blob: f0275f933ab6d54a78e5ddf60fc43ddc68f60d18 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExecutionBurstUtils"
#include "ExecutionBurstUtils.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <thread>
#include <tuple>
#include <utility>
#include <vector>
namespace android::hardware::neuralnetworks::V1_2::utils {
namespace {
constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max()};
}
// serialize a request into a packet
std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots) {
// count how many elements need to be sent for a request
size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size();
for (const auto& input : request.inputs) {
count += input.dimensions.size();
}
for (const auto& output : request.outputs) {
count += output.dimensions.size();
}
// create buffer to temporarily store elements
std::vector<FmqRequestDatum> data;
data.reserve(count);
// package packetInfo
{
FmqRequestDatum datum;
datum.packetInformation(
{/*.packetSize=*/static_cast<uint32_t>(count),
/*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()),
/*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()),
/*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())});
data.push_back(datum);
}
// package input data
for (const auto& input : request.inputs) {
// package operand information
FmqRequestDatum datum;
datum.inputOperandInformation(
{/*.hasNoValue=*/input.hasNoValue,
/*.location=*/input.location,
/*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())});
data.push_back(datum);
// package operand dimensions
for (uint32_t dimension : input.dimensions) {
FmqRequestDatum datum;
datum.inputOperandDimensionValue(dimension);
data.push_back(datum);
}
}
// package output data
for (const auto& output : request.outputs) {
// package operand information
FmqRequestDatum datum;
datum.outputOperandInformation(
{/*.hasNoValue=*/output.hasNoValue,
/*.location=*/output.location,
/*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())});
data.push_back(datum);
// package operand dimensions
for (uint32_t dimension : output.dimensions) {
FmqRequestDatum datum;
datum.outputOperandDimensionValue(dimension);
data.push_back(datum);
}
}
// package pool identifier
for (int32_t slot : slots) {
FmqRequestDatum datum;
datum.poolIdentifier(slot);
data.push_back(datum);
}
// package measureTiming
{
FmqRequestDatum datum;
datum.measureTiming(measure);
data.push_back(datum);
}
// return packet
return data;
}
// serialize result
std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
const std::vector<V1_2::OutputShape>& outputShapes,
V1_2::Timing timing) {
// count how many elements need to be sent for a request
size_t count = 2 + outputShapes.size();
for (const auto& outputShape : outputShapes) {
count += outputShape.dimensions.size();
}
// create buffer to temporarily store elements
std::vector<FmqResultDatum> data;
data.reserve(count);
// package packetInfo
{
FmqResultDatum datum;
datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
/*.errorStatus=*/errorStatus,
/*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
data.push_back(datum);
}
// package output shape data
for (const auto& operand : outputShapes) {
// package operand information
FmqResultDatum::OperandInformation info{};
info.isSufficient = operand.isSufficient;
info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
FmqResultDatum datum;
datum.operandInformation(info);
data.push_back(datum);
// package operand dimensions
for (uint32_t dimension : operand.dimensions) {
FmqResultDatum datum;
datum.operandDimensionValue(dimension);
data.push_back(datum);
}
}
// package executionTiming
{
FmqResultDatum datum;
datum.executionTiming(timing);
data.push_back(datum);
}
// return result
return data;
}
// deserialize request
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
const std::vector<FmqRequestDatum>& data) {
using discriminator = FmqRequestDatum::hidl_discriminator;
size_t index = 0;
// validate packet information
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage packet information
const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
index++;
const uint32_t packetSize = packetInfo.packetSize;
const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
const uint32_t numberOfPools = packetInfo.numberOfPools;
// verify packet size
if (data.size() != packetSize) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage input operands
std::vector<V1_0::RequestArgument> inputs;
inputs.reserve(numberOfInputOperands);
for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
// validate input operand information
if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqRequestDatum::OperandInformation& operandInfo =
data[index].inputOperandInformation();
index++;
const bool hasNoValue = operandInfo.hasNoValue;
const V1_0::DataLocation location = operandInfo.location;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data[index].inputOperandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
inputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
}
// unpackage output operands
std::vector<V1_0::RequestArgument> outputs;
outputs.reserve(numberOfOutputOperands);
for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
// validate output operand information
if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqRequestDatum::OperandInformation& operandInfo =
data[index].outputOperandInformation();
index++;
const bool hasNoValue = operandInfo.hasNoValue;
const V1_0::DataLocation location = operandInfo.location;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data[index].outputOperandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
outputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
}
// unpackage pools
std::vector<int32_t> slots;
slots.reserve(numberOfPools);
for (size_t pool = 0; pool < numberOfPools; ++pool) {
// validate input operand information
if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const int32_t poolId = data[index].poolIdentifier();
index++;
// store result
slots.push_back(poolId);
}
// validate measureTiming
if (data[index].getDiscriminator() != discriminator::measureTiming) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage measureTiming
const V1_2::MeasureTiming measure = data[index].measureTiming();
index++;
// validate packet information
if (index != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// return request
V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
return std::make_tuple(std::move(request), std::move(slots), measure);
}
// deserialize a packet into the result
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
deserialize(const std::vector<FmqResultDatum>& data) {
using discriminator = FmqResultDatum::hidl_discriminator;
std::vector<V1_2::OutputShape> outputShapes;
size_t index = 0;
// validate packet information
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage packet information
const FmqResultDatum::PacketInformation& packetInfo = data[index].packetInformation();
index++;
const uint32_t packetSize = packetInfo.packetSize;
const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus;
const uint32_t numberOfOperands = packetInfo.numberOfOperands;
// verify packet size
if (data.size() != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage operands
for (size_t operand = 0; operand < numberOfOperands; ++operand) {
// validate operand information
if (data[index].getDiscriminator() != discriminator::operandInformation) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqResultDatum::OperandInformation& operandInfo = data[index].operandInformation();
index++;
const bool isSufficient = operandInfo.isSufficient;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::operandDimensionValue) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data[index].operandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient});
}
// validate execution timing
if (data[index].getDiscriminator() != discriminator::executionTiming) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage execution timing
const V1_2::Timing timing = data[index].executionTiming();
index++;
// validate packet information
if (index != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// return result
return std::make_tuple(errorStatus, std::move(outputShapes), timing);
}
V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) {
return convertToV1_0(convertResultCodeToErrorStatus(resultCode));
}
// RequestChannelSender methods
std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*>
RequestChannelSender::create(size_t channelLength) {
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true);
if (!fmqRequestChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelSender";
return {nullptr, nullptr};
}
const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc();
return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)),
descriptor);
}
RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel)
: mFmqRequestChannel(std::move(fmqRequestChannel)) {}
bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots) {
const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots);
return sendPacket(serialized);
}
bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
if (!mValid) {
return false;
}
if (packet.size() > mFmqRequestChannel->availableToWrite()) {
LOG(ERROR)
<< "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
return false;
}
// Always send the packet with "blocking" because this signals the futex and
// unblocks the consumer if it is waiting on the futex.
return mFmqRequestChannel->writeBlocking(packet.data(), packet.size());
}
void RequestChannelSender::invalidate() {
mValid = false;
}
// RequestChannelReceiver methods
std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
std::make_unique<FmqRequestChannel>(requestChannel);
if (!fmqRequestChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelReceiver";
return nullptr;
}
if (fmqRequestChannel->getEventFlagWord() == nullptr) {
LOG(ERROR)
<< "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
return nullptr;
}
return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
pollingTimeWindow);
}
RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
std::chrono::microseconds pollingTimeWindow)
: mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
RequestChannelReceiver::getBlocking() {
const auto packet = getPacketBlocking();
if (!packet) {
return std::nullopt;
}
return deserialize(*packet);
}
void RequestChannelReceiver::invalidate() {
mTeardown = true;
// force unblock
// ExecutionBurstServer is by default waiting on a request packet. If the
// client process destroys its burst object, the server may still be waiting
// on the futex. This force unblock wakes up any thread waiting on the
// futex.
// TODO: look for a different/better way to signal/notify the futex to wake
// up any thread waiting on it
FmqRequestDatum datum;
datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
/*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
mFmqRequestChannel->writeBlocking(&datum, 1);
}
std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
if (mTeardown) {
return std::nullopt;
}
// First spend time polling if results are available in FMQ instead of
// waiting on the futex. Polling is more responsive (yielding lower
// latencies), but can take up more power, so only poll for a limited period
// of time.
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
while (getCurrentTime() < timeToStopPolling) {
// if class is being torn down, immediately return
if (mTeardown.load(std::memory_order_relaxed)) {
return std::nullopt;
}
// Check if data is available. If it is, immediately retrieve it and
// return.
const size_t available = mFmqRequestChannel->availableToRead();
if (available > 0) {
// This is the first point when we know an execution is occurring,
// so begin to collect systraces. Note that a similar systrace does
// not exist at the corresponding point in
// ResultChannelReceiver::getPacketBlocking because the execution is
// already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting packet");
std::vector<FmqRequestDatum> packet(available);
const bool success = mFmqRequestChannel->read(packet.data(), available);
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
}
// If we get to this point, we either stopped polling because it was taking
// too long or polling was not allowed. Instead, perform a blocking call
// which uses a futex to save power.
// wait for request packet and read first element of request packet
FmqRequestDatum datum;
bool success = mFmqRequestChannel->readBlocking(&datum, 1);
// This is the first point when we know an execution is occurring, so begin
// to collect systraces. Note that a similar systrace does not exist at the
// corresponding point in ResultChannelReceiver::getPacketBlocking because
// the execution is already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
// retrieve remaining elements
// NOTE: all of the data is already available at this point, so there's no
// need to do a blocking wait to wait for more data. This is known because
// in FMQ, all writes are published (made available) atomically. Currently,
// the producer always publishes the entire packet in one function call, so
// if the first element of the packet is available, the remaining elements
// are also available.
const size_t count = mFmqRequestChannel->availableToRead();
std::vector<FmqRequestDatum> packet(count + 1);
std::memcpy(&packet.front(), &datum, sizeof(datum));
success &= mFmqRequestChannel->read(packet.data() + 1, count);
// terminate loop
if (mTeardown) {
return std::nullopt;
}
// ensure packet was successfully received
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
// ResultChannelSender methods
std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
const FmqResultDescriptor& resultChannel) {
std::unique_ptr<FmqResultChannel> fmqResultChannel =
std::make_unique<FmqResultChannel>(resultChannel);
if (!fmqResultChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelSender";
return nullptr;
}
if (fmqResultChannel->getEventFlagWord() == nullptr) {
LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
return nullptr;
}
return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
}
ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
: mFmqResultChannel(std::move(fmqResultChannel)) {}
bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
const std::vector<V1_2::OutputShape>& outputShapes,
V1_2::Timing timing) {
const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
return sendPacket(serialized);
}
bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
if (packet.size() > mFmqResultChannel->availableToWrite()) {
LOG(ERROR)
<< "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
const std::vector<FmqResultDatum> errorPacket =
serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
// Always send the packet with "blocking" because this signals the futex
// and unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
}
// Always send the packet with "blocking" because this signals the futex and
// unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
}
// ResultChannelReceiver methods
std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*>
ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) {
std::unique_ptr<FmqResultChannel> fmqResultChannel =
std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true);
if (!fmqResultChannel->isValid()) {
LOG(ERROR) << "Unable to create ResultChannelReceiver";
return {nullptr, nullptr};
}
const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc();
return std::make_pair(
std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow),
descriptor);
}
ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
std::chrono::microseconds pollingTimeWindow)
: mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {}
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
ResultChannelReceiver::getBlocking() {
const auto packet = getPacketBlocking();
if (!packet) {
return std::nullopt;
}
return deserialize(*packet);
}
void ResultChannelReceiver::invalidate() {
mValid = false;
// force unblock
// ExecutionBurstController waits on a result packet after sending a
// request. If the driver containing ExecutionBurstServer crashes, the
// controller may be waiting on the futex. This force unblock wakes up any
// thread waiting on the futex.
// TODO: look for a different/better way to signal/notify the futex to
// wake up any thread waiting on it
FmqResultDatum datum;
datum.packetInformation({/*.packetSize=*/0,
/*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE,
/*.numberOfOperands=*/0});
mFmqResultChannel->writeBlocking(&datum, 1);
}
std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
if (!mValid) {
return std::nullopt;
}
// First spend time polling if results are available in FMQ instead of
// waiting on the futex. Polling is more responsive (yielding lower
// latencies), but can take up more power, so only poll for a limited period
// of time.
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
while (getCurrentTime() < timeToStopPolling) {
// if class is being torn down, immediately return
if (!mValid.load(std::memory_order_relaxed)) {
return std::nullopt;
}
// Check if data is available. If it is, immediately retrieve it and
// return.
const size_t available = mFmqResultChannel->availableToRead();
if (available > 0) {
std::vector<FmqResultDatum> packet(available);
const bool success = mFmqResultChannel->read(packet.data(), available);
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
}
// If we get to this point, we either stopped polling because it was taking
// too long or polling was not allowed. Instead, perform a blocking call
// which uses a futex to save power.
// wait for result packet and read first element of result packet
FmqResultDatum datum;
bool success = mFmqResultChannel->readBlocking(&datum, 1);
// retrieve remaining elements
// NOTE: all of the data is already available at this point, so there's no
// need to do a blocking wait to wait for more data. This is known because
// in FMQ, all writes are published (made available) atomically. Currently,
// the producer always publishes the entire packet in one function call, so
// if the first element of the packet is available, the remaining elements
// are also available.
const size_t count = mFmqResultChannel->availableToRead();
std::vector<FmqResultDatum> packet(count + 1);
std::memcpy(&packet.front(), &datum, sizeof(datum));
success &= mFmqResultChannel->read(packet.data() + 1, count);
if (!mValid) {
return std::nullopt;
}
// ensure packet was successfully received
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
} // namespace android::hardware::neuralnetworks::V1_2::utils