| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <fcntl.h> |
| |
| #include <android-base/logging.h> |
| #include <android-base/unique_fd.h> |
| #include <cutils/properties.h> |
| #include <net/if.h> |
| #include <sys/stat.h> |
| #include <sys/sysmacros.h> |
| |
| #include "hidl_return_util.h" |
| #include "hidl_struct_util.h" |
| #include "wifi_chip.h" |
| #include "wifi_status_util.h" |
| |
| #define P2P_MGMT_DEVICE_PREFIX "p2p-dev-" |
| |
| namespace { |
| using android::sp; |
| using android::base::unique_fd; |
| using android::hardware::hidl_string; |
| using android::hardware::hidl_vec; |
| using android::hardware::wifi::V1_0::ChipModeId; |
| using android::hardware::wifi::V1_0::IfaceType; |
| using android::hardware::wifi::V1_0::IWifiChip; |
| |
| constexpr char kCpioMagic[] = "070701"; |
| constexpr size_t kMaxBufferSizeBytes = 1024 * 1024 * 3; |
| constexpr uint32_t kMaxRingBufferFileAgeSeconds = 60 * 60 * 10; |
| constexpr uint32_t kMaxRingBufferFileNum = 20; |
| constexpr char kTombstoneFolderPath[] = "/data/vendor/tombstones/wifi/"; |
| constexpr char kActiveWlanIfaceNameProperty[] = "wifi.active.interface"; |
| constexpr char kNoActiveWlanIfaceNamePropertyValue[] = ""; |
| constexpr unsigned kMaxWlanIfaces = 5; |
| constexpr char kApBridgeIfacePrefix[] = "ap_br_"; |
| |
| template <typename Iface> |
| void invalidateAndClear(std::vector<sp<Iface>>& ifaces, sp<Iface> iface) { |
| iface->invalidate(); |
| ifaces.erase(std::remove(ifaces.begin(), ifaces.end(), iface), ifaces.end()); |
| } |
| |
| template <typename Iface> |
| void invalidateAndClearAll(std::vector<sp<Iface>>& ifaces) { |
| for (const auto& iface : ifaces) { |
| iface->invalidate(); |
| } |
| ifaces.clear(); |
| } |
| |
| template <typename Iface> |
| std::vector<hidl_string> getNames(std::vector<sp<Iface>>& ifaces) { |
| std::vector<hidl_string> names; |
| for (const auto& iface : ifaces) { |
| names.emplace_back(iface->getName()); |
| } |
| return names; |
| } |
| |
| template <typename Iface> |
| sp<Iface> findUsingName(std::vector<sp<Iface>>& ifaces, const std::string& name) { |
| std::vector<hidl_string> names; |
| for (const auto& iface : ifaces) { |
| if (name == iface->getName()) { |
| return iface; |
| } |
| } |
| return nullptr; |
| } |
| |
| std::string getWlanIfaceName(unsigned idx) { |
| if (idx >= kMaxWlanIfaces) { |
| CHECK(false) << "Requested interface beyond wlan" << kMaxWlanIfaces; |
| return {}; |
| } |
| |
| std::array<char, PROPERTY_VALUE_MAX> buffer; |
| if (idx == 0 || idx == 1) { |
| const char* altPropName = (idx == 0) ? "wifi.interface" : "wifi.concurrent.interface"; |
| auto res = property_get(altPropName, buffer.data(), nullptr); |
| if (res > 0) return buffer.data(); |
| } |
| std::string propName = "wifi.interface." + std::to_string(idx); |
| auto res = property_get(propName.c_str(), buffer.data(), nullptr); |
| if (res > 0) return buffer.data(); |
| |
| return "wlan" + std::to_string(idx); |
| } |
| |
| // Returns the dedicated iface name if defined. |
| // Returns two ifaces in bridged mode. |
| std::vector<std::string> getPredefinedApIfaceNames(bool is_bridged) { |
| std::vector<std::string> ifnames; |
| std::array<char, PROPERTY_VALUE_MAX> buffer; |
| buffer.fill(0); |
| if (property_get("ro.vendor.wifi.sap.interface", buffer.data(), nullptr) == 0) { |
| return ifnames; |
| } |
| ifnames.push_back(buffer.data()); |
| if (is_bridged) { |
| buffer.fill(0); |
| if (property_get("ro.vendor.wifi.sap.concurrent.iface", buffer.data(), nullptr) == 0) { |
| return ifnames; |
| } |
| ifnames.push_back(buffer.data()); |
| } |
| return ifnames; |
| } |
| |
| std::string getPredefinedP2pIfaceName() { |
| std::array<char, PROPERTY_VALUE_MAX> primaryIfaceName; |
| char p2pParentIfname[100]; |
| std::string p2pDevIfName = ""; |
| std::array<char, PROPERTY_VALUE_MAX> buffer; |
| property_get("wifi.direct.interface", buffer.data(), "p2p0"); |
| if (strncmp(buffer.data(), P2P_MGMT_DEVICE_PREFIX, strlen(P2P_MGMT_DEVICE_PREFIX)) == 0) { |
| /* Get the p2p parent interface name from p2p device interface name set |
| * in property */ |
| strlcpy(p2pParentIfname, buffer.data() + strlen(P2P_MGMT_DEVICE_PREFIX), |
| strlen(buffer.data()) - strlen(P2P_MGMT_DEVICE_PREFIX)); |
| if (property_get(kActiveWlanIfaceNameProperty, primaryIfaceName.data(), nullptr) == 0) { |
| return buffer.data(); |
| } |
| /* Check if the parent interface derived from p2p device interface name |
| * is active */ |
| if (strncmp(p2pParentIfname, primaryIfaceName.data(), |
| strlen(buffer.data()) - strlen(P2P_MGMT_DEVICE_PREFIX)) != 0) { |
| /* |
| * Update the predefined p2p device interface parent interface name |
| * with current active wlan interface |
| */ |
| p2pDevIfName += P2P_MGMT_DEVICE_PREFIX; |
| p2pDevIfName += primaryIfaceName.data(); |
| LOG(INFO) << "update the p2p device interface name to " << p2pDevIfName.c_str(); |
| return p2pDevIfName; |
| } |
| } |
| return buffer.data(); |
| } |
| |
| // Returns the dedicated iface name if one is defined. |
| std::string getPredefinedNanIfaceName() { |
| std::array<char, PROPERTY_VALUE_MAX> buffer; |
| if (property_get("wifi.aware.interface", buffer.data(), nullptr) == 0) { |
| return {}; |
| } |
| return buffer.data(); |
| } |
| |
| void setActiveWlanIfaceNameProperty(const std::string& ifname) { |
| auto res = property_set(kActiveWlanIfaceNameProperty, ifname.data()); |
| if (res != 0) { |
| PLOG(ERROR) << "Failed to set active wlan iface name property"; |
| } |
| } |
| |
| // delete files that meet either conditions: |
| // 1. older than a predefined time in the wifi tombstone dir. |
| // 2. Files in excess to a predefined amount, starting from the oldest ones |
| bool removeOldFilesInternal() { |
| time_t now = time(0); |
| const time_t delete_files_before = now - kMaxRingBufferFileAgeSeconds; |
| std::unique_ptr<DIR, decltype(&closedir)> dir_dump(opendir(kTombstoneFolderPath), closedir); |
| if (!dir_dump) { |
| PLOG(ERROR) << "Failed to open directory"; |
| return false; |
| } |
| struct dirent* dp; |
| bool success = true; |
| std::list<std::pair<const time_t, std::string>> valid_files; |
| while ((dp = readdir(dir_dump.get()))) { |
| if (dp->d_type != DT_REG) { |
| continue; |
| } |
| std::string cur_file_name(dp->d_name); |
| struct stat cur_file_stat; |
| std::string cur_file_path = kTombstoneFolderPath + cur_file_name; |
| if (stat(cur_file_path.c_str(), &cur_file_stat) == -1) { |
| PLOG(ERROR) << "Failed to get file stat for " << cur_file_path; |
| success = false; |
| continue; |
| } |
| const time_t cur_file_time = cur_file_stat.st_mtime; |
| valid_files.push_back(std::pair<const time_t, std::string>(cur_file_time, cur_file_path)); |
| } |
| valid_files.sort(); // sort the list of files by last modified time from |
| // small to big. |
| uint32_t cur_file_count = valid_files.size(); |
| for (auto cur_file : valid_files) { |
| if (cur_file_count > kMaxRingBufferFileNum || cur_file.first < delete_files_before) { |
| if (unlink(cur_file.second.c_str()) != 0) { |
| PLOG(ERROR) << "Error deleting file"; |
| success = false; |
| } |
| cur_file_count--; |
| } else { |
| break; |
| } |
| } |
| return success; |
| } |
| |
| // Helper function for |cpioArchiveFilesInDir| |
| bool cpioWriteHeader(int out_fd, struct stat& st, const char* file_name, size_t file_name_len) { |
| const int buf_size = 32 * 1024; |
| std::array<char, buf_size> read_buf; |
| ssize_t llen = snprintf( |
| read_buf.data(), buf_size, "%s%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X", |
| kCpioMagic, static_cast<int>(st.st_ino), st.st_mode, st.st_uid, st.st_gid, |
| static_cast<int>(st.st_nlink), static_cast<int>(st.st_mtime), |
| static_cast<int>(st.st_size), major(st.st_dev), minor(st.st_dev), major(st.st_rdev), |
| minor(st.st_rdev), static_cast<uint32_t>(file_name_len), 0); |
| if (write(out_fd, read_buf.data(), llen < buf_size ? llen : buf_size - 1) == -1) { |
| PLOG(ERROR) << "Error writing cpio header to file " << file_name; |
| return false; |
| } |
| if (write(out_fd, file_name, file_name_len) == -1) { |
| PLOG(ERROR) << "Error writing filename to file " << file_name; |
| return false; |
| } |
| |
| // NUL Pad header up to 4 multiple bytes. |
| llen = (llen + file_name_len) % 4; |
| if (llen != 0) { |
| const uint32_t zero = 0; |
| if (write(out_fd, &zero, 4 - llen) == -1) { |
| PLOG(ERROR) << "Error padding 0s to file " << file_name; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Helper function for |cpioArchiveFilesInDir| |
| size_t cpioWriteFileContent(int fd_read, int out_fd, struct stat& st) { |
| // writing content of file |
| std::array<char, 32 * 1024> read_buf; |
| ssize_t llen = st.st_size; |
| size_t n_error = 0; |
| while (llen > 0) { |
| ssize_t bytes_read = read(fd_read, read_buf.data(), read_buf.size()); |
| if (bytes_read == -1) { |
| PLOG(ERROR) << "Error reading file"; |
| return ++n_error; |
| } |
| llen -= bytes_read; |
| if (write(out_fd, read_buf.data(), bytes_read) == -1) { |
| PLOG(ERROR) << "Error writing data to file"; |
| return ++n_error; |
| } |
| if (bytes_read == 0) { // this should never happen, but just in case |
| // to unstuck from while loop |
| PLOG(ERROR) << "Unexpected read result"; |
| n_error++; |
| break; |
| } |
| } |
| llen = st.st_size % 4; |
| if (llen != 0) { |
| const uint32_t zero = 0; |
| if (write(out_fd, &zero, 4 - llen) == -1) { |
| PLOG(ERROR) << "Error padding 0s to file"; |
| return ++n_error; |
| } |
| } |
| return n_error; |
| } |
| |
| // Helper function for |cpioArchiveFilesInDir| |
| bool cpioWriteFileTrailer(int out_fd) { |
| const int buf_size = 4096; |
| std::array<char, buf_size> read_buf; |
| read_buf.fill(0); |
| ssize_t llen = snprintf(read_buf.data(), 4096, "070701%040X%056X%08XTRAILER!!!", 1, 0x0b, 0); |
| if (write(out_fd, read_buf.data(), (llen < buf_size ? llen : buf_size - 1) + 4) == -1) { |
| PLOG(ERROR) << "Error writing trailing bytes"; |
| return false; |
| } |
| return true; |
| } |
| |
| // Archives all files in |input_dir| and writes result into |out_fd| |
| // Logic obtained from //external/toybox/toys/posix/cpio.c "Output cpio archive" |
| // portion |
| size_t cpioArchiveFilesInDir(int out_fd, const char* input_dir) { |
| struct dirent* dp; |
| size_t n_error = 0; |
| std::unique_ptr<DIR, decltype(&closedir)> dir_dump(opendir(input_dir), closedir); |
| if (!dir_dump) { |
| PLOG(ERROR) << "Failed to open directory"; |
| return ++n_error; |
| } |
| while ((dp = readdir(dir_dump.get()))) { |
| if (dp->d_type != DT_REG) { |
| continue; |
| } |
| std::string cur_file_name(dp->d_name); |
| struct stat st; |
| const std::string cur_file_path = kTombstoneFolderPath + cur_file_name; |
| if (stat(cur_file_path.c_str(), &st) == -1) { |
| PLOG(ERROR) << "Failed to get file stat for " << cur_file_path; |
| n_error++; |
| continue; |
| } |
| const int fd_read = open(cur_file_path.c_str(), O_RDONLY); |
| if (fd_read == -1) { |
| PLOG(ERROR) << "Failed to open file " << cur_file_path; |
| n_error++; |
| continue; |
| } |
| std::string file_name_with_last_modified_time = |
| cur_file_name + "-" + std::to_string(st.st_mtime); |
| // string.size() does not include the null terminator. The cpio FreeBSD |
| // file header expects the null character to be included in the length. |
| const size_t file_name_len = file_name_with_last_modified_time.size() + 1; |
| unique_fd file_auto_closer(fd_read); |
| if (!cpioWriteHeader(out_fd, st, file_name_with_last_modified_time.c_str(), |
| file_name_len)) { |
| return ++n_error; |
| } |
| size_t write_error = cpioWriteFileContent(fd_read, out_fd, st); |
| if (write_error) { |
| return n_error + write_error; |
| } |
| } |
| if (!cpioWriteFileTrailer(out_fd)) { |
| return ++n_error; |
| } |
| return n_error; |
| } |
| |
| // Helper function to create a non-const char*. |
| std::vector<char> makeCharVec(const std::string& str) { |
| std::vector<char> vec(str.size() + 1); |
| vec.assign(str.begin(), str.end()); |
| vec.push_back('\0'); |
| return vec; |
| } |
| |
| } // namespace |
| |
| namespace android { |
| namespace hardware { |
| namespace wifi { |
| namespace V1_6 { |
| namespace implementation { |
| using hidl_return_util::validateAndCall; |
| using hidl_return_util::validateAndCallWithLock; |
| |
| WifiChip::WifiChip(ChipId chip_id, bool is_primary, |
| const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal, |
| const std::weak_ptr<mode_controller::WifiModeController> mode_controller, |
| const std::shared_ptr<iface_util::WifiIfaceUtil> iface_util, |
| const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags, |
| const std::function<void(const std::string&)>& handler) |
| : chip_id_(chip_id), |
| legacy_hal_(legacy_hal), |
| mode_controller_(mode_controller), |
| iface_util_(iface_util), |
| is_valid_(true), |
| current_mode_id_(feature_flags::chip_mode_ids::kInvalid), |
| modes_(feature_flags.lock()->getChipModes(is_primary)), |
| debug_ring_buffer_cb_registered_(false), |
| subsystemCallbackHandler_(handler) { |
| setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue); |
| } |
| |
| void WifiChip::invalidate() { |
| if (!writeRingbufferFilesInternal()) { |
| LOG(ERROR) << "Error writing files to flash"; |
| } |
| invalidateAndRemoveAllIfaces(); |
| setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue); |
| legacy_hal_.reset(); |
| event_cb_handler_.invalidate(); |
| is_valid_ = false; |
| } |
| |
| bool WifiChip::isValid() { |
| return is_valid_; |
| } |
| |
| std::set<sp<V1_4::IWifiChipEventCallback>> WifiChip::getEventCallbacks() { |
| return event_cb_handler_.getCallbacks(); |
| } |
| |
| Return<void> WifiChip::getId(getId_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, &WifiChip::getIdInternal, |
| hidl_status_cb); |
| } |
| |
| // Deprecated support for this callback |
| Return<void> WifiChip::registerEventCallback(const sp<V1_0::IWifiChipEventCallback>& event_callback, |
| registerEventCallback_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::registerEventCallbackInternal, hidl_status_cb, |
| event_callback); |
| } |
| |
| Return<void> WifiChip::getCapabilities(getCapabilities_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getCapabilitiesInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getAvailableModes(getAvailableModes_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getAvailableModesInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::configureChip(ChipModeId mode_id, configureChip_cb hidl_status_cb) { |
| return validateAndCallWithLock(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::configureChipInternal, hidl_status_cb, mode_id); |
| } |
| |
| Return<void> WifiChip::getMode(getMode_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getModeInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::requestChipDebugInfo(requestChipDebugInfo_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::requestChipDebugInfoInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::requestDriverDebugDump(requestDriverDebugDump_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::requestDriverDebugDumpInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::requestFirmwareDebugDump(requestFirmwareDebugDump_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::requestFirmwareDebugDumpInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::createApIface(createApIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createApIfaceInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::createBridgedApIface(createBridgedApIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createBridgedApIfaceInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getApIfaceNames(getApIfaceNames_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getApIfaceNamesInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getApIface(const hidl_string& ifname, getApIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getApIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::removeApIface(const hidl_string& ifname, removeApIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::removeApIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::removeIfaceInstanceFromBridgedApIface( |
| const hidl_string& ifname, const hidl_string& ifInstanceName, |
| removeIfaceInstanceFromBridgedApIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::removeIfaceInstanceFromBridgedApIfaceInternal, hidl_status_cb, |
| ifname, ifInstanceName); |
| } |
| |
| Return<void> WifiChip::createNanIface(createNanIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createNanIfaceInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getNanIfaceNamesInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getNanIface(const hidl_string& ifname, getNanIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getNanIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::removeNanIface(const hidl_string& ifname, removeNanIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::removeNanIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::createP2pIface(createP2pIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createP2pIfaceInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getP2pIfaceNamesInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getP2pIface(const hidl_string& ifname, getP2pIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getP2pIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::removeP2pIface(const hidl_string& ifname, removeP2pIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::removeP2pIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::createStaIface(createStaIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createStaIfaceInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getStaIfaceNamesInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getStaIface(const hidl_string& ifname, getStaIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getStaIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::removeStaIface(const hidl_string& ifname, removeStaIface_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::removeStaIfaceInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::createRttController(const sp<IWifiIface>& bound_iface, |
| createRttController_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createRttControllerInternal, hidl_status_cb, bound_iface); |
| } |
| |
| Return<void> WifiChip::getDebugRingBuffersStatus(getDebugRingBuffersStatus_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getDebugRingBuffersStatusInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::startLoggingToDebugRingBuffer( |
| const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level, |
| uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes, |
| startLoggingToDebugRingBuffer_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::startLoggingToDebugRingBufferInternal, hidl_status_cb, |
| ring_name, verbose_level, max_interval_in_sec, min_data_size_in_bytes); |
| } |
| |
| Return<void> WifiChip::forceDumpToDebugRingBuffer(const hidl_string& ring_name, |
| forceDumpToDebugRingBuffer_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::forceDumpToDebugRingBufferInternal, hidl_status_cb, |
| ring_name); |
| } |
| |
| Return<void> WifiChip::flushRingBufferToFile(flushRingBufferToFile_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::flushRingBufferToFileInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::stopLoggingToDebugRingBuffer( |
| stopLoggingToDebugRingBuffer_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::stopLoggingToDebugRingBufferInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getDebugHostWakeReasonStats(getDebugHostWakeReasonStats_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getDebugHostWakeReasonStatsInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::enableDebugErrorAlerts(bool enable, |
| enableDebugErrorAlerts_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::enableDebugErrorAlertsInternal, hidl_status_cb, enable); |
| } |
| |
| Return<void> WifiChip::selectTxPowerScenario(V1_1::IWifiChip::TxPowerScenario scenario, |
| selectTxPowerScenario_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::selectTxPowerScenarioInternal, hidl_status_cb, scenario); |
| } |
| |
| Return<void> WifiChip::resetTxPowerScenario(resetTxPowerScenario_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::resetTxPowerScenarioInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::setLatencyMode(LatencyMode mode, setLatencyMode_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::setLatencyModeInternal, hidl_status_cb, mode); |
| } |
| |
| Return<void> WifiChip::registerEventCallback_1_2( |
| const sp<V1_2::IWifiChipEventCallback>& event_callback, |
| registerEventCallback_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::registerEventCallbackInternal_1_2, hidl_status_cb, |
| event_callback); |
| } |
| |
| Return<void> WifiChip::selectTxPowerScenario_1_2(TxPowerScenario scenario, |
| selectTxPowerScenario_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::selectTxPowerScenarioInternal_1_2, hidl_status_cb, scenario); |
| } |
| |
| Return<void> WifiChip::getCapabilities_1_3(getCapabilities_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getCapabilitiesInternal_1_3, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getCapabilities_1_5(getCapabilities_1_5_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getCapabilitiesInternal_1_5, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::debug(const hidl_handle& handle, const hidl_vec<hidl_string>&) { |
| if (handle != nullptr && handle->numFds >= 1) { |
| { |
| std::unique_lock<std::mutex> lk(lock_t); |
| for (const auto& item : ringbuffer_map_) { |
| forceDumpToDebugRingBufferInternal(item.first); |
| } |
| // unique_lock unlocked here |
| } |
| usleep(100 * 1000); // sleep for 100 milliseconds to wait for |
| // ringbuffer updates. |
| int fd = handle->data[0]; |
| if (!writeRingbufferFilesInternal()) { |
| LOG(ERROR) << "Error writing files to flash"; |
| } |
| uint32_t n_error = cpioArchiveFilesInDir(fd, kTombstoneFolderPath); |
| if (n_error != 0) { |
| LOG(ERROR) << n_error << " errors occured in cpio function"; |
| } |
| fsync(fd); |
| } else { |
| LOG(ERROR) << "File handle error"; |
| } |
| return Void(); |
| } |
| |
| Return<void> WifiChip::createRttController_1_4(const sp<IWifiIface>& bound_iface, |
| createRttController_1_4_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createRttControllerInternal_1_4, hidl_status_cb, bound_iface); |
| } |
| |
| Return<void> WifiChip::registerEventCallback_1_4( |
| const sp<V1_4::IWifiChipEventCallback>& event_callback, |
| registerEventCallback_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::registerEventCallbackInternal_1_4, hidl_status_cb, |
| event_callback); |
| } |
| |
| Return<void> WifiChip::setMultiStaPrimaryConnection( |
| const hidl_string& ifname, setMultiStaPrimaryConnection_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::setMultiStaPrimaryConnectionInternal, hidl_status_cb, ifname); |
| } |
| |
| Return<void> WifiChip::setMultiStaUseCase(MultiStaUseCase use_case, |
| setMultiStaUseCase_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::setMultiStaUseCaseInternal, hidl_status_cb, use_case); |
| } |
| |
| Return<void> WifiChip::setCoexUnsafeChannels(const hidl_vec<CoexUnsafeChannel>& unsafeChannels, |
| hidl_bitfield<CoexRestriction> restrictions, |
| setCoexUnsafeChannels_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::setCoexUnsafeChannelsInternal, hidl_status_cb, unsafeChannels, |
| restrictions); |
| } |
| |
| Return<void> WifiChip::setCountryCode(const hidl_array<int8_t, 2>& code, |
| setCountryCode_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_IFACE_INVALID, |
| &WifiChip::setCountryCodeInternal, hidl_status_cb, code); |
| } |
| |
| Return<void> WifiChip::getUsableChannels( |
| WifiBand band, hidl_bitfield<V1_5::WifiIfaceMode> ifaceModeMask, |
| hidl_bitfield<V1_5::IWifiChip::UsableChannelFilter> filterMask, |
| getUsableChannels_cb _hidl_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getUsableChannelsInternal, _hidl_cb, band, ifaceModeMask, |
| filterMask); |
| } |
| |
| Return<void> WifiChip::triggerSubsystemRestart(triggerSubsystemRestart_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::triggerSubsystemRestartInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::createRttController_1_6(const sp<IWifiIface>& bound_iface, |
| createRttController_1_6_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::createRttControllerInternal_1_6, hidl_status_cb, bound_iface); |
| } |
| |
| Return<void> WifiChip::getUsableChannels_1_6( |
| WifiBand band, hidl_bitfield<V1_5::WifiIfaceMode> ifaceModeMask, |
| hidl_bitfield<V1_6::IWifiChip::UsableChannelFilter> filterMask, |
| getUsableChannels_1_6_cb _hidl_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getUsableChannelsInternal_1_6, _hidl_cb, band, ifaceModeMask, |
| filterMask); |
| } |
| |
| Return<void> WifiChip::getSupportedRadioCombinationsMatrix( |
| getSupportedRadioCombinationsMatrix_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getSupportedRadioCombinationsMatrixInternal, hidl_status_cb); |
| } |
| |
| Return<void> WifiChip::getAvailableModes_1_6(getAvailableModes_1_6_cb hidl_status_cb) { |
| return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, |
| &WifiChip::getAvailableModesInternal_1_6, hidl_status_cb); |
| } |
| |
| void WifiChip::invalidateAndRemoveAllIfaces() { |
| invalidateAndClearBridgedApAll(); |
| invalidateAndClearAll(ap_ifaces_); |
| invalidateAndClearAll(nan_ifaces_); |
| invalidateAndClearAll(p2p_ifaces_); |
| invalidateAndClearAll(sta_ifaces_); |
| // Since all the ifaces are invalid now, all RTT controller objects |
| // using those ifaces also need to be invalidated. |
| for (const auto& rtt : rtt_controllers_) { |
| rtt->invalidate(); |
| } |
| rtt_controllers_.clear(); |
| } |
| |
| void WifiChip::invalidateAndRemoveDependencies(const std::string& removed_iface_name) { |
| for (auto it = nan_ifaces_.begin(); it != nan_ifaces_.end();) { |
| auto nan_iface = *it; |
| if (nan_iface->getName() == removed_iface_name) { |
| nan_iface->invalidate(); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceRemoved(IfaceType::NAN, removed_iface_name).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceRemoved callback"; |
| } |
| } |
| it = nan_ifaces_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| |
| for (auto it = rtt_controllers_.begin(); it != rtt_controllers_.end();) { |
| auto rtt = *it; |
| if (rtt->getIfaceName() == removed_iface_name) { |
| rtt->invalidate(); |
| it = rtt_controllers_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| } |
| |
| std::pair<WifiStatus, ChipId> WifiChip::getIdInternal() { |
| return {createWifiStatus(WifiStatusCode::SUCCESS), chip_id_}; |
| } |
| |
| WifiStatus WifiChip::registerEventCallbackInternal( |
| const sp<V1_0::IWifiChipEventCallback>& /* event_callback */) { |
| // Deprecated support for this callback. |
| return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED); |
| } |
| |
| std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal() { |
| // Deprecated support for this callback. |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), 0}; |
| } |
| |
| std::pair<WifiStatus, std::vector<V1_0::IWifiChip::ChipMode>> |
| WifiChip::getAvailableModesInternal() { |
| // Deprecated support -- use getAvailableModes_1_6 for more granular concurrency combinations. |
| std::vector<V1_0::IWifiChip::ChipMode> modes_1_0 = {}; |
| for (const auto& mode_1_6 : modes_) { |
| std::vector<V1_0::IWifiChip::ChipIfaceCombination> combos_1_0; |
| for (const auto& combo_1_6 : mode_1_6.availableCombinations) { |
| std::vector<V1_0::IWifiChip::ChipIfaceCombinationLimit> limits_1_0; |
| for (const auto& limit_1_6 : combo_1_6.limits) { |
| std::vector<IfaceType> types_1_0; |
| for (IfaceConcurrencyType type_1_6 : limit_1_6.types) { |
| switch (type_1_6) { |
| case IfaceConcurrencyType::STA: |
| types_1_0.push_back(IfaceType::STA); |
| break; |
| case IfaceConcurrencyType::AP: |
| types_1_0.push_back(IfaceType::AP); |
| break; |
| case IfaceConcurrencyType::AP_BRIDGED: |
| // Ignore AP_BRIDGED |
| break; |
| case IfaceConcurrencyType::P2P: |
| types_1_0.push_back(IfaceType::P2P); |
| break; |
| case IfaceConcurrencyType::NAN: |
| types_1_0.push_back(IfaceType::NAN); |
| break; |
| } |
| } |
| if (types_1_0.empty()) { |
| continue; |
| } |
| V1_0::IWifiChip::ChipIfaceCombinationLimit limit_1_0; |
| limit_1_0.types = hidl_vec(types_1_0); |
| limit_1_0.maxIfaces = limit_1_6.maxIfaces; |
| limits_1_0.push_back(limit_1_0); |
| } |
| if (limits_1_0.empty()) { |
| continue; |
| } |
| V1_0::IWifiChip::ChipIfaceCombination combo_1_0; |
| combo_1_0.limits = hidl_vec(limits_1_0); |
| combos_1_0.push_back(combo_1_0); |
| } |
| if (combos_1_0.empty()) { |
| continue; |
| } |
| V1_0::IWifiChip::ChipMode mode_1_0; |
| mode_1_0.id = mode_1_6.id; |
| mode_1_0.availableCombinations = hidl_vec(combos_1_0); |
| modes_1_0.push_back(mode_1_0); |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), modes_1_0}; |
| } |
| |
| WifiStatus WifiChip::configureChipInternal( |
| /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock, ChipModeId mode_id) { |
| if (!isValidModeId(mode_id)) { |
| return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS); |
| } |
| if (mode_id == current_mode_id_) { |
| LOG(DEBUG) << "Already in the specified mode " << mode_id; |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| WifiStatus status = handleChipConfiguration(lock, mode_id); |
| if (status.code != WifiStatusCode::SUCCESS) { |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onChipReconfigureFailure(status).isOk()) { |
| LOG(ERROR) << "Failed to invoke onChipReconfigureFailure callback"; |
| } |
| } |
| return status; |
| } |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onChipReconfigured(mode_id).isOk()) { |
| LOG(ERROR) << "Failed to invoke onChipReconfigured callback"; |
| } |
| } |
| current_mode_id_ = mode_id; |
| LOG(INFO) << "Configured chip in mode " << mode_id; |
| setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName()); |
| |
| legacy_hal_.lock()->registerSubsystemRestartCallbackHandler(subsystemCallbackHandler_); |
| |
| return status; |
| } |
| |
| std::pair<WifiStatus, uint32_t> WifiChip::getModeInternal() { |
| if (!isValidModeId(current_mode_id_)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), current_mode_id_}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), current_mode_id_}; |
| } |
| |
| std::pair<WifiStatus, V1_4::IWifiChip::ChipDebugInfo> WifiChip::requestChipDebugInfoInternal() { |
| V1_4::IWifiChip::ChipDebugInfo result; |
| legacy_hal::wifi_error legacy_status; |
| std::string driver_desc; |
| const auto ifname = getFirstActiveWlanIfaceName(); |
| std::tie(legacy_status, driver_desc) = legacy_hal_.lock()->getDriverVersion(ifname); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to get driver version: " << legacyErrorToString(legacy_status); |
| WifiStatus status = |
| createWifiStatusFromLegacyError(legacy_status, "failed to get driver version"); |
| return {status, result}; |
| } |
| result.driverDescription = driver_desc.c_str(); |
| |
| std::string firmware_desc; |
| std::tie(legacy_status, firmware_desc) = legacy_hal_.lock()->getFirmwareVersion(ifname); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to get firmware version: " << legacyErrorToString(legacy_status); |
| WifiStatus status = |
| createWifiStatusFromLegacyError(legacy_status, "failed to get firmware version"); |
| return {status, result}; |
| } |
| result.firmwareDescription = firmware_desc.c_str(); |
| |
| return {createWifiStatus(WifiStatusCode::SUCCESS), result}; |
| } |
| |
| std::pair<WifiStatus, std::vector<uint8_t>> WifiChip::requestDriverDebugDumpInternal() { |
| legacy_hal::wifi_error legacy_status; |
| std::vector<uint8_t> driver_dump; |
| std::tie(legacy_status, driver_dump) = |
| legacy_hal_.lock()->requestDriverMemoryDump(getFirstActiveWlanIfaceName()); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to get driver debug dump: " << legacyErrorToString(legacy_status); |
| return {createWifiStatusFromLegacyError(legacy_status), std::vector<uint8_t>()}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), driver_dump}; |
| } |
| |
| std::pair<WifiStatus, std::vector<uint8_t>> WifiChip::requestFirmwareDebugDumpInternal() { |
| legacy_hal::wifi_error legacy_status; |
| std::vector<uint8_t> firmware_dump; |
| std::tie(legacy_status, firmware_dump) = |
| legacy_hal_.lock()->requestFirmwareMemoryDump(getFirstActiveWlanIfaceName()); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to get firmware debug dump: " << legacyErrorToString(legacy_status); |
| return {createWifiStatusFromLegacyError(legacy_status), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), firmware_dump}; |
| } |
| |
| WifiStatus WifiChip::createVirtualApInterface(const std::string& apVirtIf) { |
| legacy_hal::wifi_error legacy_status; |
| legacy_status = legacy_hal_.lock()->createVirtualInterface( |
| apVirtIf, hidl_struct_util::convertHidlIfaceTypeToLegacy(IfaceType::AP)); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to add interface: " << apVirtIf << " " |
| << legacyErrorToString(legacy_status); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| sp<WifiApIface> WifiChip::newWifiApIface(std::string& ifname) { |
| std::vector<std::string> ap_instances; |
| for (auto const& it : br_ifaces_ap_instances_) { |
| if (it.first == ifname) { |
| ap_instances = it.second; |
| } |
| } |
| sp<WifiApIface> iface = new WifiApIface(ifname, ap_instances, legacy_hal_, iface_util_); |
| ap_ifaces_.push_back(iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceAdded(IfaceType::AP, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceAdded callback"; |
| } |
| } |
| setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName()); |
| return iface; |
| } |
| |
| std::pair<WifiStatus, sp<V1_5::IWifiApIface>> WifiChip::createApIfaceInternal() { |
| if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::AP)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| std::string ifname = allocateApIfaceName(); |
| WifiStatus status = createVirtualApInterface(ifname); |
| if (status.code != WifiStatusCode::SUCCESS) { |
| return {status, {}}; |
| } |
| sp<WifiApIface> iface = newWifiApIface(ifname); |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| std::pair<WifiStatus, sp<V1_5::IWifiApIface>> WifiChip::createBridgedApIfaceInternal() { |
| if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::AP_BRIDGED)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| std::vector<std::string> ap_instances = allocateBridgedApInstanceNames(); |
| if (ap_instances.size() < 2) { |
| LOG(ERROR) << "Fail to allocate two instances"; |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| std::string br_ifname = kApBridgeIfacePrefix + ap_instances[0]; |
| for (int i = 0; i < 2; i++) { |
| WifiStatus status = createVirtualApInterface(ap_instances[i]); |
| if (status.code != WifiStatusCode::SUCCESS) { |
| if (i != 0) { // The failure happened when creating second virtual |
| // iface. |
| legacy_hal_.lock()->deleteVirtualInterface( |
| ap_instances.front()); // Remove the first virtual iface. |
| } |
| return {status, {}}; |
| } |
| } |
| br_ifaces_ap_instances_[br_ifname] = ap_instances; |
| if (!iface_util_->createBridge(br_ifname)) { |
| LOG(ERROR) << "Failed createBridge - br_name=" << br_ifname.c_str(); |
| deleteApIface(br_ifname); |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| for (auto const& instance : ap_instances) { |
| // Bind ap instance interface to AP bridge |
| if (!iface_util_->addIfaceToBridge(br_ifname, instance)) { |
| LOG(ERROR) << "Failed add if to Bridge - if_name=" << instance.c_str(); |
| deleteApIface(br_ifname); |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| } |
| sp<WifiApIface> iface = newWifiApIface(br_ifname); |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getApIfaceNamesInternal() { |
| if (ap_ifaces_.empty()) { |
| return {createWifiStatus(WifiStatusCode::SUCCESS), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(ap_ifaces_)}; |
| } |
| |
| std::pair<WifiStatus, sp<V1_5::IWifiApIface>> WifiChip::getApIfaceInternal( |
| const std::string& ifname) { |
| const auto iface = findUsingName(ap_ifaces_, ifname); |
| if (!iface.get()) { |
| return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| WifiStatus WifiChip::removeApIfaceInternal(const std::string& ifname) { |
| const auto iface = findUsingName(ap_ifaces_, ifname); |
| if (!iface.get()) { |
| return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS); |
| } |
| // Invalidate & remove any dependent objects first. |
| // Note: This is probably not required because we never create |
| // nan/rtt objects over AP iface. But, there is no harm to do it |
| // here and not make that assumption all over the place. |
| invalidateAndRemoveDependencies(ifname); |
| deleteApIface(ifname); |
| invalidateAndClear(ap_ifaces_, iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceRemoved(IfaceType::AP, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceRemoved callback"; |
| } |
| } |
| setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName()); |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| WifiStatus WifiChip::removeIfaceInstanceFromBridgedApIfaceInternal( |
| const std::string& ifname, const std::string& ifInstanceName) { |
| const auto iface = findUsingName(ap_ifaces_, ifname); |
| if (!iface.get() || ifInstanceName.empty()) { |
| return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS); |
| } |
| // Requires to remove one of the instance in bridge mode |
| for (auto const& it : br_ifaces_ap_instances_) { |
| if (it.first == ifname) { |
| std::vector<std::string> ap_instances = it.second; |
| for (auto const& iface : ap_instances) { |
| if (iface == ifInstanceName) { |
| if (!iface_util_->removeIfaceFromBridge(it.first, iface)) { |
| LOG(ERROR) << "Failed to remove interface: " << ifInstanceName << " from " |
| << ifname; |
| return createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE); |
| } |
| legacy_hal::wifi_error legacy_status = |
| legacy_hal_.lock()->deleteVirtualInterface(iface); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to del interface: " << iface << " " |
| << legacyErrorToString(legacy_status); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| ap_instances.erase( |
| std::remove(ap_instances.begin(), ap_instances.end(), ifInstanceName), |
| ap_instances.end()); |
| br_ifaces_ap_instances_[ifname] = ap_instances; |
| break; |
| } |
| } |
| break; |
| } |
| } |
| iface->removeInstance(ifInstanceName); |
| setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName()); |
| |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| std::pair<WifiStatus, sp<V1_4::IWifiNanIface>> WifiChip::createNanIfaceInternal() { |
| if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::NAN)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| bool is_dedicated_iface = true; |
| std::string ifname = getPredefinedNanIfaceName(); |
| if (ifname.empty() || !iface_util_->ifNameToIndex(ifname)) { |
| // Use the first shared STA iface (wlan0) if a dedicated aware iface is |
| // not defined. |
| ifname = getFirstActiveWlanIfaceName(); |
| is_dedicated_iface = false; |
| } |
| sp<WifiNanIface> iface = new WifiNanIface(ifname, is_dedicated_iface, legacy_hal_, iface_util_); |
| nan_ifaces_.push_back(iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceAdded(IfaceType::NAN, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceAdded callback"; |
| } |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getNanIfaceNamesInternal() { |
| if (nan_ifaces_.empty()) { |
| return {createWifiStatus(WifiStatusCode::SUCCESS), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(nan_ifaces_)}; |
| } |
| |
| std::pair<WifiStatus, sp<V1_4::IWifiNanIface>> WifiChip::getNanIfaceInternal( |
| const std::string& ifname) { |
| const auto iface = findUsingName(nan_ifaces_, ifname); |
| if (!iface.get()) { |
| return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| WifiStatus WifiChip::removeNanIfaceInternal(const std::string& ifname) { |
| const auto iface = findUsingName(nan_ifaces_, ifname); |
| if (!iface.get()) { |
| return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS); |
| } |
| invalidateAndClear(nan_ifaces_, iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceRemoved(IfaceType::NAN, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceAdded callback"; |
| } |
| } |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::createP2pIfaceInternal() { |
| if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::P2P)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| std::string ifname = getPredefinedP2pIfaceName(); |
| sp<WifiP2pIface> iface = new WifiP2pIface(ifname, legacy_hal_); |
| p2p_ifaces_.push_back(iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceAdded(IfaceType::P2P, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceAdded callback"; |
| } |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getP2pIfaceNamesInternal() { |
| if (p2p_ifaces_.empty()) { |
| return {createWifiStatus(WifiStatusCode::SUCCESS), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(p2p_ifaces_)}; |
| } |
| |
| std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::getP2pIfaceInternal(const std::string& ifname) { |
| const auto iface = findUsingName(p2p_ifaces_, ifname); |
| if (!iface.get()) { |
| return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| WifiStatus WifiChip::removeP2pIfaceInternal(const std::string& ifname) { |
| const auto iface = findUsingName(p2p_ifaces_, ifname); |
| if (!iface.get()) { |
| return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS); |
| } |
| invalidateAndClear(p2p_ifaces_, iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceRemoved(IfaceType::P2P, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceRemoved callback"; |
| } |
| } |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| std::pair<WifiStatus, sp<V1_6::IWifiStaIface>> WifiChip::createStaIfaceInternal() { |
| if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::STA)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| std::string ifname = allocateStaIfaceName(); |
| legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->createVirtualInterface( |
| ifname, hidl_struct_util::convertHidlIfaceTypeToLegacy(IfaceType::STA)); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to add interface: " << ifname << " " |
| << legacyErrorToString(legacy_status); |
| return {createWifiStatusFromLegacyError(legacy_status), {}}; |
| } |
| sp<WifiStaIface> iface = new WifiStaIface(ifname, legacy_hal_, iface_util_); |
| sta_ifaces_.push_back(iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceAdded(IfaceType::STA, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceAdded callback"; |
| } |
| } |
| setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName()); |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getStaIfaceNamesInternal() { |
| if (sta_ifaces_.empty()) { |
| return {createWifiStatus(WifiStatusCode::SUCCESS), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(sta_ifaces_)}; |
| } |
| |
| std::pair<WifiStatus, sp<V1_6::IWifiStaIface>> WifiChip::getStaIfaceInternal( |
| const std::string& ifname) { |
| const auto iface = findUsingName(sta_ifaces_, ifname); |
| if (!iface.get()) { |
| return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), iface}; |
| } |
| |
| WifiStatus WifiChip::removeStaIfaceInternal(const std::string& ifname) { |
| const auto iface = findUsingName(sta_ifaces_, ifname); |
| if (!iface.get()) { |
| return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS); |
| } |
| // Invalidate & remove any dependent objects first. |
| invalidateAndRemoveDependencies(ifname); |
| legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->deleteVirtualInterface(ifname); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to remove interface: " << ifname << " " |
| << legacyErrorToString(legacy_status); |
| } |
| invalidateAndClear(sta_ifaces_, iface); |
| for (const auto& callback : event_cb_handler_.getCallbacks()) { |
| if (!callback->onIfaceRemoved(IfaceType::STA, ifname).isOk()) { |
| LOG(ERROR) << "Failed to invoke onIfaceRemoved callback"; |
| } |
| } |
| setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName()); |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| std::pair<WifiStatus, sp<V1_0::IWifiRttController>> WifiChip::createRttControllerInternal( |
| const sp<IWifiIface>& /*bound_iface*/) { |
| LOG(ERROR) << "createRttController is not supported on this HAL"; |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), {}}; |
| } |
| |
| std::pair<WifiStatus, std::vector<WifiDebugRingBufferStatus>> |
| WifiChip::getDebugRingBuffersStatusInternal() { |
| legacy_hal::wifi_error legacy_status; |
| std::vector<legacy_hal::wifi_ring_buffer_status> legacy_ring_buffer_status_vec; |
| std::tie(legacy_status, legacy_ring_buffer_status_vec) = |
| legacy_hal_.lock()->getRingBuffersStatus(getFirstActiveWlanIfaceName()); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| return {createWifiStatusFromLegacyError(legacy_status), {}}; |
| } |
| std::vector<WifiDebugRingBufferStatus> hidl_ring_buffer_status_vec; |
| if (!hidl_struct_util::convertLegacyVectorOfDebugRingBufferStatusToHidl( |
| legacy_ring_buffer_status_vec, &hidl_ring_buffer_status_vec)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_ring_buffer_status_vec}; |
| } |
| |
| WifiStatus WifiChip::startLoggingToDebugRingBufferInternal( |
| const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level, |
| uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes) { |
| WifiStatus status = registerDebugRingBufferCallback(); |
| if (status.code != WifiStatusCode::SUCCESS) { |
| return status; |
| } |
| legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->startRingBufferLogging( |
| getFirstActiveWlanIfaceName(), ring_name, |
| static_cast<std::underlying_type<WifiDebugRingBufferVerboseLevel>::type>(verbose_level), |
| max_interval_in_sec, min_data_size_in_bytes); |
| ringbuffer_map_.insert( |
| std::pair<std::string, Ringbuffer>(ring_name, Ringbuffer(kMaxBufferSizeBytes))); |
| // if verbose logging enabled, turn up HAL daemon logging as well. |
| if (verbose_level < WifiDebugRingBufferVerboseLevel::VERBOSE) { |
| android::base::SetMinimumLogSeverity(android::base::DEBUG); |
| } else { |
| android::base::SetMinimumLogSeverity(android::base::VERBOSE); |
| } |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::forceDumpToDebugRingBufferInternal(const hidl_string& ring_name) { |
| WifiStatus status = registerDebugRingBufferCallback(); |
| if (status.code != WifiStatusCode::SUCCESS) { |
| return status; |
| } |
| legacy_hal::wifi_error legacy_status = |
| legacy_hal_.lock()->getRingBufferData(getFirstActiveWlanIfaceName(), ring_name); |
| |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::flushRingBufferToFileInternal() { |
| if (!writeRingbufferFilesInternal()) { |
| LOG(ERROR) << "Error writing files to flash"; |
| return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN); |
| } |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| WifiStatus WifiChip::stopLoggingToDebugRingBufferInternal() { |
| legacy_hal::wifi_error legacy_status = |
| legacy_hal_.lock()->deregisterRingBufferCallbackHandler(getFirstActiveWlanIfaceName()); |
| if (legacy_status == legacy_hal::WIFI_SUCCESS) { |
| debug_ring_buffer_cb_registered_ = false; |
| } |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| std::pair<WifiStatus, WifiDebugHostWakeReasonStats> |
| WifiChip::getDebugHostWakeReasonStatsInternal() { |
| legacy_hal::wifi_error legacy_status; |
| legacy_hal::WakeReasonStats legacy_stats; |
| std::tie(legacy_status, legacy_stats) = |
| legacy_hal_.lock()->getWakeReasonStats(getFirstActiveWlanIfaceName()); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| return {createWifiStatusFromLegacyError(legacy_status), {}}; |
| } |
| WifiDebugHostWakeReasonStats hidl_stats; |
| if (!hidl_struct_util::convertLegacyWakeReasonStatsToHidl(legacy_stats, &hidl_stats)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_stats}; |
| } |
| |
| WifiStatus WifiChip::enableDebugErrorAlertsInternal(bool enable) { |
| legacy_hal::wifi_error legacy_status; |
| if (enable) { |
| android::wp<WifiChip> weak_ptr_this(this); |
| const auto& on_alert_callback = [weak_ptr_this](int32_t error_code, |
| std::vector<uint8_t> debug_data) { |
| const auto shared_ptr_this = weak_ptr_this.promote(); |
| if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) { |
| LOG(ERROR) << "Callback invoked on an invalid object"; |
| return; |
| } |
| for (const auto& callback : shared_ptr_this->getEventCallbacks()) { |
| if (!callback->onDebugErrorAlert(error_code, debug_data).isOk()) { |
| LOG(ERROR) << "Failed to invoke onDebugErrorAlert callback"; |
| } |
| } |
| }; |
| legacy_status = legacy_hal_.lock()->registerErrorAlertCallbackHandler( |
| getFirstActiveWlanIfaceName(), on_alert_callback); |
| } else { |
| legacy_status = legacy_hal_.lock()->deregisterErrorAlertCallbackHandler( |
| getFirstActiveWlanIfaceName()); |
| } |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::selectTxPowerScenarioInternal(V1_1::IWifiChip::TxPowerScenario scenario) { |
| auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario( |
| getFirstActiveWlanIfaceName(), |
| hidl_struct_util::convertHidlTxPowerScenarioToLegacy(scenario)); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::resetTxPowerScenarioInternal() { |
| auto legacy_status = legacy_hal_.lock()->resetTxPowerScenario(getFirstActiveWlanIfaceName()); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::setLatencyModeInternal(LatencyMode mode) { |
| auto legacy_status = legacy_hal_.lock()->setLatencyMode( |
| getFirstActiveWlanIfaceName(), hidl_struct_util::convertHidlLatencyModeToLegacy(mode)); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::registerEventCallbackInternal_1_2( |
| const sp<V1_2::IWifiChipEventCallback>& /* event_callback */) { |
| // Deprecated support for this callback. |
| return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED); |
| } |
| |
| WifiStatus WifiChip::selectTxPowerScenarioInternal_1_2(TxPowerScenario scenario) { |
| auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario( |
| getFirstActiveWlanIfaceName(), |
| hidl_struct_util::convertHidlTxPowerScenarioToLegacy_1_2(scenario)); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal_1_3() { |
| // Deprecated support for this callback. |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), 0}; |
| } |
| |
| std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal_1_5() { |
| legacy_hal::wifi_error legacy_status; |
| uint64_t legacy_feature_set; |
| uint32_t legacy_logger_feature_set; |
| const auto ifname = getFirstActiveWlanIfaceName(); |
| std::tie(legacy_status, legacy_feature_set) = |
| legacy_hal_.lock()->getSupportedFeatureSet(ifname); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| return {createWifiStatusFromLegacyError(legacy_status), 0}; |
| } |
| std::tie(legacy_status, legacy_logger_feature_set) = |
| legacy_hal_.lock()->getLoggerSupportedFeatureSet(ifname); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| // some devices don't support querying logger feature set |
| legacy_logger_feature_set = 0; |
| } |
| uint32_t hidl_caps; |
| if (!hidl_struct_util::convertLegacyFeaturesToHidlChipCapabilities( |
| legacy_feature_set, legacy_logger_feature_set, &hidl_caps)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), 0}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_caps}; |
| } |
| |
| std::pair<WifiStatus, sp<V1_4::IWifiRttController>> WifiChip::createRttControllerInternal_1_4( |
| const sp<IWifiIface>& /*bound_iface*/) { |
| LOG(ERROR) << "createRttController_1_4 is not supported on this HAL"; |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), {}}; |
| } |
| |
| WifiStatus WifiChip::registerEventCallbackInternal_1_4( |
| const sp<V1_4::IWifiChipEventCallback>& event_callback) { |
| if (!event_cb_handler_.addCallback(event_callback)) { |
| return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN); |
| } |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| WifiStatus WifiChip::setMultiStaPrimaryConnectionInternal(const std::string& ifname) { |
| auto legacy_status = legacy_hal_.lock()->multiStaSetPrimaryConnection(ifname); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::setMultiStaUseCaseInternal(MultiStaUseCase use_case) { |
| auto legacy_status = legacy_hal_.lock()->multiStaSetUseCase( |
| hidl_struct_util::convertHidlMultiStaUseCaseToLegacy(use_case)); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::setCoexUnsafeChannelsInternal(std::vector<CoexUnsafeChannel> unsafe_channels, |
| uint32_t restrictions) { |
| std::vector<legacy_hal::wifi_coex_unsafe_channel> legacy_unsafe_channels; |
| if (!hidl_struct_util::convertHidlVectorOfCoexUnsafeChannelToLegacy(unsafe_channels, |
| &legacy_unsafe_channels)) { |
| return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS); |
| } |
| uint32_t legacy_restrictions = 0; |
| if (restrictions & CoexRestriction::WIFI_DIRECT) { |
| legacy_restrictions |= legacy_hal::wifi_coex_restriction::WIFI_DIRECT; |
| } |
| if (restrictions & CoexRestriction::SOFTAP) { |
| legacy_restrictions |= legacy_hal::wifi_coex_restriction::SOFTAP; |
| } |
| if (restrictions & CoexRestriction::WIFI_AWARE) { |
| legacy_restrictions |= legacy_hal::wifi_coex_restriction::WIFI_AWARE; |
| } |
| auto legacy_status = |
| legacy_hal_.lock()->setCoexUnsafeChannels(legacy_unsafe_channels, legacy_restrictions); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::setCountryCodeInternal(const std::array<int8_t, 2>& code) { |
| auto legacy_status = legacy_hal_.lock()->setCountryCode(getFirstActiveWlanIfaceName(), code); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| std::pair<WifiStatus, std::vector<V1_5::WifiUsableChannel>> WifiChip::getUsableChannelsInternal( |
| WifiBand /*band*/, uint32_t /*ifaceModeMask*/, uint32_t /*filterMask*/) { |
| LOG(ERROR) << "getUsableChannels is not supported on this HAL"; |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), {}}; |
| } |
| |
| WifiStatus WifiChip::triggerSubsystemRestartInternal() { |
| auto legacy_status = legacy_hal_.lock()->triggerSubsystemRestart(); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| std::pair<WifiStatus, sp<V1_6::IWifiRttController>> WifiChip::createRttControllerInternal_1_6( |
| const sp<IWifiIface>& bound_iface) { |
| if (sta_ifaces_.size() == 0 && |
| !canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::STA)) { |
| LOG(ERROR) << "createRttControllerInternal_1_6: Chip cannot support STAs " |
| "(and RTT by extension)"; |
| return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}}; |
| } |
| sp<WifiRttController> rtt = |
| new WifiRttController(getFirstActiveWlanIfaceName(), bound_iface, legacy_hal_); |
| rtt_controllers_.emplace_back(rtt); |
| return {createWifiStatus(WifiStatusCode::SUCCESS), rtt}; |
| } |
| |
| std::pair<WifiStatus, std::vector<V1_6::WifiUsableChannel>> WifiChip::getUsableChannelsInternal_1_6( |
| WifiBand band, uint32_t ifaceModeMask, uint32_t filterMask) { |
| legacy_hal::wifi_error legacy_status; |
| std::vector<legacy_hal::wifi_usable_channel> legacy_usable_channels; |
| std::tie(legacy_status, legacy_usable_channels) = legacy_hal_.lock()->getUsableChannels( |
| hidl_struct_util::convertHidlWifiBandToLegacyMacBand(band), |
| hidl_struct_util::convertHidlWifiIfaceModeToLegacy(ifaceModeMask), |
| hidl_struct_util::convertHidlUsableChannelFilterToLegacy(filterMask)); |
| |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| return {createWifiStatusFromLegacyError(legacy_status), {}}; |
| } |
| std::vector<V1_6::WifiUsableChannel> hidl_usable_channels; |
| if (!hidl_struct_util::convertLegacyWifiUsableChannelsToHidl(legacy_usable_channels, |
| &hidl_usable_channels)) { |
| return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_usable_channels}; |
| } |
| |
| std::pair<WifiStatus, V1_6::WifiRadioCombinationMatrix> |
| WifiChip::getSupportedRadioCombinationsMatrixInternal() { |
| legacy_hal::wifi_error legacy_status; |
| legacy_hal::wifi_radio_combination_matrix* legacy_matrix; |
| |
| std::tie(legacy_status, legacy_matrix) = |
| legacy_hal_.lock()->getSupportedRadioCombinationsMatrix(); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to get SupportedRadioCombinations matrix from legacy HAL: " |
| << legacyErrorToString(legacy_status); |
| return {createWifiStatusFromLegacyError(legacy_status), {}}; |
| } |
| |
| V1_6::WifiRadioCombinationMatrix hidl_matrix; |
| if (!hidl_struct_util::convertLegacyRadioCombinationsMatrixToHidl(legacy_matrix, |
| &hidl_matrix)) { |
| LOG(ERROR) << "Failed convertLegacyRadioCombinationsMatrixToHidl() "; |
| return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), {}}; |
| } |
| return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_matrix}; |
| } |
| |
| std::pair<WifiStatus, std::vector<V1_6::IWifiChip::ChipMode>> |
| WifiChip::getAvailableModesInternal_1_6() { |
| return {createWifiStatus(WifiStatusCode::SUCCESS), modes_}; |
| } |
| |
| WifiStatus WifiChip::handleChipConfiguration( |
| /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock, ChipModeId mode_id) { |
| // If the chip is already configured in a different mode, stop |
| // the legacy HAL and then start it after firmware mode change. |
| if (isValidModeId(current_mode_id_)) { |
| LOG(INFO) << "Reconfiguring chip from mode " << current_mode_id_ << " to mode " << mode_id; |
| invalidateAndRemoveAllIfaces(); |
| legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->stop(lock, []() {}); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to stop legacy HAL: " << legacyErrorToString(legacy_status); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| } |
| // Firmware mode change not needed for V2 devices. |
| bool success = true; |
| if (mode_id == feature_flags::chip_mode_ids::kV1Sta) { |
| success = mode_controller_.lock()->changeFirmwareMode(IfaceType::STA); |
| } else if (mode_id == feature_flags::chip_mode_ids::kV1Ap) { |
| success = mode_controller_.lock()->changeFirmwareMode(IfaceType::AP); |
| } |
| if (!success) { |
| return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN); |
| } |
| legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->start(); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to start legacy HAL: " << legacyErrorToString(legacy_status); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| // Every time the HAL is restarted, we need to register the |
| // radio mode change callback. |
| WifiStatus status = registerRadioModeChangeCallback(); |
| if (status.code != WifiStatusCode::SUCCESS) { |
| // This probably is not a critical failure? |
| LOG(ERROR) << "Failed to register radio mode change callback"; |
| } |
| // Extract and save the version information into property. |
| std::pair<WifiStatus, V1_4::IWifiChip::ChipDebugInfo> version_info; |
| version_info = WifiChip::requestChipDebugInfoInternal(); |
| if (WifiStatusCode::SUCCESS == version_info.first.code) { |
| property_set("vendor.wlan.firmware.version", |
| version_info.second.firmwareDescription.c_str()); |
| property_set("vendor.wlan.driver.version", version_info.second.driverDescription.c_str()); |
| } |
| |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| WifiStatus WifiChip::registerDebugRingBufferCallback() { |
| if (debug_ring_buffer_cb_registered_) { |
| return createWifiStatus(WifiStatusCode::SUCCESS); |
| } |
| |
| android::wp<WifiChip> weak_ptr_this(this); |
| const auto& on_ring_buffer_data_callback = |
| [weak_ptr_this](const std::string& name, const std::vector<uint8_t>& data, |
| const legacy_hal::wifi_ring_buffer_status& status) { |
| const auto shared_ptr_this = weak_ptr_this.promote(); |
| if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) { |
| LOG(ERROR) << "Callback invoked on an invalid object"; |
| return; |
| } |
| WifiDebugRingBufferStatus hidl_status; |
| Ringbuffer::AppendStatus appendstatus; |
| if (!hidl_struct_util::convertLegacyDebugRingBufferStatusToHidl(status, |
| &hidl_status)) { |
| LOG(ERROR) << "Error converting ring buffer status"; |
| return; |
| } |
| { |
| std::unique_lock<std::mutex> lk(shared_ptr_this->lock_t); |
| const auto& target = shared_ptr_this->ringbuffer_map_.find(name); |
| if (target != shared_ptr_this->ringbuffer_map_.end()) { |
| Ringbuffer& cur_buffer = target->second; |
| appendstatus = cur_buffer.append(data); |
| } else { |
| LOG(ERROR) << "Ringname " << name << " not found"; |
| return; |
| } |
| // unique_lock unlocked here |
| } |
| if (appendstatus == Ringbuffer::AppendStatus::FAIL_RING_BUFFER_CORRUPTED) { |
| LOG(ERROR) << "Ringname " << name << " is corrupted. Clear the ring buffer"; |
| shared_ptr_this->writeRingbufferFilesInternal(); |
| return; |
| } |
| |
| }; |
| legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->registerRingBufferCallbackHandler( |
| getFirstActiveWlanIfaceName(), on_ring_buffer_data_callback); |
| |
| if (legacy_status == legacy_hal::WIFI_SUCCESS) { |
| debug_ring_buffer_cb_registered_ = true; |
| } |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| WifiStatus WifiChip::registerRadioModeChangeCallback() { |
| android::wp<WifiChip> weak_ptr_this(this); |
| const auto& on_radio_mode_change_callback = |
| [weak_ptr_this](const std::vector<legacy_hal::WifiMacInfo>& mac_infos) { |
| const auto shared_ptr_this = weak_ptr_this.promote(); |
| if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) { |
| LOG(ERROR) << "Callback invoked on an invalid object"; |
| return; |
| } |
| std::vector<V1_4::IWifiChipEventCallback::RadioModeInfo> hidl_radio_mode_infos; |
| if (!hidl_struct_util::convertLegacyWifiMacInfosToHidl(mac_infos, |
| &hidl_radio_mode_infos)) { |
| LOG(ERROR) << "Error converting wifi mac info"; |
| return; |
| } |
| for (const auto& callback : shared_ptr_this->getEventCallbacks()) { |
| if (!callback->onRadioModeChange_1_4(hidl_radio_mode_infos).isOk()) { |
| LOG(ERROR) << "Failed to invoke onRadioModeChange_1_4" |
| << " callback on: " << toString(callback); |
| } |
| } |
| }; |
| legacy_hal::wifi_error legacy_status = |
| legacy_hal_.lock()->registerRadioModeChangeCallbackHandler( |
| getFirstActiveWlanIfaceName(), on_radio_mode_change_callback); |
| return createWifiStatusFromLegacyError(legacy_status); |
| } |
| |
| std::vector<V1_6::IWifiChip::ChipConcurrencyCombination> |
| WifiChip::getCurrentModeConcurrencyCombinations() { |
| if (!isValidModeId(current_mode_id_)) { |
| LOG(ERROR) << "Chip not configured in a mode yet"; |
| return {}; |
| } |
| for (const auto& mode : modes_) { |
| if (mode.id == current_mode_id_) { |
| return mode.availableCombinations; |
| } |
| } |
| CHECK(0) << "Expected to find concurrency combinations for current mode!"; |
| return {}; |
| } |
| |
| // Returns a map indexed by IfaceConcurrencyType with the number of ifaces currently |
| // created of the corresponding concurrency type. |
| std::map<IfaceConcurrencyType, size_t> WifiChip::getCurrentConcurrencyCombination() { |
| std::map<IfaceConcurrencyType, size_t> iface_counts; |
| uint32_t num_ap = 0; |
| uint32_t num_ap_bridged = 0; |
| for (const auto& ap_iface : ap_ifaces_) { |
| std::string ap_iface_name = ap_iface->getName(); |
| if (br_ifaces_ap_instances_.count(ap_iface_name) > 0 && |
| br_ifaces_ap_instances_[ap_iface_name].size() > 1) { |
| num_ap_bridged++; |
| } else { |
| num_ap++; |
| } |
| } |
| iface_counts[IfaceConcurrencyType::AP] = num_ap; |
| iface_counts[IfaceConcurrencyType::AP_BRIDGED] = num_ap_bridged; |
| iface_counts[IfaceConcurrencyType::NAN] = nan_ifaces_.size(); |
| iface_counts[IfaceConcurrencyType::P2P] = p2p_ifaces_.size(); |
| iface_counts[IfaceConcurrencyType::STA] = sta_ifaces_.size(); |
| return iface_counts; |
| } |
| |
| // This expands the provided concurrency combinations to a more parseable |
| // form. Returns a vector of available combinations possible with the number |
| // of each concurrency type in the combination. |
| // This method is a port of HalDeviceManager.expandConcurrencyCombos() from framework. |
| std::vector<std::map<IfaceConcurrencyType, size_t>> WifiChip::expandConcurrencyCombinations( |
| const V1_6::IWifiChip::ChipConcurrencyCombination& combination) { |
| uint32_t num_expanded_combos = 1; |
| for (const auto& limit : combination.limits) { |
| for (uint32_t i = 0; i < limit.maxIfaces; i++) { |
| num_expanded_combos *= limit.types.size(); |
| } |
| } |
| |
| // Allocate the vector of expanded combos and reset all concurrency type counts to 0 |
| // in each combo. |
| std::vector<std::map<IfaceConcurrencyType, size_t>> expanded_combos; |
| expanded_combos.resize(num_expanded_combos); |
| for (auto& expanded_combo : expanded_combos) { |
| for (const auto type : |
| {IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED, IfaceConcurrencyType::NAN, |
| IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) { |
| expanded_combo[type] = 0; |
| } |
| } |
| uint32_t span = num_expanded_combos; |
| for (const auto& limit : combination.limits) { |
| for (uint32_t i = 0; i < limit.maxIfaces; i++) { |
| span /= limit.types.size(); |
| for (uint32_t k = 0; k < num_expanded_combos; ++k) { |
| const auto iface_type = limit.types[(k / span) % limit.types.size()]; |
| expanded_combos[k][iface_type]++; |
| } |
| } |
| } |
| return expanded_combos; |
| } |
| |
| bool WifiChip::canExpandedConcurrencyComboSupportConcurrencyTypeWithCurrentTypes( |
| const std::map<IfaceConcurrencyType, size_t>& expanded_combo, |
| IfaceConcurrencyType requested_type) { |
| const auto current_combo = getCurrentConcurrencyCombination(); |
| |
| // Check if we have space for 1 more iface of |type| in this combo |
| for (const auto type : |
| {IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED, IfaceConcurrencyType::NAN, |
| IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) { |
| size_t num_ifaces_needed = current_combo.at(type); |
| if (type == requested_type) { |
| num_ifaces_needed++; |
| } |
| size_t num_ifaces_allowed = expanded_combo.at(type); |
| if (num_ifaces_needed > num_ifaces_allowed) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // This method does the following: |
| // a) Enumerate all possible concurrency combos by expanding the current |
| // ChipConcurrencyCombination. |
| // b) Check if the requested concurrency type can be added to the current mode |
| // with the concurrency combination that is already active. |
| bool WifiChip::canCurrentModeSupportConcurrencyTypeWithCurrentTypes( |
| IfaceConcurrencyType requested_type) { |
| if (!isValidModeId(current_mode_id_)) { |
| LOG(ERROR) << "Chip not configured in a mode yet"; |
| return false; |
| } |
| const auto combinations = getCurrentModeConcurrencyCombinations(); |
| for (const auto& combination : combinations) { |
| const auto expanded_combos = expandConcurrencyCombinations(combination); |
| for (const auto& expanded_combo : expanded_combos) { |
| if (canExpandedConcurrencyComboSupportConcurrencyTypeWithCurrentTypes(expanded_combo, |
| requested_type)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| // Note: This does not consider concurrency types already active. It only checks if the |
| // provided expanded concurrency combination can support the requested combo. |
| bool WifiChip::canExpandedConcurrencyComboSupportConcurrencyCombo( |
| const std::map<IfaceConcurrencyType, size_t>& expanded_combo, |
| const std::map<IfaceConcurrencyType, size_t>& req_combo) { |
| // Check if we have space for 1 more |type| in this combo |
| for (const auto type : |
| {IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED, IfaceConcurrencyType::NAN, |
| IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) { |
| if (req_combo.count(type) == 0) { |
| // Concurrency type not in the req_combo. |
| continue; |
| } |
| size_t num_ifaces_needed = req_combo.at(type); |
| size_t num_ifaces_allowed = expanded_combo.at(type); |
| if (num_ifaces_needed > num_ifaces_allowed) { |
| return false; |
| } |
| } |
| return true; |
| } |
| // This method does the following: |
| // a) Enumerate all possible concurrency combos by expanding the current |
| // ChipConcurrencyCombination. |
| // b) Check if the requested concurrency combo can be added to the current mode. |
| // Note: This does not consider concurrency types already active. It only checks if the |
| // current mode can support the requested combo. |
| bool WifiChip::canCurrentModeSupportConcurrencyCombo( |
| const std::map<IfaceConcurrencyType, size_t>& req_combo) { |
| if (!isValidModeId(current_mode_id_)) { |
| LOG(ERROR) << "Chip not configured in a mode yet"; |
| return false; |
| } |
| const auto combinations = getCurrentModeConcurrencyCombinations(); |
| for (const auto& combination : combinations) { |
| const auto expanded_combos = expandConcurrencyCombinations(combination); |
| for (const auto& expanded_combo : expanded_combos) { |
| if (canExpandedConcurrencyComboSupportConcurrencyCombo(expanded_combo, req_combo)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| // This method does the following: |
| // a) Enumerate all possible concurrency combos by expanding the current |
| // ChipConcurrencyCombination. |
| // b) Check if the requested concurrency type can be added to the current mode. |
| bool WifiChip::canCurrentModeSupportConcurrencyType(IfaceConcurrencyType requested_type) { |
| // Check if we can support at least 1 of the requested concurrency type. |
| std::map<IfaceConcurrencyType, size_t> req_iface_combo; |
| req_iface_combo[requested_type] = 1; |
| return canCurrentModeSupportConcurrencyCombo(req_iface_combo); |
| } |
| |
| bool WifiChip::isValidModeId(ChipModeId mode_id) { |
| for (const auto& mode : modes_) { |
| if (mode.id == mode_id) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool WifiChip::isStaApConcurrencyAllowedInCurrentMode() { |
| // Check if we can support at least 1 STA & 1 AP concurrently. |
| std::map<IfaceConcurrencyType, size_t> req_iface_combo; |
| req_iface_combo[IfaceConcurrencyType::STA] = 1; |
| req_iface_combo[IfaceConcurrencyType::AP] = 1; |
| return canCurrentModeSupportConcurrencyCombo(req_iface_combo); |
| } |
| |
| bool WifiChip::isDualStaConcurrencyAllowedInCurrentMode() { |
| // Check if we can support at least 2 STA concurrently. |
| std::map<IfaceConcurrencyType, size_t> req_iface_combo; |
| req_iface_combo[IfaceConcurrencyType::STA] = 2; |
| return canCurrentModeSupportConcurrencyCombo(req_iface_combo); |
| } |
| |
| std::string WifiChip::getFirstActiveWlanIfaceName() { |
| if (sta_ifaces_.size() > 0) return sta_ifaces_[0]->getName(); |
| if (ap_ifaces_.size() > 0) { |
| // If the first active wlan iface is bridged iface. |
| // Return first instance name. |
| for (auto const& it : br_ifaces_ap_instances_) { |
| if (it.first == ap_ifaces_[0]->getName()) { |
| return it.second[0]; |
| } |
| } |
| return ap_ifaces_[0]->getName(); |
| } |
| // This could happen if the chip call is made before any STA/AP |
| // iface is created. Default to wlan0 for such cases. |
| LOG(WARNING) << "No active wlan interfaces in use! Using default"; |
| return getWlanIfaceNameWithType(IfaceType::STA, 0); |
| } |
| |
| // Return the first wlan (wlan0, wlan1 etc.) starting from |start_idx| |
| // not already in use. |
| // Note: This doesn't check the actual presence of these interfaces. |
| std::string WifiChip::allocateApOrStaIfaceName(IfaceType type, uint32_t start_idx) { |
| for (unsigned idx = start_idx; idx < kMaxWlanIfaces; idx++) { |
| const auto ifname = getWlanIfaceNameWithType(type, idx); |
| if (findUsingNameFromBridgedApInstances(ifname)) continue; |
| if (findUsingName(ap_ifaces_, ifname)) continue; |
| if (findUsingName(sta_ifaces_, ifname)) continue; |
| return ifname; |
| } |
| // This should never happen. We screwed up somewhere if it did. |
| CHECK(false) << "All wlan interfaces in use already!"; |
| return {}; |
| } |
| |
| uint32_t WifiChip::startIdxOfApIface() { |
| if (isDualStaConcurrencyAllowedInCurrentMode()) { |
| // When the HAL support dual STAs, AP should start with idx 2. |
| return 2; |
| } else if (isStaApConcurrencyAllowedInCurrentMode()) { |
| // When the HAL support STA + AP but it doesn't support dual STAs. |
| // AP should start with idx 1. |
| return 1; |
| } |
| // No concurrency support. |
| return 0; |
| } |
| |
| // AP iface names start with idx 1 for modes supporting |
| // concurrent STA and not dual AP, else start with idx 0. |
| std::string WifiChip::allocateApIfaceName() { |
| // Check if we have a dedicated iface for AP. |
| std::vector<std::string> ifnames = getPredefinedApIfaceNames(false); |
| if (!ifnames.empty()) { |
| return ifnames[0]; |
| } |
| return allocateApOrStaIfaceName(IfaceType::AP, startIdxOfApIface()); |
| } |
| |
| std::vector<std::string> WifiChip::allocateBridgedApInstanceNames() { |
| // Check if we have a dedicated iface for AP. |
| std::vector<std::string> instances = getPredefinedApIfaceNames(true); |
| if (instances.size() == 2) { |
| return instances; |
| } else { |
| int num_ifaces_need_to_allocate = 2 - instances.size(); |
| for (int i = 0; i < num_ifaces_need_to_allocate; i++) { |
| std::string instance_name = |
| allocateApOrStaIfaceName(IfaceType::AP, startIdxOfApIface() + i); |
| if (!instance_name.empty()) { |
| instances.push_back(instance_name); |
| } |
| } |
| } |
| return instances; |
| } |
| |
| // STA iface names start with idx 0. |
| // Primary STA iface will always be 0. |
| std::string WifiChip::allocateStaIfaceName() { |
| return allocateApOrStaIfaceName(IfaceType::STA, 0); |
| } |
| |
| bool WifiChip::writeRingbufferFilesInternal() { |
| if (!removeOldFilesInternal()) { |
| LOG(ERROR) << "Error occurred while deleting old tombstone files"; |
| return false; |
| } |
| // write ringbuffers to file |
| { |
| std::unique_lock<std::mutex> lk(lock_t); |
| for (auto& item : ringbuffer_map_) { |
| Ringbuffer& cur_buffer = item.second; |
| if (cur_buffer.getData().empty()) { |
| continue; |
| } |
| const std::string file_path_raw = kTombstoneFolderPath + item.first + "XXXXXXXXXX"; |
| const int dump_fd = mkstemp(makeCharVec(file_path_raw).data()); |
| if (dump_fd == -1) { |
| PLOG(ERROR) << "create file failed"; |
| return false; |
| } |
| unique_fd file_auto_closer(dump_fd); |
| for (const auto& cur_block : cur_buffer.getData()) { |
| if (cur_block.size() <= 0 || cur_block.size() > kMaxBufferSizeBytes) { |
| PLOG(ERROR) << "Ring buffer: " << item.first |
| << " is corrupted. Invalid block size: " << cur_block.size(); |
| break; |
| } |
| if (write(dump_fd, cur_block.data(), sizeof(cur_block[0]) * cur_block.size()) == |
| -1) { |
| PLOG(ERROR) << "Error writing to file"; |
| } |
| } |
| cur_buffer.clear(); |
| } |
| // unique_lock unlocked here |
| } |
| return true; |
| } |
| |
| std::string WifiChip::getWlanIfaceNameWithType(IfaceType type, unsigned idx) { |
| std::string ifname; |
| |
| // let the legacy hal override the interface name |
| legacy_hal::wifi_error err = legacy_hal_.lock()->getSupportedIfaceName((uint32_t)type, ifname); |
| if (err == legacy_hal::WIFI_SUCCESS) return ifname; |
| |
| return getWlanIfaceName(idx); |
| } |
| |
| void WifiChip::invalidateAndClearBridgedApAll() { |
| for (auto const& it : br_ifaces_ap_instances_) { |
| for (auto const& iface : it.second) { |
| iface_util_->removeIfaceFromBridge(it.first, iface); |
| legacy_hal_.lock()->deleteVirtualInterface(iface); |
| } |
| iface_util_->deleteBridge(it.first); |
| } |
| br_ifaces_ap_instances_.clear(); |
| } |
| |
| void WifiChip::deleteApIface(const std::string& if_name) { |
| if (if_name.empty()) return; |
| // delete bridged interfaces if have |
| for (auto const& it : br_ifaces_ap_instances_) { |
| if (it.first == if_name) { |
| for (auto const& iface : it.second) { |
| iface_util_->removeIfaceFromBridge(if_name, iface); |
| legacy_hal_.lock()->deleteVirtualInterface(iface); |
| } |
| iface_util_->deleteBridge(if_name); |
| br_ifaces_ap_instances_.erase(if_name); |
| // ifname is bridged AP, return here. |
| return; |
| } |
| } |
| |
| // No bridged AP case, delete AP iface |
| legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->deleteVirtualInterface(if_name); |
| if (legacy_status != legacy_hal::WIFI_SUCCESS) { |
| LOG(ERROR) << "Failed to remove interface: " << if_name << " " |
| << legacyErrorToString(legacy_status); |
| } |
| } |
| |
| bool WifiChip::findUsingNameFromBridgedApInstances(const std::string& name) { |
| for (auto const& it : br_ifaces_ap_instances_) { |
| if (it.first == name) { |
| return true; |
| } |
| for (auto const& iface : it.second) { |
| if (iface == name) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| } // namespace implementation |
| } // namespace V1_6 |
| } // namespace wifi |
| } // namespace hardware |
| } // namespace android |