blob: 23dd26bccbb597e7ed09fbea730480cdca7e5527 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Sensors.h"
#include <android/hardware/sensors/2.0/types.h>
#include <log/log.h>
namespace android {
namespace hardware {
namespace sensors {
namespace V2_0 {
namespace implementation {
using ::android::hardware::sensors::V1_0::Event;
using ::android::hardware::sensors::V1_0::OperationMode;
using ::android::hardware::sensors::V1_0::RateLevel;
using ::android::hardware::sensors::V1_0::Result;
using ::android::hardware::sensors::V1_0::SharedMemInfo;
using ::android::hardware::sensors::V2_0::SensorTimeout;
using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
constexpr const char* kWakeLockName = "SensorsHAL_WAKEUP";
Sensors::Sensors()
: mEventQueueFlag(nullptr),
mNextHandle(1),
mOutstandingWakeUpEvents(0),
mReadWakeLockQueueRun(false),
mAutoReleaseWakeLockTime(0),
mHasWakeLock(false) {
AddSensor<AccelSensor>();
AddSensor<GyroSensor>();
AddSensor<AmbientTempSensor>();
AddSensor<DeviceTempSensor>();
AddSensor<PressureSensor>();
AddSensor<MagnetometerSensor>();
AddSensor<LightSensor>();
AddSensor<ProximitySensor>();
AddSensor<RelativeHumiditySensor>();
}
Sensors::~Sensors() {
deleteEventFlag();
mReadWakeLockQueueRun = false;
mWakeLockThread.join();
}
// Methods from ::android::hardware::sensors::V2_0::ISensors follow.
Return<void> Sensors::getSensorsList(getSensorsList_cb _hidl_cb) {
std::vector<SensorInfo> sensors;
for (const auto& sensor : mSensors) {
sensors.push_back(sensor.second->getSensorInfo());
}
// Call the HIDL callback with the SensorInfo
_hidl_cb(sensors);
return Void();
}
Return<Result> Sensors::setOperationMode(OperationMode mode) {
for (auto sensor : mSensors) {
sensor.second->setOperationMode(mode);
}
return Result::OK;
}
Return<Result> Sensors::activate(int32_t sensorHandle, bool enabled) {
auto sensor = mSensors.find(sensorHandle);
if (sensor != mSensors.end()) {
sensor->second->activate(enabled);
return Result::OK;
}
return Result::BAD_VALUE;
}
Return<Result> Sensors::initialize(
const ::android::hardware::MQDescriptorSync<Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<ISensorsCallback>& sensorsCallback) {
Result result = Result::OK;
// Ensure that all sensors are disabled
for (auto sensor : mSensors) {
sensor.second->activate(false /* enable */);
}
// Stop the Wake Lock thread if it is currently running
if (mReadWakeLockQueueRun.load()) {
mReadWakeLockQueueRun = false;
mWakeLockThread.join();
}
// Save a reference to the callback
mCallback = sensorsCallback;
// Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
mEventQueue =
std::make_unique<EventMessageQueue>(eventQueueDescriptor, true /* resetPointers */);
// Ensure that any existing EventFlag is properly deleted
deleteEventFlag();
// Create the EventFlag that is used to signal to the framework that sensor events have been
// written to the Event FMQ
if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
result = Result::BAD_VALUE;
}
// Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
// events have been successfully read and handled by the framework.
mWakeLockQueue =
std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
if (!mCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
result = Result::BAD_VALUE;
}
// Start the thread to read events from the Wake Lock FMQ
mReadWakeLockQueueRun = true;
mWakeLockThread = std::thread(startReadWakeLockThread, this);
return result;
}
Return<Result> Sensors::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t /* maxReportLatencyNs */) {
auto sensor = mSensors.find(sensorHandle);
if (sensor != mSensors.end()) {
sensor->second->batch(samplingPeriodNs);
return Result::OK;
}
return Result::BAD_VALUE;
}
Return<Result> Sensors::flush(int32_t sensorHandle) {
auto sensor = mSensors.find(sensorHandle);
if (sensor != mSensors.end()) {
return sensor->second->flush();
}
return Result::BAD_VALUE;
}
Return<Result> Sensors::injectSensorData(const Event& event) {
auto sensor = mSensors.find(event.sensorHandle);
if (sensor != mSensors.end()) {
return sensor->second->injectEvent(event);
}
return Result::BAD_VALUE;
}
Return<void> Sensors::registerDirectChannel(const SharedMemInfo& /* mem */,
registerDirectChannel_cb _hidl_cb) {
_hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
return Return<void>();
}
Return<Result> Sensors::unregisterDirectChannel(int32_t /* channelHandle */) {
return Result::INVALID_OPERATION;
}
Return<void> Sensors::configDirectReport(int32_t /* sensorHandle */, int32_t /* channelHandle */,
RateLevel /* rate */, configDirectReport_cb _hidl_cb) {
_hidl_cb(Result::INVALID_OPERATION, 0 /* reportToken */);
return Return<void>();
}
void Sensors::postEvents(const std::vector<Event>& events, bool wakeup) {
std::lock_guard<std::mutex> lock(mWriteLock);
if (mEventQueue->write(events.data(), events.size())) {
mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
if (wakeup) {
// Keep track of the number of outstanding WAKE_UP events in order to properly hold
// a wake lock until the framework has secured a wake lock
updateWakeLock(events.size(), 0 /* eventsHandled */);
}
}
}
void Sensors::updateWakeLock(int32_t eventsWritten, int32_t eventsHandled) {
std::lock_guard<std::mutex> lock(mWakeLockLock);
int32_t newVal = mOutstandingWakeUpEvents + eventsWritten - eventsHandled;
if (newVal < 0) {
mOutstandingWakeUpEvents = 0;
} else {
mOutstandingWakeUpEvents = newVal;
}
if (eventsWritten > 0) {
// Update the time at which the last WAKE_UP event was sent
mAutoReleaseWakeLockTime = ::android::uptimeMillis() +
static_cast<uint32_t>(SensorTimeout::WAKE_LOCK_SECONDS) * 1000;
}
if (!mHasWakeLock && mOutstandingWakeUpEvents > 0 &&
acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakeLockName) == 0) {
mHasWakeLock = true;
} else if (mHasWakeLock) {
// Check if the wake lock should be released automatically if
// SensorTimeout::WAKE_LOCK_SECONDS has elapsed since the last WAKE_UP event was written to
// the Wake Lock FMQ.
if (::android::uptimeMillis() > mAutoReleaseWakeLockTime) {
ALOGD("No events read from wake lock FMQ for %d seconds, auto releasing wake lock",
SensorTimeout::WAKE_LOCK_SECONDS);
mOutstandingWakeUpEvents = 0;
}
if (mOutstandingWakeUpEvents == 0 && release_wake_lock(kWakeLockName) == 0) {
mHasWakeLock = false;
}
}
}
void Sensors::readWakeLockFMQ() {
while (mReadWakeLockQueueRun.load()) {
constexpr int64_t kReadTimeoutNs = 500 * 1000 * 1000; // 500 ms
uint32_t eventsHandled = 0;
// Read events from the Wake Lock FMQ. Timeout after a reasonable amount of time to ensure
// that any held wake lock is able to be released if it is held for too long.
mWakeLockQueue->readBlocking(&eventsHandled, 1 /* count */, 0 /* readNotification */,
static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN),
kReadTimeoutNs);
updateWakeLock(0 /* eventsWritten */, eventsHandled);
}
}
void Sensors::startReadWakeLockThread(Sensors* sensors) {
sensors->readWakeLockFMQ();
}
void Sensors::deleteEventFlag() {
status_t status = EventFlag::deleteEventFlag(&mEventQueueFlag);
if (status != OK) {
ALOGI("Failed to delete event flag: %d", status);
}
}
} // namespace implementation
} // namespace V2_0
} // namespace sensors
} // namespace hardware
} // namespace android