffers.size());
for (size_t i = 0; i < req.buffers.size(); i++) {
result.outputBuffers[i].streamId = req.buffers[i].streamId;
result.outputBuffers[i].bufferId = req.buffers[i].bufferId;
if (req.buffers[i].fenceTimeout) {
result.outputBuffers[i].status = BufferStatus::ERROR;
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
handle->data[0] = req.buffers[i].acquireFence;
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/true);
notifyError(req.frameNumber, req.buffers[i].streamId, ErrorCode::ERROR_BUFFER);
} else {
result.outputBuffers[i].status = BufferStatus::OK;
// TODO: refactor
if (req.buffers[i].acquireFence > 0) {
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
handle->data[0] = req.buffers[i].acquireFence;
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/true);
}
}
}
// Fill capture result metadata
fillCaptureResult(req.setting, req.shutterTs);
const camera_metadata_t *rawResult = req.setting.getAndLock();
V3_2::implementation::convertToHidl(rawResult, &result.result);
req.setting.unlock(rawResult);
// update inflight records
{
Mutex::Autolock _l(mLock);
mInflightFrames.erase(req.frameNumber);
}
// Callback into framework
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
freeReleaseFences(results);
return Status::OK;
}
void ExternalCameraDeviceSession::invokeProcessCaptureResultCallback(
hidl_vec<CaptureResult> &results, bool tryWriteFmq) {
if (mProcessCaptureResultLock.tryLock() != OK) {
const nsecs_t NS_TO_SECOND = 1000000000;
ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__);
if (mProcessCaptureResultLock.timedLock(/* 1s */NS_TO_SECOND) != OK) {
ALOGE("%s: cannot acquire lock in 1s, cannot proceed",
__FUNCTION__);
return;
}
}
if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) {
for (CaptureResult &result : results) {
if (result.result.size() > 0) {
if (mResultMetadataQueue->write(result.result.data(), result.result.size())) {
result.fmqResultSize = result.result.size();
result.result.resize(0);
} else {
ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
result.fmqResultSize = 0;
}
} else {
result.fmqResultSize = 0;
}
}
}
mCallback->processCaptureResult(results);
mProcessCaptureResultLock.unlock();
}
void ExternalCameraDeviceSession::freeReleaseFences(hidl_vec<CaptureResult>& results) {
for (auto& result : results) {
if (result.inputBuffer.releaseFence.getNativeHandle() != nullptr) {
native_handle_t* handle = const_cast<native_handle_t*>(
result.inputBuffer.releaseFence.getNativeHandle());
native_handle_close(handle);
native_handle_delete(handle);
}
for (auto& buf : result.outputBuffers) {
if (buf.releaseFence.getNativeHandle() != nullptr) {
native_handle_t* handle = const_cast<native_handle_t*>(
buf.releaseFence.getNativeHandle());
native_handle_close(handle);
native_handle_delete(handle);
}
}
}
return;
}
ExternalCameraDeviceSession::OutputThread::OutputThread(
wp<ExternalCameraDeviceSession> parent,
CroppingType ct) : mParent(parent), mCroppingType(ct) {}
ExternalCameraDeviceSession::OutputThread::~OutputThread() {}
uint32_t ExternalCameraDeviceSession::OutputThread::getFourCcFromLayout(
const YCbCrLayout& layout) {
intptr_t cb = reinterpret_cast<intptr_t>(layout.cb);
intptr_t cr = reinterpret_cast<intptr_t>(layout.cr);
if (std::abs(cb - cr) == 1 && layout.chromaStep == 2) {
// Interleaved format
if (layout.cb > layout.cr) {
return V4L2_PIX_FMT_NV21;
} else {
return V4L2_PIX_FMT_NV12;
}
} else if (layout.chromaStep == 1) {
// Planar format
if (layout.cb > layout.cr) {
return V4L2_PIX_FMT_YVU420; // YV12
} else {
return V4L2_PIX_FMT_YUV420; // YU12
}
} else {
return FLEX_YUV_GENERIC;
}
}
int ExternalCameraDeviceSession::OutputThread::getCropRect(
CroppingType ct, const Size& inSize, const Size& outSize, IMapper::Rect* out) {
if (out == nullptr) {
ALOGE("%s: out is null", __FUNCTION__);
return -1;
}
uint32_t inW = inSize.width;
uint32_t inH = inSize.height;
uint32_t outW = outSize.width;
uint32_t outH = outSize.height;
if (ct == VERTICAL) {
uint64_t scaledOutH = static_cast<uint64_t>(outH) * inW / outW;
if (scaledOutH > inH) {
ALOGE("%s: Output size %dx%d cannot be vertically cropped from input size %dx%d",
__FUNCTION__, outW, outH, inW, inH);
return -1;
}
scaledOutH = scaledOutH & ~0x1; // make it multiple of 2
out->left = 0;
out->top = ((inH - scaledOutH) / 2) & ~0x1;
out->width = inW;
out->height = static_cast<int32_t>(scaledOutH);
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledH %d",
__FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutH));
} else {
uint64_t scaledOutW = static_cast<uint64_t>(outW) * inH / outH;
if (scaledOutW > inW) {
ALOGE("%s: Output size %dx%d cannot be horizontally cropped from input size %dx%d",
__FUNCTION__, outW, outH, inW, inH);
return -1;
}
scaledOutW = scaledOutW & ~0x1; // make it multiple of 2
out->left = ((inW - scaledOutW) / 2) & ~0x1;
out->top = 0;
out->width = static_cast<int32_t>(scaledOutW);
out->height = inH;
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledW %d",
__FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutW));
}
return 0;
}
int ExternalCameraDeviceSession::OutputThread::cropAndScaleLocked(
sp<AllocatedFrame>& in, const HalStreamBuffer& halBuf, YCbCrLayout* out) {
Size inSz = {in->mWidth, in->mHeight};
Size outSz = {halBuf.width, halBuf.height};
int ret;
if (inSz == outSz) {
ret = in->getLayout(out);
if (ret != 0) {
ALOGE("%s: failed to get input image layout", __FUNCTION__);
return ret;
}
return ret;
}
// Cropping to output aspect ratio
IMapper::Rect inputCrop;
ret = getCropRect(mCroppingType, inSz, outSz, &inputCrop);
if (ret != 0) {
ALOGE("%s: failed to compute crop rect for output size %dx%d",
__FUNCTION__, outSz.width, outSz.height);
return ret;
}
YCbCrLayout croppedLayout;
ret = in->getCroppedLayout(inputCrop, &croppedLayout);
if (ret != 0) {
ALOGE("%s: failed to crop input image %dx%d to output size %dx%d",
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
return ret;
}
if ((mCroppingType == VERTICAL && inSz.width == outSz.width) ||
(mCroppingType == HORIZONTAL && inSz.height == outSz.height)) {
// No scale is needed
*out = croppedLayout;
return 0;
}
auto it = mScaledYu12Frames.find(outSz);
sp<AllocatedFrame> scaledYu12Buf;
if (it != mScaledYu12Frames.end()) {
scaledYu12Buf = it->second;
} else {
it = mIntermediateBuffers.find(outSz);
if (it == mIntermediateBuffers.end()) {
ALOGE("%s: failed to find intermediate buffer size %dx%d",
__FUNCTION__, outSz.width, outSz.height);
return -1;
}
scaledYu12Buf = it->second;
}
// Scale
YCbCrLayout outLayout;
ret = scaledYu12Buf->getLayout(&outLayout);
if (ret != 0) {
ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
return ret;
}
ret = libyuv::I420Scale(
static_cast<uint8_t*>(croppedLayout.y),
croppedLayout.yStride,
static_cast<uint8_t*>(croppedLayout.cb),
croppedLayout.cStride,
static_cast<uint8_t*>(croppedLayout.cr),
croppedLayout.cStride,
inputCrop.width,
inputCrop.height,
static_cast<uint8_t*>(outLayout.y),
outLayout.yStride,
static_cast<uint8_t*>(outLayout.cb),
outLayout.cStride,
static_cast<uint8_t*>(outLayout.cr),
outLayout.cStride,
outSz.width,
outSz.height,
// TODO: b/72261744 see if we can use better filter without losing too much perf
libyuv::FilterMode::kFilterNone);
if (ret != 0) {
ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d",
__FUNCTION__, inputCrop.width, inputCrop.height,
outSz.width, outSz.height, ret);
return ret;
}
*out = outLayout;
mScaledYu12Frames.insert({outSz, scaledYu12Buf});
return 0;
}
int ExternalCameraDeviceSession::OutputThread::formatConvertLocked(
const YCbCrLayout& in, const YCbCrLayout& out, Size sz, uint32_t format) {
int ret = 0;
switch (format) {
case V4L2_PIX_FMT_NV21:
ret = libyuv::I420ToNV21(
static_cast<uint8_t*>(in.y),
in.yStride,
static_cast<uint8_t*>(in.cb),
in.cStride,
static_cast<uint8_t*>(in.cr),
in.cStride,
static_cast<uint8_t*>(out.y),
out.yStride,
static_cast<uint8_t*>(out.cr),
out.cStride,
sz.width,
sz.height);
if (ret != 0) {
ALOGE("%s: convert to NV21 buffer failed! ret %d",
__FUNCTION__, ret);
return ret;
}
break;
case V4L2_PIX_FMT_NV12:
ret = libyuv::I420ToNV12(
static_cast<uint8_t*>(in.y),
in.yStride,
static_cast<uint8_t*>(in.cb),
in.cStride,
static_cast<uint8_t*>(in.cr),
in.cStride,
static_cast<uint8_t*>(out.y),
out.yStride,
static_cast<uint8_t*>(out.cb),
out.cStride,
sz.width,
sz.height);
if (ret != 0) {
ALOGE("%s: convert to NV12 buffer failed! ret %d",
__FUNCTION__, ret);
return ret;
}
break;
case V4L2_PIX_FMT_YVU420: // YV12
case V4L2_PIX_FMT_YUV420: // YU12
// TODO: maybe we can speed up here by somehow save this copy?
ret = libyuv::I420Copy(
static_cast<uint8_t*>(in.y),
in.yStride,
static_cast<uint8_t*>(in.cb),
in.cStride,
static_cast<uint8_t*>(in.cr),
in.cStride,
static_cast<uint8_t*>(out.y),
out.yStride,
static_cast<uint8_t*>(out.cb),
out.cStride,
static_cast<uint8_t*>(out.cr),
out.cStride,
sz.width,
sz.height);
if (ret != 0) {
ALOGE("%s: copy to YV12 or YU12 buffer failed! ret %d",
__FUNCTION__, ret);
return ret;
}
break;
case FLEX_YUV_GENERIC:
// TODO: b/72261744 write to arbitrary flexible YUV layout. Slow.
ALOGE("%s: unsupported flexible yuv layout"
" y %p cb %p cr %p y_str %d c_str %d c_step %d",
__FUNCTION__, out.y, out.cb, out.cr,
out.yStride, out.cStride, out.chromaStep);
return -1;
default:
ALOGE("%s: unknown YUV format 0x%x!", __FUNCTION__, format);
return -1;
}
return 0;
}
bool ExternalCameraDeviceSession::OutputThread::threadLoop() {
HalRequest req;
auto parent = mParent.promote();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return false;
}
// TODO: maybe we need to setup a sensor thread to dq/enq v4l frames
// regularly to prevent v4l buffer queue filled with stale buffers
// when app doesn't program a preveiw request
waitForNextRequest(&req);
if (req.frameIn == nullptr) {
// No new request, wait again
return true;
}
if (req.frameIn->mFourcc != V4L2_PIX_FMT_MJPEG) {
ALOGE("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__,
req.frameIn->mFourcc & 0xFF,
(req.frameIn->mFourcc >> 8) & 0xFF,
(req.frameIn->mFourcc >> 16) & 0xFF,
(req.frameIn->mFourcc >> 24) & 0xFF);
parent->notifyError(
/*frameNum*/req.frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
return false;
}
std::unique_lock<std::mutex> lk(mLock);
// Convert input V4L2 frame to YU12 of the same size
// TODO: see if we can save some computation by converting to YV12 here
uint8_t* inData;
size_t inDataSize;
req.frameIn->map(&inData, &inDataSize);
// TODO: profile
// TODO: in some special case maybe we can decode jpg directly to gralloc output?
int res = libyuv::MJPGToI420(
inData, inDataSize,
static_cast<uint8_t*>(mYu12FrameLayout.y),
mYu12FrameLayout.yStride,
static_cast<uint8_t*>(mYu12FrameLayout.cb),
mYu12FrameLayout.cStride,
static_cast<uint8_t*>(mYu12FrameLayout.cr),
mYu12FrameLayout.cStride,
mYu12Frame->mWidth, mYu12Frame->mHeight,
mYu12Frame->mWidth, mYu12Frame->mHeight);
if (res != 0) {
// For some webcam, the first few V4L2 frames might be malformed...
ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
lk.unlock();
Status st = parent->processCaptureRequestError(req);
if (st != Status::OK) {
ALOGE("%s: failed to process capture request error!", __FUNCTION__);
parent->notifyError(
/*frameNum*/req.frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
return false;
}
return true;
}
ALOGV("%s processing new request", __FUNCTION__);
const int kSyncWaitTimeoutMs = 500;
for (auto& halBuf : req.buffers) {
if (halBuf.acquireFence != -1) {
int ret = sync_wait(halBuf.acquireFence, kSyncWaitTimeoutMs);
if (ret) {
halBuf.fenceTimeout = true;
} else {
::close(halBuf.acquireFence);
}
}
if (halBuf.fenceTimeout) {
continue;
}
// Gralloc lockYCbCr the buffer
switch (halBuf.format) {
case PixelFormat::BLOB:
// TODO: b/72261675 implement JPEG output path
break;
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12: {
IMapper::Rect outRect {0, 0,
static_cast<int32_t>(halBuf.width),
static_cast<int32_t>(halBuf.height)};
YCbCrLayout outLayout = sHandleImporter.lockYCbCr(
*(halBuf.bufPtr), halBuf.usage, outRect);
ALOGV("%s: outLayout y %p cb %p cr %p y_str %d c_str %d c_step %d",
__FUNCTION__, outLayout.y, outLayout.cb, outLayout.cr,
outLayout.yStride, outLayout.cStride, outLayout.chromaStep);
// Convert to output buffer size/format
uint32_t outputFourcc = getFourCcFromLayout(outLayout);
ALOGV("%s: converting to format %c%c%c%c", __FUNCTION__,
outputFourcc & 0xFF,
(outputFourcc >> 8) & 0xFF,
(outputFourcc >> 16) & 0xFF,
(outputFourcc >> 24) & 0xFF);
YCbCrLayout cropAndScaled;
int ret = cropAndScaleLocked(
mYu12Frame, halBuf, &cropAndScaled);
if (ret != 0) {
ALOGE("%s: crop and scale failed!", __FUNCTION__);
lk.unlock();
parent->notifyError(
/*frameNum*/req.frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
return false;
}
Size sz {halBuf.width, halBuf.height};
ret = formatConvertLocked(cropAndScaled, outLayout, sz, outputFourcc);
if (ret != 0) {
ALOGE("%s: format coversion failed!", __FUNCTION__);
lk.unlock();
parent->notifyError(
/*frameNum*/req.frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
return false;
}
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
if (relFence > 0) {
halBuf.acquireFence = relFence;
}
} break;
default:
ALOGE("%s: unknown output format %x", __FUNCTION__, halBuf.format);
lk.unlock();
parent->notifyError(
/*frameNum*/req.frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
return false;
}
} // for each buffer
mScaledYu12Frames.clear();
// Don't hold the lock while calling back to parent
lk.unlock();
Status st = parent->processCaptureResult(req);
if (st != Status::OK) {
ALOGE("%s: failed to process capture result!", __FUNCTION__);
parent->notifyError(
/*frameNum*/req.frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
return false;
}
return true;
}
Status ExternalCameraDeviceSession::OutputThread::allocateIntermediateBuffers(
const Size& v4lSize, const hidl_vec<Stream>& streams) {
std::lock_guard<std::mutex> lk(mLock);
if (mScaledYu12Frames.size() != 0) {
ALOGE("%s: intermediate buffer pool has %zu inflight buffers! (expect 0)",
__FUNCTION__, mScaledYu12Frames.size());
return Status::INTERNAL_ERROR;
}
// Allocating intermediate YU12 frame
if (mYu12Frame == nullptr || mYu12Frame->mWidth != v4lSize.width ||
mYu12Frame->mHeight != v4lSize.height) {
mYu12Frame.clear();
mYu12Frame = new AllocatedFrame(v4lSize.width, v4lSize.height);
int ret = mYu12Frame->allocate(&mYu12FrameLayout);
if (ret != 0) {
ALOGE("%s: allocating YU12 frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
// Allocating scaled buffers
for (const auto& stream : streams) {
Size sz = {stream.width, stream.height};
if (sz == v4lSize) {
continue; // Don't need an intermediate buffer same size as v4lBuffer
}
if (mIntermediateBuffers.count(sz) == 0) {
// Create new intermediate buffer
sp<AllocatedFrame> buf = new AllocatedFrame(stream.width, stream.height);
int ret = buf->allocate();
if (ret != 0) {
ALOGE("%s: allocating intermediate YU12 frame %dx%d failed!",
__FUNCTION__, stream.width, stream.height);
return Status::INTERNAL_ERROR;
}
mIntermediateBuffers[sz] = buf;
}
}
// Remove unconfigured buffers
auto it = mIntermediateBuffers.begin();
while (it != mIntermediateBuffers.end()) {
bool configured = false;
auto sz = it->first;
for (const auto& stream : streams) {
if (stream.width == sz.width && stream.height == sz.height) {
configured = true;
break;
}
}
if (configured) {
it++;
} else {
it = mIntermediateBuffers.erase(it);
}
}
return Status::OK;
}
Status ExternalCameraDeviceSession::OutputThread::submitRequest(const HalRequest& req) {
std::lock_guard<std::mutex> lk(mLock);
// TODO: reduce object copy in this path
mRequestList.push_back(req);
mRequestCond.notify_one();
return Status::OK;
}
void ExternalCameraDeviceSession::OutputThread::flush() {
std::lock_guard<std::mutex> lk(mLock);
// TODO: send buffer/request errors back to framework
mRequestList.clear();
}
void ExternalCameraDeviceSession::OutputThread::waitForNextRequest(HalRequest* out) {
if (out == nullptr) {
ALOGE("%s: out is null", __FUNCTION__);
return;
}
std::unique_lock<std::mutex> lk(mLock);
while (mRequestList.empty()) {
std::chrono::seconds timeout = std::chrono::seconds(kReqWaitTimeoutSec);
auto st = mRequestCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
// no new request, return
return;
}
}
*out = mRequestList.front();
mRequestList.pop_front();
}
void ExternalCameraDeviceSession::cleanupBuffersLocked(int id) {
for (auto& pair : mCirculatingBuffers.at(id)) {
sHandleImporter.freeBuffer(pair.second);
}
mCirculatingBuffers[id].clear();
mCirculatingBuffers.erase(id);
}
void ExternalCameraDeviceSession::updateBufferCaches(const hidl_vec<BufferCache>& cachesToRemove) {
Mutex::Autolock _l(mLock);
for (auto& cache : cachesToRemove) {
auto cbsIt = mCirculatingBuffers.find(cache.streamId);
if (cbsIt == mCirculatingBuffers.end()) {
// The stream could have been removed
continue;
}
CirculatingBuffers& cbs = cbsIt->second;
auto it = cbs.find(cache.bufferId);
if (it != cbs.end()) {
sHandleImporter.freeBuffer(it->second);
cbs.erase(it);
} else {
ALOGE("%s: stream %d buffer %" PRIu64 " is not cached",
__FUNCTION__, cache.streamId, cache.bufferId);
}
}
}
bool ExternalCameraDeviceSession::isSupported(const Stream& stream) {
int32_t ds = static_cast<int32_t>(stream.dataSpace);
PixelFormat fmt = stream.format;
uint32_t width = stream.width;
uint32_t height = stream.height;
// TODO: check usage flags
if (stream.streamType != StreamType::OUTPUT) {
ALOGE("%s: does not support non-output stream type", __FUNCTION__);
return false;
}
if (stream.rotation != StreamRotation::ROTATION_0) {
ALOGE("%s: does not support stream rotation", __FUNCTION__);
return false;
}
if (ds & Dataspace::DEPTH) {
ALOGI("%s: does not support depth output", __FUNCTION__);
return false;
}
switch (fmt) {
case PixelFormat::BLOB:
if (ds != static_cast<int32_t>(Dataspace::V0_JFIF)) {
ALOGI("%s: BLOB format does not support dataSpace %x", __FUNCTION__, ds);
return false;
}
case PixelFormat::IMPLEMENTATION_DEFINED:
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12:
// TODO: check what dataspace we can support here.
// intentional no-ops.
break;
default:
ALOGI("%s: does not support format %x", __FUNCTION__, fmt);
return false;
}
// Assume we can convert any V4L2 format to any of supported output format for now, i.e,
// ignoring v4l2Fmt.fourcc for now. Might need more subtle check if we support more v4l format
// in the futrue.
for (const auto& v4l2Fmt : mSupportedFormats) {
if (width == v4l2Fmt.width && height == v4l2Fmt.height) {
return true;
}
}
ALOGI("%s: resolution %dx%d is not supported", __FUNCTION__, width, height);
return false;
}
int ExternalCameraDeviceSession::v4l2StreamOffLocked() {
if (!mV4l2Streaming) {
return OK;
}
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
if (mNumDequeuedV4l2Buffers != 0) {
ALOGE("%s: there are %zu inflight V4L buffers",
__FUNCTION__, mNumDequeuedV4l2Buffers);
return -1;
}
}
mV4l2Buffers.clear(); // VIDIOC_REQBUFS will fail if FDs are not clear first
// VIDIOC_STREAMOFF
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMOFF, &capture_type)) < 0) {
ALOGE("%s: STREAMOFF failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
// VIDIOC_REQBUFS: clear buffers
v4l2_requestbuffers req_buffers{};
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req_buffers.memory = V4L2_MEMORY_MMAP;
req_buffers.count = 0;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
ALOGE("%s: REQBUFS failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
mV4l2Streaming = false;
return OK;
}
int ExternalCameraDeviceSession::configureV4l2StreamLocked(const SupportedV4L2Format& v4l2Fmt) {
int ret = v4l2StreamOffLocked();
if (ret != OK) {
ALOGE("%s: stop v4l2 streaming failed: ret %d", __FUNCTION__, ret);
return ret;
}
// VIDIOC_S_FMT w/h/fmt
v4l2_format fmt;
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = v4l2Fmt.width;
fmt.fmt.pix.height = v4l2Fmt.height;
fmt.fmt.pix.pixelformat = v4l2Fmt.fourcc;
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
if (ret < 0) {
ALOGE("%s: S_FMT ioctl failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
if (v4l2Fmt.width != fmt.fmt.pix.width || v4l2Fmt.height != fmt.fmt.pix.height ||
v4l2Fmt.fourcc != fmt.fmt.pix.pixelformat) {
ALOGE("%s: S_FMT expect %c%c%c%c %dx%d, got %c%c%c%c %dx%d instead!", __FUNCTION__,
v4l2Fmt.fourcc & 0xFF,
(v4l2Fmt.fourcc >> 8) & 0xFF,
(v4l2Fmt.fourcc >> 16) & 0xFF,
(v4l2Fmt.fourcc >> 24) & 0xFF,
v4l2Fmt.width, v4l2Fmt.height,
fmt.fmt.pix.pixelformat & 0xFF,
(fmt.fmt.pix.pixelformat >> 8) & 0xFF,
(fmt.fmt.pix.pixelformat >> 16) & 0xFF,
(fmt.fmt.pix.pixelformat >> 24) & 0xFF,
fmt.fmt.pix.width, fmt.fmt.pix.height);
return -EINVAL;
}
uint32_t bufferSize = fmt.fmt.pix.sizeimage;
ALOGI("%s: V4L2 buffer size is %d", __FUNCTION__, bufferSize);
float maxFps = -1.f;
float fps = 1000.f;
const float kDefaultFps = 30.f;
// Try to pick the slowest fps that is at least 30
for (const auto& f : v4l2Fmt.frameRates) {
if (maxFps < f) {
maxFps = f;
}
if (f >= kDefaultFps && f < fps) {
fps = f;
}
}
if (fps == 1000.f) {
fps = maxFps;
}
// VIDIOC_G_PARM/VIDIOC_S_PARM: set fps
v4l2_streamparm streamparm = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE };
// The following line checks that the driver knows about framerate get/set.
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_G_PARM, &streamparm)) >= 0) {
// Now check if the device is able to accept a capture framerate set.
if (streamparm.parm.capture.capability & V4L2_CAP_TIMEPERFRAME) {
// |frame_rate| is float, approximate by a fraction.
const int kFrameRatePrecision = 10000;
streamparm.parm.capture.timeperframe.numerator = kFrameRatePrecision;
streamparm.parm.capture.timeperframe.denominator =
(fps * kFrameRatePrecision);
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_PARM, &streamparm)) < 0) {
ALOGE("%s: failed to set framerate to %f", __FUNCTION__, fps);
return UNKNOWN_ERROR;
}
}
}
float retFps = streamparm.parm.capture.timeperframe.denominator /
streamparm.parm.capture.timeperframe.numerator;
if (std::fabs(fps - retFps) > std::numeric_limits<float>::epsilon()) {
ALOGE("%s: expect fps %f, got %f instead", __FUNCTION__, fps, retFps);
return BAD_VALUE;
}
uint32_t v4lBufferCount = (v4l2Fmt.width <= kMaxVideoSize.width &&
v4l2Fmt.height <= kMaxVideoSize.height) ? kNumVideoBuffers : kNumStillBuffers;
// VIDIOC_REQBUFS: create buffers
v4l2_requestbuffers req_buffers{};
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req_buffers.memory = V4L2_MEMORY_MMAP;
req_buffers.count = v4lBufferCount;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
ALOGE("%s: VIDIOC_REQBUFS failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
// Driver can indeed return more buffer if it needs more to operate
if (req_buffers.count < v4lBufferCount) {
ALOGE("%s: VIDIOC_REQBUFS expected %d buffers, got %d instead",
__FUNCTION__, v4lBufferCount, req_buffers.count);
return NO_MEMORY;
}
// VIDIOC_EXPBUF: export buffers as FD
// VIDIOC_QBUF: send buffer to driver
mV4l2Buffers.resize(req_buffers.count);
for (uint32_t i = 0; i < req_buffers.count; i++) {
v4l2_exportbuffer expbuf {};
expbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
expbuf.index = i;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_EXPBUF, &expbuf)) < 0) {
ALOGE("%s: EXPBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
return -errno;
}
mV4l2Buffers[i].reset(expbuf.fd);
v4l2_buffer buffer = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.index = i,
.memory = V4L2_MEMORY_MMAP};
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
return -errno;
}
}
// VIDIOC_STREAMON: start streaming
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type)) < 0) {
ALOGE("%s: VIDIOC_STREAMON failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
// Swallow first few frames after streamOn to account for bad frames from some devices
for (int i = 0; i < kBadFramesAfterStreamOn; i++) {
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
return -errno;
}
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, buffer.index, strerror(errno));
return -errno;
}
}
mV4l2StreamingFmt = v4l2Fmt;
mV4l2Streaming = true;
return OK;
}
sp<V4L2Frame> ExternalCameraDeviceSession::dequeueV4l2FrameLocked() {
sp<V4L2Frame> ret = nullptr;
{
std::unique_lock<std::mutex> lk(mV4l2BufferLock);
if (mNumDequeuedV4l2Buffers == mV4l2Buffers.size()) {
std::chrono::seconds timeout = std::chrono::seconds(kBufferWaitTimeoutSec);
mLock.unlock();
auto st = mV4L2BufferReturned.wait_for(lk, timeout);
mLock.lock();
if (st == std::cv_status::timeout) {
ALOGE("%s: wait for V4L2 buffer return timeout!", __FUNCTION__);
return ret;
}
}
}
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
return ret;
}
if (buffer.index >= mV4l2Buffers.size()) {
ALOGE("%s: Invalid buffer id: %d", __FUNCTION__, buffer.index);
return ret;
}
if (buffer.flags & V4L2_BUF_FLAG_ERROR) {
ALOGE("%s: v4l2 buf error! buf flag 0x%x", __FUNCTION__, buffer.flags);
// TODO: try to dequeue again
}
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
mNumDequeuedV4l2Buffers++;
}
return new V4L2Frame(
mV4l2StreamingFmt.width, mV4l2StreamingFmt.height, mV4l2StreamingFmt.fourcc,
buffer.index, mV4l2Buffers[buffer.index].get(), buffer.bytesused);
}
void ExternalCameraDeviceSession::enqueueV4l2Frame(const sp<V4L2Frame>& frame) {
Mutex::Autolock _l(mLock);
frame->unmap();
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = frame->mBufferIndex;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, frame->mBufferIndex, strerror(errno));
return;
}
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
mNumDequeuedV4l2Buffers--;
mV4L2BufferReturned.notify_one();
}
}
Status ExternalCameraDeviceSession::configureStreams(
const V3_2::StreamConfiguration& config, V3_3::HalStreamConfiguration* out) {
if (config.operationMode != StreamConfigurationMode::NORMAL_MODE) {
ALOGE("%s: unsupported operation mode: %d", __FUNCTION__, config.operationMode);
return Status::ILLEGAL_ARGUMENT;
}
if (config.streams.size() == 0) {
ALOGE("%s: cannot configure zero stream", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
int numProcessedStream = 0;
int numStallStream = 0;
for (const auto& stream : config.streams) {
// Check if the format/width/height combo is supported
if (!isSupported(stream)) {
return Status::ILLEGAL_ARGUMENT;
}
if (stream.format == PixelFormat::BLOB) {
numStallStream++;
} else {
numProcessedStream++;
}
}
if (numProcessedStream > kMaxProcessedStream) {
ALOGE("%s: too many processed streams (expect <= %d, got %d)", __FUNCTION__,
kMaxProcessedStream, numProcessedStream);
return Status::ILLEGAL_ARGUMENT;
}
if (numStallStream > kMaxStallStream) {
ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__,
kMaxStallStream, numStallStream);
return Status::ILLEGAL_ARGUMENT;
}
Status status = initStatus();
if (status != Status::OK) {
return status;
}
Mutex::Autolock _l(mLock);
if (!mInflightFrames.empty()) {
ALOGE("%s: trying to configureStreams while there are still %zu inflight frames!",
__FUNCTION__, mInflightFrames.size());
return Status::INTERNAL_ERROR;
}
// Add new streams
for (const auto& stream : config.streams) {
if (mStreamMap.count(stream.id) == 0) {
mStreamMap[stream.id] = stream;
mCirculatingBuffers.emplace(stream.id, CirculatingBuffers{});
}
}
// Cleanup removed streams
for(auto it = mStreamMap.begin(); it != mStreamMap.end();) {
int id = it->first;
bool found = false;
for (const auto& stream : config.streams) {
if (id == stream.id) {
found = true;
break;
}
}
if (!found) {
// Unmap all buffers of deleted stream
cleanupBuffersLocked(id);
it = mStreamMap.erase(it);
} else {
++it;
}
}
// Now select a V4L2 format to produce all output streams
float desiredAr = (mCroppingType == VERTICAL) ? kMaxAspectRatio : kMinAspectRatio;
uint32_t maxDim = 0;
for (const auto& stream : config.streams) {
float aspectRatio = ASPECT_RATIO(stream);
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
desiredAr = aspectRatio;
}
// The dimension that's not cropped
uint32_t dim = (mCroppingType == VERTICAL) ? stream.width : stream.height;
if (dim > maxDim) {
maxDim = dim;
}
}
// Find the smallest format that matches the desired aspect ratio and is wide/high enough
SupportedV4L2Format v4l2Fmt {.width = 0, .height = 0};
for (const auto& fmt : mSupportedFormats) {
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
if (dim >= maxDim) {
float aspectRatio = ASPECT_RATIO(fmt);
if (isAspectRatioClose(aspectRatio, desiredAr)) {
v4l2Fmt = fmt;
// since mSupportedFormats is sorted by width then height, the first matching fmt
// will be the smallest one with matching aspect ratio
break;
}
}
}
if (v4l2Fmt.width == 0) {
// Cannot find exact good aspect ratio candidate, try to find a close one
for (const auto& fmt : mSupportedFormats) {
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
if (dim >= maxDim) {
float aspectRatio = ASPECT_RATIO(fmt);
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
v4l2Fmt = fmt;
break;
}
}
}
}
if (v4l2Fmt.width == 0) {
ALOGE("%s: unable to find a resolution matching (%s at least %d, aspect ratio %f)"
, __FUNCTION__, (mCroppingType == VERTICAL) ? "width" : "height",
maxDim, desiredAr);
return Status::ILLEGAL_ARGUMENT;
}
if (configureV4l2StreamLocked(v4l2Fmt) != 0) {
ALOGE("V4L configuration failed!, format:%c%c%c%c, w %d, h %d",
v4l2Fmt.fourcc & 0xFF,
(v4l2Fmt.fourcc >> 8) & 0xFF,
(v4l2Fmt.fourcc >> 16) & 0xFF,
(v4l2Fmt.fourcc >> 24) & 0xFF,
v4l2Fmt.width, v4l2Fmt.height);
return Status::INTERNAL_ERROR;
}
Size v4lSize = {v4l2Fmt.width, v4l2Fmt.height};
status = mOutputThread->allocateIntermediateBuffers(v4lSize, config.streams);
if (status != Status::OK) {
ALOGE("%s: allocating intermediate buffers failed!", __FUNCTION__);
return status;
}
out->streams.resize(config.streams.size());
for (size_t i = 0; i < config.streams.size(); i++) {
out->streams[i].overrideDataSpace = config.streams[i].dataSpace;
out->streams[i].v3_2.id = config.streams[i].id;
// TODO: double check should we add those CAMERA flags
mStreamMap[config.streams[i].id].usage =
out->streams[i].v3_2.producerUsage = config.streams[i].usage |
BufferUsage::CPU_WRITE_OFTEN |
BufferUsage::CAMERA_OUTPUT;
out->streams[i].v3_2.consumerUsage = 0;
out->streams[i].v3_2.maxBuffers = mV4l2Buffers.size();
switch (config.streams[i].format) {
case PixelFormat::BLOB:
case PixelFormat::YCBCR_420_888:
// No override
out->streams[i].v3_2.overrideFormat = config.streams[i].format;
break;
case PixelFormat::IMPLEMENTATION_DEFINED:
// Override based on VIDEO or not
out->streams[i].v3_2.overrideFormat =
(config.streams[i].usage & BufferUsage::VIDEO_ENCODER) ?
PixelFormat::YCBCR_420_888 : PixelFormat::YV12;
// Save overridden formt in mStreamMap
mStreamMap[config.streams[i].id].format = out->streams[i].v3_2.overrideFormat;
break;
default:
ALOGE("%s: unsupported format %x", __FUNCTION__, config.streams[i].format);
return Status::ILLEGAL_ARGUMENT;
}
}
mFirstRequest = true;
return Status::OK;
}
bool ExternalCameraDeviceSession::isClosed() {
Mutex::Autolock _l(mLock);
return mClosed;
}
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define UPDATE(md, tag, data, size) \
do { \
if ((md).update((tag), (data), (size))) { \
ALOGE("Update " #tag " failed!"); \
return BAD_VALUE; \
} \
} while (0)
status_t ExternalCameraDeviceSession::initDefaultRequests() {
::android::hardware::camera::common::V1_0::helper::CameraMetadata md;
const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
UPDATE(md, ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
const int32_t exposureCompensation = 0;
UPDATE(md, ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &exposureCompensation, 1);
const uint8_t videoStabilizationMode = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
UPDATE(md, ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &videoStabilizationMode, 1);
const uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
UPDATE(md, ANDROID_CONTROL_AE_MODE, &aeMode, 1);
const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
UPDATE(md, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
const uint8_t afMode = ANDROID_CONTROL_AF_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AF_MODE, &afMode, 1);
const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
UPDATE(md, ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED;
UPDATE(md, ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
UPDATE(md, ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
UPDATE(md, ANDROID_FLASH_MODE, &flashMode, 1);
const int32_t thumbnailSize[] = {240, 180};
UPDATE(md, ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
const uint8_t jpegQuality = 90;
UPDATE(md, ANDROID_JPEG_QUALITY, &jpegQuality, 1);
UPDATE(md, ANDROID_JPEG_THUMBNAIL_QUALITY, &jpegQuality, 1);
const int32_t jpegOrientation = 0;
UPDATE(md, ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
const uint8_t oisMode = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
UPDATE(md, ANDROID_LENS_OPTICAL_STABILIZATION_MODE, &oisMode, 1);
const uint8_t nrMode = ANDROID_NOISE_REDUCTION_MODE_OFF;
UPDATE(md, ANDROID_NOISE_REDUCTION_MODE, &nrMode, 1);
const uint8_t fdMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_FACE_DETECT_MODE, &fdMode, 1);
const uint8_t hotpixelMode = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotpixelMode, 1);
bool support30Fps = false;
int32_t maxFps = std::numeric_limits<int32_t>::min();
for (const auto& supportedFormat : mSupportedFormats) {
for (const auto& frameRate : supportedFormat.frameRates) {
int32_t framerateInt = static_cast<int32_t>(frameRate);
if (maxFps < framerateInt) {
maxFps = framerateInt;
}
if (framerateInt == 30) {
support30Fps = true;
break;
}
}
if (support30Fps) {
break;
}
}
int32_t defaultFramerate = support30Fps ? 30 : maxFps;
int32_t defaultFpsRange[] = {defaultFramerate, defaultFramerate};
UPDATE(md, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, defaultFpsRange, ARRAY_SIZE(defaultFpsRange));
uint8_t antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AE_ANTIBANDING_MODE, &antibandingMode, 1);
const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_MODE, &controlMode, 1);
auto requestTemplates = hidl_enum_iterator<RequestTemplate>();
for (RequestTemplate type : requestTemplates) {
::android::hardware::camera::common::V1_0::helper::CameraMetadata mdCopy = md;
uint8_t intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
switch (type) {
case RequestTemplate::PREVIEW:
intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case RequestTemplate::STILL_CAPTURE:
intent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case RequestTemplate::VIDEO_RECORD:
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case RequestTemplate::VIDEO_SNAPSHOT:
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
default:
ALOGE("%s: unknown template type %d", __FUNCTION__, type);
return BAD_VALUE;
}
UPDATE(mdCopy, ANDROID_CONTROL_CAPTURE_INTENT, &intent, 1);
camera_metadata_t* rawMd = mdCopy.release();
CameraMetadata hidlMd;
hidlMd.setToExternal(
(uint8_t*) rawMd, get_camera_metadata_size(rawMd));
mDefaultRequests[type] = hidlMd;
free_camera_metadata(rawMd);
}
return OK;
}
status_t ExternalCameraDeviceSession::fillCaptureResult(
common::V1_0::helper::CameraMetadata &md, nsecs_t timestamp) {
// android.control
// For USB camera, we don't know the AE state. Set the state to converged to
// indicate the frame should be good to use. Then apps don't have to wait the
// AE state.
const uint8_t aeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
UPDATE(md, ANDROID_CONTROL_AE_STATE, &aeState, 1);
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
UPDATE(md, ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
// TODO: b/72261912 AF should stay LOCKED until cancel is seen
bool afTrigger = false;
if (md.exists(ANDROID_CONTROL_AF_TRIGGER)) {
camera_metadata_entry entry = md.find(ANDROID_CONTROL_AF_TRIGGER);
if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_START) {
afTrigger = true;
} else if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_CANCEL) {
afTrigger = false;
}
}
// For USB camera, the USB camera handles everything and we don't have control
// over AF. We only simply fake the AF metadata based on the request
// received here.
uint8_t afState;
if (afTrigger) {
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
} else {
afState = ANDROID_CONTROL_AF_STATE_INACTIVE;
}
UPDATE(md, ANDROID_CONTROL_AF_STATE, &afState, 1);
// Set AWB state to converged to indicate the frame should be good to use.
const uint8_t awbState = ANDROID_CONTROL_AWB_STATE_CONVERGED;
UPDATE(md, ANDROID_CONTROL_AWB_STATE, &awbState, 1);
const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
UPDATE(md, ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
camera_metadata_ro_entry active_array_size =
mCameraCharacteristics.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
if (active_array_size.count == 0) {
ALOGE("%s: cannot find active array size!", __FUNCTION__);
return -EINVAL;
}
// android.scaler
const int32_t crop_region[] = {
active_array_size.data.i32[0], active_array_size.data.i32[1],
active_array_size.data.i32[2], active_array_size.data.i32[3],
};
UPDATE(md, ANDROID_SCALER_CROP_REGION, crop_region, ARRAY_SIZE(crop_region));
// android.sensor
UPDATE(md, ANDROID_SENSOR_TIMESTAMP, &timestamp, 1);
// android.statistics
const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);
const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
UPDATE(md, ANDROID_STATISTICS_SCENE_FLICKER, &sceneFlicker, 1);
return OK;
}
#undef ARRAY_SIZE
#undef UPDATE
V4L2Frame::V4L2Frame(
uint32_t w, uint32_t h, uint32_t fourcc,
int bufIdx, int fd, uint32_t dataSize) :
mWidth(w), mHeight(h), mFourcc(fourcc),
mBufferIndex(bufIdx), mFd(fd), mDataSize(dataSize) {}
int V4L2Frame::map(uint8_t** data, size_t* dataSize) {
if (data == nullptr || dataSize == nullptr) {
ALOGI("%s: V4L2 buffer map bad argument: data %p, dataSize %p",
__FUNCTION__, data, dataSize);
return -EINVAL;
}
Mutex::Autolock _l(mLock);
if (!mMapped) {
void* addr = mmap(NULL, mDataSize, PROT_READ, MAP_SHARED, mFd, 0);
if (addr == MAP_FAILED) {
ALOGE("%s: V4L2 buffer map failed: %s", __FUNCTION__, strerror(errno));
return -EINVAL;
}
mData = static_cast<uint8_t*>(addr);
mMapped = true;
}
*data = mData;
*dataSize = mDataSize;
ALOGV("%s: V4L map FD %d, data %p size %zu", __FUNCTION__, mFd, mData, mDataSize);
return 0;
}
int V4L2Frame::unmap() {
Mutex::Autolock _l(mLock);
if (mMapped) {
ALOGV("%s: V4L unmap data %p size %zu", __FUNCTION__, mData, mDataSize);
if (munmap(mData, mDataSize) != 0) {
ALOGE("%s: V4L2 buffer unmap failed: %s", __FUNCTION__, strerror(errno));
return -EINVAL;
}
mMapped = false;
}
return 0;
}
V4L2Frame::~V4L2Frame() {
unmap();
}
AllocatedFrame::AllocatedFrame(
uint32_t w, uint32_t h) :
mWidth(w), mHeight(h), mFourcc(V4L2_PIX_FMT_YUV420) {};
AllocatedFrame::~AllocatedFrame() {}
int AllocatedFrame::allocate(YCbCrLayout* out) {
if ((mWidth % 2) || (mHeight % 2)) {
ALOGE("%s: bad dimension %dx%d (not multiple of 2)", __FUNCTION__, mWidth, mHeight);
return -EINVAL;
}
uint32_t dataSize = mWidth * mHeight * 3 / 2; // YUV420
if (mData.size() != dataSize) {
mData.resize(dataSize);
}
if (out != nullptr) {
out->y = mData.data();
out->yStride = mWidth;
uint8_t* cbStart = mData.data() + mWidth * mHeight;
uint8_t* crStart = cbStart + mWidth * mHeight / 4;
out->cb = cbStart;
out->cr = crStart;
out->cStride = mWidth / 2;
out->chromaStep = 1;
}
return 0;
}
int AllocatedFrame::getLayout(YCbCrLayout* out) {
IMapper::Rect noCrop = {0, 0,
static_cast<int32_t>(mWidth),
static_cast<int32_t>(mHeight)};
return getCroppedLayout(noCrop, out);
}
int AllocatedFrame::getCroppedLayout(const IMapper::Rect& rect, YCbCrLayout* out) {
if (out == nullptr) {
ALOGE("%s: null out", __FUNCTION__);
return -1;
}
if ((rect.left + rect.width) > static_cast<int>(mWidth) ||
(rect.top + rect.height) > static_cast<int>(mHeight) ||
(rect.left % 2) || (rect.top % 2) || (rect.width % 2) || (rect.height % 2)) {
ALOGE("%s: bad rect left %d top %d w %d h %d", __FUNCTION__,
rect.left, rect.top, rect.width, rect.height);
return -1;
}
out->y = mData.data() + mWidth * rect.top + rect.left;
out->yStride = mWidth;
uint8_t* cbStart = mData.data() + mWidth * mHeight;
uint8_t* crStart = cbStart + mWidth * mHeight / 4;
out->cb = cbStart + mWidth * rect.top / 4 + rect.left / 2;
out->cr = crStart + mWidth * rect.top / 4 + rect.left / 2;
out->cStride = mWidth / 2;
out->chromaStep = 1;
return 0;
}
} // namespace implementation
} // namespace V3_4
} // namespace device
} // namespace camera
} // namespace hardware
} // namespace android