| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "ExecutionBurstController" |
| |
| #include "ExecutionBurstController.h" |
| |
| #include <android-base/logging.h> |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #include "ExecutionBurstUtils.h" |
| #include "HalInterfaces.h" |
| #include "Tracing.h" |
| #include "Utils.h" |
| |
| namespace android::nn { |
| namespace { |
| |
| class BurstContextDeathHandler : public hardware::hidl_death_recipient { |
| public: |
| using Callback = std::function<void()>; |
| |
| BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) { |
| CHECK(onDeathCallback != nullptr); |
| } |
| |
| void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override { |
| LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!"; |
| mOnDeathCallback(); |
| } |
| |
| private: |
| const Callback mOnDeathCallback; |
| }; |
| |
| } // anonymous namespace |
| |
| hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories( |
| const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| // get all memories |
| hardware::hidl_vec<hardware::hidl_memory> memories(slots.size()); |
| std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) { |
| return slot < mMemoryCache.size() ? mMemoryCache[slot] : hardware::hidl_memory{}; |
| }); |
| |
| // ensure all memories are valid |
| if (!std::all_of(memories.begin(), memories.end(), |
| [](const hardware::hidl_memory& memory) { return memory.valid(); })) { |
| cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {}); |
| return hardware::Void(); |
| } |
| |
| // return successful |
| cb(V1_0::ErrorStatus::NONE, std::move(memories)); |
| return hardware::Void(); |
| } |
| |
| std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots( |
| const hardware::hidl_vec<hardware::hidl_memory>& memories, |
| const std::vector<intptr_t>& keys) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| // retrieve (or bind) all slots corresponding to memories |
| std::vector<int32_t> slots; |
| slots.reserve(memories.size()); |
| for (size_t i = 0; i < memories.size(); ++i) { |
| slots.push_back(getSlotLocked(memories[i], keys[i])); |
| } |
| return slots; |
| } |
| |
| std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory( |
| intptr_t key) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| auto iter = mMemoryIdToSlot.find(key); |
| if (iter == mMemoryIdToSlot.end()) { |
| return {false, 0}; |
| } |
| const int32_t slot = iter->second; |
| mMemoryIdToSlot.erase(key); |
| mMemoryCache[slot] = {}; |
| mFreeSlots.push(slot); |
| return {true, slot}; |
| } |
| |
| int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked( |
| const hardware::hidl_memory& memory, intptr_t key) { |
| auto iter = mMemoryIdToSlot.find(key); |
| if (iter == mMemoryIdToSlot.end()) { |
| const int32_t slot = allocateSlotLocked(); |
| mMemoryIdToSlot[key] = slot; |
| mMemoryCache[slot] = memory; |
| return slot; |
| } else { |
| const int32_t slot = iter->second; |
| return slot; |
| } |
| } |
| |
| int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() { |
| constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max(); |
| |
| // if there is a free slot, use it |
| if (mFreeSlots.size() > 0) { |
| const int32_t slot = mFreeSlots.top(); |
| mFreeSlots.pop(); |
| return slot; |
| } |
| |
| // otherwise use a slot for the first time |
| CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!"; |
| const int32_t slot = static_cast<int32_t>(mMemoryCache.size()); |
| mMemoryCache.emplace_back(); |
| |
| return slot; |
| } |
| |
| std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create( |
| const sp<V1_2::IPreparedModel>& preparedModel, |
| std::chrono::microseconds pollingTimeWindow) { |
| // check inputs |
| if (preparedModel == nullptr) { |
| LOG(ERROR) << "ExecutionBurstController::create passed a nullptr"; |
| return nullptr; |
| } |
| |
| // create callback object |
| sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback(); |
| |
| // create FMQ objects |
| auto [requestChannelSenderTemp, requestChannelDescriptor] = |
| RequestChannelSender::create(kExecutionBurstChannelLength); |
| auto [resultChannelReceiverTemp, resultChannelDescriptor] = |
| ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow); |
| std::shared_ptr<RequestChannelSender> requestChannelSender = |
| std::move(requestChannelSenderTemp); |
| std::shared_ptr<ResultChannelReceiver> resultChannelReceiver = |
| std::move(resultChannelReceiverTemp); |
| |
| // check FMQ objects |
| if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor || |
| !resultChannelDescriptor) { |
| LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue"; |
| return nullptr; |
| } |
| |
| // configure burst |
| V1_0::ErrorStatus errorStatus; |
| sp<IBurstContext> burstContext; |
| const hardware::Return<void> ret = preparedModel->configureExecutionBurst( |
| callback, *requestChannelDescriptor, *resultChannelDescriptor, |
| [&errorStatus, &burstContext](V1_0::ErrorStatus status, |
| const sp<IBurstContext>& context) { |
| errorStatus = status; |
| burstContext = context; |
| }); |
| |
| // check burst |
| if (!ret.isOk()) { |
| LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description " |
| << ret.description(); |
| return nullptr; |
| } |
| if (errorStatus != V1_0::ErrorStatus::NONE) { |
| LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status " |
| << toString(errorStatus); |
| return nullptr; |
| } |
| if (burstContext == nullptr) { |
| LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst"; |
| return nullptr; |
| } |
| |
| // create death handler object |
| BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender, |
| resultChannelReceiver] { |
| requestChannelSender->invalidate(); |
| resultChannelReceiver->invalidate(); |
| }; |
| const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback); |
| |
| // linkToDeath registers a callback that will be invoked on service death to |
| // proactively handle service crashes. If the linkToDeath call fails, |
| // asynchronous calls are susceptible to hangs if the service crashes before |
| // providing the response. |
| const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0); |
| if (!deathHandlerRet.isOk() || deathHandlerRet != true) { |
| LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient " |
| "for the IBurstContext object."; |
| return nullptr; |
| } |
| |
| // make and return controller |
| return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver, |
| burstContext, callback, deathHandler); |
| } |
| |
| ExecutionBurstController::ExecutionBurstController( |
| const std::shared_ptr<RequestChannelSender>& requestChannelSender, |
| const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver, |
| const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback, |
| const sp<hardware::hidl_death_recipient>& deathHandler) |
| : mRequestChannelSender(requestChannelSender), |
| mResultChannelReceiver(resultChannelReceiver), |
| mBurstContext(burstContext), |
| mMemoryCache(callback), |
| mDeathHandler(deathHandler) {} |
| |
| ExecutionBurstController::~ExecutionBurstController() { |
| // It is safe to ignore any errors resulting from this unlinkToDeath call |
| // because the ExecutionBurstController object is already being destroyed |
| // and its underlying IBurstContext object is no longer being used by the NN |
| // runtime. |
| if (mDeathHandler) { |
| mBurstContext->unlinkToDeath(mDeathHandler).isOk(); |
| } |
| } |
| |
| static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult( |
| V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing, |
| bool fallback) { |
| auto [n, checkedOutputShapes, checkedTiming] = |
| getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing); |
| return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback}; |
| } |
| |
| std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> |
| ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure, |
| const std::vector<intptr_t>& memoryIds) { |
| // This is the first point when we know an execution is occurring, so begin |
| // to collect systraces. Note that the first point we can begin collecting |
| // systraces in ExecutionBurstServer is when the RequestChannelReceiver |
| // realizes there is data in the FMQ, so ExecutionBurstServer collects |
| // systraces at different points in the code. |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute"); |
| |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| // send request packet |
| const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds); |
| const bool success = mRequestChannelSender->send(request, measure, slots); |
| if (!success) { |
| LOG(ERROR) << "Error sending FMQ packet"; |
| // only use fallback execution path if the packet could not be sent |
| return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12, |
| /*fallback=*/true); |
| } |
| |
| // get result packet |
| const auto result = mResultChannelReceiver->getBlocking(); |
| if (!result) { |
| LOG(ERROR) << "Error retrieving FMQ packet"; |
| // only use fallback execution path if the packet could not be sent |
| return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12, |
| /*fallback=*/false); |
| } |
| |
| // unpack results and return (only use fallback execution path if the |
| // packet could not be sent) |
| auto [status, outputShapes, timing] = std::move(*result); |
| return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false); |
| } |
| |
| void ExecutionBurstController::freeMemory(intptr_t key) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| bool valid; |
| int32_t slot; |
| std::tie(valid, slot) = mMemoryCache->freeMemory(key); |
| if (valid) { |
| mBurstContext->freeMemory(slot).isOk(); |
| } |
| } |
| |
| } // namespace android::nn |