| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "ExecutionBurstUtils" |
| |
| #include "ExecutionBurstUtils.h" |
| |
| #include <android-base/logging.h> |
| #include <android/hardware/neuralnetworks/1.0/types.h> |
| #include <android/hardware/neuralnetworks/1.1/types.h> |
| #include <android/hardware/neuralnetworks/1.2/types.h> |
| #include <fmq/MessageQueue.h> |
| #include <hidl/MQDescriptor.h> |
| |
| #include <atomic> |
| #include <chrono> |
| #include <memory> |
| #include <thread> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| namespace android::hardware::neuralnetworks::V1_2::utils { |
| namespace { |
| |
| constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()}; |
| |
| } |
| |
| // serialize a request into a packet |
| std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure, |
| const std::vector<int32_t>& slots) { |
| // count how many elements need to be sent for a request |
| size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size(); |
| for (const auto& input : request.inputs) { |
| count += input.dimensions.size(); |
| } |
| for (const auto& output : request.outputs) { |
| count += output.dimensions.size(); |
| } |
| |
| // create buffer to temporarily store elements |
| std::vector<FmqRequestDatum> data; |
| data.reserve(count); |
| |
| // package packetInfo |
| { |
| FmqRequestDatum datum; |
| datum.packetInformation( |
| {/*.packetSize=*/static_cast<uint32_t>(count), |
| /*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()), |
| /*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()), |
| /*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())}); |
| data.push_back(datum); |
| } |
| |
| // package input data |
| for (const auto& input : request.inputs) { |
| // package operand information |
| FmqRequestDatum datum; |
| datum.inputOperandInformation( |
| {/*.hasNoValue=*/input.hasNoValue, |
| /*.location=*/input.location, |
| /*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())}); |
| data.push_back(datum); |
| |
| // package operand dimensions |
| for (uint32_t dimension : input.dimensions) { |
| FmqRequestDatum datum; |
| datum.inputOperandDimensionValue(dimension); |
| data.push_back(datum); |
| } |
| } |
| |
| // package output data |
| for (const auto& output : request.outputs) { |
| // package operand information |
| FmqRequestDatum datum; |
| datum.outputOperandInformation( |
| {/*.hasNoValue=*/output.hasNoValue, |
| /*.location=*/output.location, |
| /*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())}); |
| data.push_back(datum); |
| |
| // package operand dimensions |
| for (uint32_t dimension : output.dimensions) { |
| FmqRequestDatum datum; |
| datum.outputOperandDimensionValue(dimension); |
| data.push_back(datum); |
| } |
| } |
| |
| // package pool identifier |
| for (int32_t slot : slots) { |
| FmqRequestDatum datum; |
| datum.poolIdentifier(slot); |
| data.push_back(datum); |
| } |
| |
| // package measureTiming |
| { |
| FmqRequestDatum datum; |
| datum.measureTiming(measure); |
| data.push_back(datum); |
| } |
| |
| // return packet |
| return data; |
| } |
| |
| // serialize result |
| std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus, |
| const std::vector<V1_2::OutputShape>& outputShapes, |
| V1_2::Timing timing) { |
| // count how many elements need to be sent for a request |
| size_t count = 2 + outputShapes.size(); |
| for (const auto& outputShape : outputShapes) { |
| count += outputShape.dimensions.size(); |
| } |
| |
| // create buffer to temporarily store elements |
| std::vector<FmqResultDatum> data; |
| data.reserve(count); |
| |
| // package packetInfo |
| { |
| FmqResultDatum datum; |
| datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count), |
| /*.errorStatus=*/errorStatus, |
| /*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())}); |
| data.push_back(datum); |
| } |
| |
| // package output shape data |
| for (const auto& operand : outputShapes) { |
| // package operand information |
| FmqResultDatum::OperandInformation info{}; |
| info.isSufficient = operand.isSufficient; |
| info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size()); |
| |
| FmqResultDatum datum; |
| datum.operandInformation(info); |
| data.push_back(datum); |
| |
| // package operand dimensions |
| for (uint32_t dimension : operand.dimensions) { |
| FmqResultDatum datum; |
| datum.operandDimensionValue(dimension); |
| data.push_back(datum); |
| } |
| } |
| |
| // package executionTiming |
| { |
| FmqResultDatum datum; |
| datum.executionTiming(timing); |
| data.push_back(datum); |
| } |
| |
| // return result |
| return data; |
| } |
| |
| // deserialize request |
| std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize( |
| const std::vector<FmqRequestDatum>& data) { |
| using discriminator = FmqRequestDatum::hidl_discriminator; |
| |
| size_t index = 0; |
| |
| // validate packet information |
| if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage packet information |
| const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation(); |
| index++; |
| const uint32_t packetSize = packetInfo.packetSize; |
| const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands; |
| const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands; |
| const uint32_t numberOfPools = packetInfo.numberOfPools; |
| |
| // verify packet size |
| if (data.size() != packetSize) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage input operands |
| std::vector<V1_0::RequestArgument> inputs; |
| inputs.reserve(numberOfInputOperands); |
| for (size_t operand = 0; operand < numberOfInputOperands; ++operand) { |
| // validate input operand information |
| if (data[index].getDiscriminator() != discriminator::inputOperandInformation) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const FmqRequestDatum::OperandInformation& operandInfo = |
| data[index].inputOperandInformation(); |
| index++; |
| const bool hasNoValue = operandInfo.hasNoValue; |
| const V1_0::DataLocation location = operandInfo.location; |
| const uint32_t numberOfDimensions = operandInfo.numberOfDimensions; |
| |
| // unpackage operand dimensions |
| std::vector<uint32_t> dimensions; |
| dimensions.reserve(numberOfDimensions); |
| for (size_t i = 0; i < numberOfDimensions; ++i) { |
| // validate dimension |
| if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage dimension |
| const uint32_t dimension = data[index].inputOperandDimensionValue(); |
| index++; |
| |
| // store result |
| dimensions.push_back(dimension); |
| } |
| |
| // store result |
| inputs.push_back( |
| {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions}); |
| } |
| |
| // unpackage output operands |
| std::vector<V1_0::RequestArgument> outputs; |
| outputs.reserve(numberOfOutputOperands); |
| for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) { |
| // validate output operand information |
| if (data[index].getDiscriminator() != discriminator::outputOperandInformation) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const FmqRequestDatum::OperandInformation& operandInfo = |
| data[index].outputOperandInformation(); |
| index++; |
| const bool hasNoValue = operandInfo.hasNoValue; |
| const V1_0::DataLocation location = operandInfo.location; |
| const uint32_t numberOfDimensions = operandInfo.numberOfDimensions; |
| |
| // unpackage operand dimensions |
| std::vector<uint32_t> dimensions; |
| dimensions.reserve(numberOfDimensions); |
| for (size_t i = 0; i < numberOfDimensions; ++i) { |
| // validate dimension |
| if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage dimension |
| const uint32_t dimension = data[index].outputOperandDimensionValue(); |
| index++; |
| |
| // store result |
| dimensions.push_back(dimension); |
| } |
| |
| // store result |
| outputs.push_back( |
| {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions}); |
| } |
| |
| // unpackage pools |
| std::vector<int32_t> slots; |
| slots.reserve(numberOfPools); |
| for (size_t pool = 0; pool < numberOfPools; ++pool) { |
| // validate input operand information |
| if (data[index].getDiscriminator() != discriminator::poolIdentifier) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const int32_t poolId = data[index].poolIdentifier(); |
| index++; |
| |
| // store result |
| slots.push_back(poolId); |
| } |
| |
| // validate measureTiming |
| if (data[index].getDiscriminator() != discriminator::measureTiming) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage measureTiming |
| const V1_2::MeasureTiming measure = data[index].measureTiming(); |
| index++; |
| |
| // validate packet information |
| if (index != packetSize) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // return request |
| V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}}; |
| return std::make_tuple(std::move(request), std::move(slots), measure); |
| } |
| |
| // deserialize a packet into the result |
| std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>> |
| deserialize(const std::vector<FmqResultDatum>& data) { |
| using discriminator = FmqResultDatum::hidl_discriminator; |
| |
| std::vector<V1_2::OutputShape> outputShapes; |
| size_t index = 0; |
| |
| // validate packet information |
| if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage packet information |
| const FmqResultDatum::PacketInformation& packetInfo = data[index].packetInformation(); |
| index++; |
| const uint32_t packetSize = packetInfo.packetSize; |
| const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus; |
| const uint32_t numberOfOperands = packetInfo.numberOfOperands; |
| |
| // verify packet size |
| if (data.size() != packetSize) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operands |
| for (size_t operand = 0; operand < numberOfOperands; ++operand) { |
| // validate operand information |
| if (data[index].getDiscriminator() != discriminator::operandInformation) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const FmqResultDatum::OperandInformation& operandInfo = data[index].operandInformation(); |
| index++; |
| const bool isSufficient = operandInfo.isSufficient; |
| const uint32_t numberOfDimensions = operandInfo.numberOfDimensions; |
| |
| // unpackage operand dimensions |
| std::vector<uint32_t> dimensions; |
| dimensions.reserve(numberOfDimensions); |
| for (size_t i = 0; i < numberOfDimensions; ++i) { |
| // validate dimension |
| if (data[index].getDiscriminator() != discriminator::operandDimensionValue) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage dimension |
| const uint32_t dimension = data[index].operandDimensionValue(); |
| index++; |
| |
| // store result |
| dimensions.push_back(dimension); |
| } |
| |
| // store result |
| outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient}); |
| } |
| |
| // validate execution timing |
| if (data[index].getDiscriminator() != discriminator::executionTiming) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage execution timing |
| const V1_2::Timing timing = data[index].executionTiming(); |
| index++; |
| |
| // validate packet information |
| if (index != packetSize) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // return result |
| return std::make_tuple(errorStatus, std::move(outputShapes), timing); |
| } |
| |
| V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) { |
| return convertToV1_0(convertResultCodeToErrorStatus(resultCode)); |
| } |
| |
| // RequestChannelSender methods |
| |
| std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*> |
| RequestChannelSender::create(size_t channelLength) { |
| std::unique_ptr<FmqRequestChannel> fmqRequestChannel = |
| std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true); |
| if (!fmqRequestChannel->isValid()) { |
| LOG(ERROR) << "Unable to create RequestChannelSender"; |
| return {nullptr, nullptr}; |
| } |
| |
| const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc(); |
| return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)), |
| descriptor); |
| } |
| |
| RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel) |
| : mFmqRequestChannel(std::move(fmqRequestChannel)) {} |
| |
| bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure, |
| const std::vector<int32_t>& slots) { |
| const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots); |
| return sendPacket(serialized); |
| } |
| |
| bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) { |
| if (!mValid) { |
| return false; |
| } |
| |
| if (packet.size() > mFmqRequestChannel->availableToWrite()) { |
| LOG(ERROR) |
| << "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ"; |
| return false; |
| } |
| |
| // Always send the packet with "blocking" because this signals the futex and |
| // unblocks the consumer if it is waiting on the futex. |
| return mFmqRequestChannel->writeBlocking(packet.data(), packet.size()); |
| } |
| |
| void RequestChannelSender::invalidate() { |
| mValid = false; |
| } |
| |
| // RequestChannelReceiver methods |
| |
| std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create( |
| const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) { |
| std::unique_ptr<FmqRequestChannel> fmqRequestChannel = |
| std::make_unique<FmqRequestChannel>(requestChannel); |
| |
| if (!fmqRequestChannel->isValid()) { |
| LOG(ERROR) << "Unable to create RequestChannelReceiver"; |
| return nullptr; |
| } |
| if (fmqRequestChannel->getEventFlagWord() == nullptr) { |
| LOG(ERROR) |
| << "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag"; |
| return nullptr; |
| } |
| |
| return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel), |
| pollingTimeWindow); |
| } |
| |
| RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel, |
| std::chrono::microseconds pollingTimeWindow) |
| : mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {} |
| |
| std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> |
| RequestChannelReceiver::getBlocking() { |
| const auto packet = getPacketBlocking(); |
| if (!packet) { |
| return std::nullopt; |
| } |
| |
| return deserialize(*packet); |
| } |
| |
| void RequestChannelReceiver::invalidate() { |
| mTeardown = true; |
| |
| // force unblock |
| // ExecutionBurstServer is by default waiting on a request packet. If the |
| // client process destroys its burst object, the server may still be waiting |
| // on the futex. This force unblock wakes up any thread waiting on the |
| // futex. |
| // TODO: look for a different/better way to signal/notify the futex to wake |
| // up any thread waiting on it |
| FmqRequestDatum datum; |
| datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0, |
| /*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0}); |
| mFmqRequestChannel->writeBlocking(&datum, 1); |
| } |
| |
| std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() { |
| if (mTeardown) { |
| return std::nullopt; |
| } |
| |
| // First spend time polling if results are available in FMQ instead of |
| // waiting on the futex. Polling is more responsive (yielding lower |
| // latencies), but can take up more power, so only poll for a limited period |
| // of time. |
| |
| auto& getCurrentTime = std::chrono::high_resolution_clock::now; |
| const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow; |
| |
| while (getCurrentTime() < timeToStopPolling) { |
| // if class is being torn down, immediately return |
| if (mTeardown.load(std::memory_order_relaxed)) { |
| return std::nullopt; |
| } |
| |
| // Check if data is available. If it is, immediately retrieve it and |
| // return. |
| const size_t available = mFmqRequestChannel->availableToRead(); |
| if (available > 0) { |
| // This is the first point when we know an execution is occurring, |
| // so begin to collect systraces. Note that a similar systrace does |
| // not exist at the corresponding point in |
| // ResultChannelReceiver::getPacketBlocking because the execution is |
| // already in flight. |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, |
| "ExecutionBurstServer getting packet"); |
| std::vector<FmqRequestDatum> packet(available); |
| const bool success = mFmqRequestChannel->read(packet.data(), available); |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| return std::make_optional(std::move(packet)); |
| } |
| } |
| |
| // If we get to this point, we either stopped polling because it was taking |
| // too long or polling was not allowed. Instead, perform a blocking call |
| // which uses a futex to save power. |
| |
| // wait for request packet and read first element of request packet |
| FmqRequestDatum datum; |
| bool success = mFmqRequestChannel->readBlocking(&datum, 1); |
| |
| // This is the first point when we know an execution is occurring, so begin |
| // to collect systraces. Note that a similar systrace does not exist at the |
| // corresponding point in ResultChannelReceiver::getPacketBlocking because |
| // the execution is already in flight. |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet"); |
| |
| // retrieve remaining elements |
| // NOTE: all of the data is already available at this point, so there's no |
| // need to do a blocking wait to wait for more data. This is known because |
| // in FMQ, all writes are published (made available) atomically. Currently, |
| // the producer always publishes the entire packet in one function call, so |
| // if the first element of the packet is available, the remaining elements |
| // are also available. |
| const size_t count = mFmqRequestChannel->availableToRead(); |
| std::vector<FmqRequestDatum> packet(count + 1); |
| std::memcpy(&packet.front(), &datum, sizeof(datum)); |
| success &= mFmqRequestChannel->read(packet.data() + 1, count); |
| |
| // terminate loop |
| if (mTeardown) { |
| return std::nullopt; |
| } |
| |
| // ensure packet was successfully received |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| |
| return std::make_optional(std::move(packet)); |
| } |
| |
| // ResultChannelSender methods |
| |
| std::unique_ptr<ResultChannelSender> ResultChannelSender::create( |
| const FmqResultDescriptor& resultChannel) { |
| std::unique_ptr<FmqResultChannel> fmqResultChannel = |
| std::make_unique<FmqResultChannel>(resultChannel); |
| |
| if (!fmqResultChannel->isValid()) { |
| LOG(ERROR) << "Unable to create RequestChannelSender"; |
| return nullptr; |
| } |
| if (fmqResultChannel->getEventFlagWord() == nullptr) { |
| LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag"; |
| return nullptr; |
| } |
| |
| return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel)); |
| } |
| |
| ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel) |
| : mFmqResultChannel(std::move(fmqResultChannel)) {} |
| |
| bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus, |
| const std::vector<V1_2::OutputShape>& outputShapes, |
| V1_2::Timing timing) { |
| const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing); |
| return sendPacket(serialized); |
| } |
| |
| bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) { |
| if (packet.size() > mFmqResultChannel->availableToWrite()) { |
| LOG(ERROR) |
| << "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ"; |
| const std::vector<FmqResultDatum> errorPacket = |
| serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming); |
| |
| // Always send the packet with "blocking" because this signals the futex |
| // and unblocks the consumer if it is waiting on the futex. |
| return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size()); |
| } |
| |
| // Always send the packet with "blocking" because this signals the futex and |
| // unblocks the consumer if it is waiting on the futex. |
| return mFmqResultChannel->writeBlocking(packet.data(), packet.size()); |
| } |
| |
| // ResultChannelReceiver methods |
| |
| std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*> |
| ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) { |
| std::unique_ptr<FmqResultChannel> fmqResultChannel = |
| std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true); |
| if (!fmqResultChannel->isValid()) { |
| LOG(ERROR) << "Unable to create ResultChannelReceiver"; |
| return {nullptr, nullptr}; |
| } |
| |
| const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc(); |
| return std::make_pair( |
| std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow), |
| descriptor); |
| } |
| |
| ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel, |
| std::chrono::microseconds pollingTimeWindow) |
| : mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {} |
| |
| std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>> |
| ResultChannelReceiver::getBlocking() { |
| const auto packet = getPacketBlocking(); |
| if (!packet) { |
| return std::nullopt; |
| } |
| |
| return deserialize(*packet); |
| } |
| |
| void ResultChannelReceiver::invalidate() { |
| mValid = false; |
| |
| // force unblock |
| // ExecutionBurstController waits on a result packet after sending a |
| // request. If the driver containing ExecutionBurstServer crashes, the |
| // controller may be waiting on the futex. This force unblock wakes up any |
| // thread waiting on the futex. |
| // TODO: look for a different/better way to signal/notify the futex to |
| // wake up any thread waiting on it |
| FmqResultDatum datum; |
| datum.packetInformation({/*.packetSize=*/0, |
| /*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE, |
| /*.numberOfOperands=*/0}); |
| mFmqResultChannel->writeBlocking(&datum, 1); |
| } |
| |
| std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() { |
| if (!mValid) { |
| return std::nullopt; |
| } |
| |
| // First spend time polling if results are available in FMQ instead of |
| // waiting on the futex. Polling is more responsive (yielding lower |
| // latencies), but can take up more power, so only poll for a limited period |
| // of time. |
| |
| auto& getCurrentTime = std::chrono::high_resolution_clock::now; |
| const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow; |
| |
| while (getCurrentTime() < timeToStopPolling) { |
| // if class is being torn down, immediately return |
| if (!mValid.load(std::memory_order_relaxed)) { |
| return std::nullopt; |
| } |
| |
| // Check if data is available. If it is, immediately retrieve it and |
| // return. |
| const size_t available = mFmqResultChannel->availableToRead(); |
| if (available > 0) { |
| std::vector<FmqResultDatum> packet(available); |
| const bool success = mFmqResultChannel->read(packet.data(), available); |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| return std::make_optional(std::move(packet)); |
| } |
| } |
| |
| // If we get to this point, we either stopped polling because it was taking |
| // too long or polling was not allowed. Instead, perform a blocking call |
| // which uses a futex to save power. |
| |
| // wait for result packet and read first element of result packet |
| FmqResultDatum datum; |
| bool success = mFmqResultChannel->readBlocking(&datum, 1); |
| |
| // retrieve remaining elements |
| // NOTE: all of the data is already available at this point, so there's no |
| // need to do a blocking wait to wait for more data. This is known because |
| // in FMQ, all writes are published (made available) atomically. Currently, |
| // the producer always publishes the entire packet in one function call, so |
| // if the first element of the packet is available, the remaining elements |
| // are also available. |
| const size_t count = mFmqResultChannel->availableToRead(); |
| std::vector<FmqResultDatum> packet(count + 1); |
| std::memcpy(&packet.front(), &datum, sizeof(datum)); |
| success &= mFmqResultChannel->read(packet.data() + 1, count); |
| |
| if (!mValid) { |
| return std::nullopt; |
| } |
| |
| // ensure packet was successfully received |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| |
| return std::make_optional(std::move(packet)); |
| } |
| |
| } // namespace android::hardware::neuralnetworks::V1_2::utils |