blob: 03ecb1a04ec35040d2cd7f0da72ba62c4f9e5da1 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/Gtest.h>
#include <aidl/Vintf.h>
#include <aidl/android/hardware/vibrator/BnVibratorCallback.h>
#include <aidl/android/hardware/vibrator/IVibrator.h>
#include <aidl/android/hardware/vibrator/IVibratorManager.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <android/persistable_bundle_aidl.h>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <future>
#include <iomanip>
#include <iostream>
#include <random>
#include "persistable_bundle_utils.h"
#include "pwle_v2_utils.h"
#include "test_utils.h"
using aidl::android::hardware::vibrator::ActivePwle;
using aidl::android::hardware::vibrator::BnVibratorCallback;
using aidl::android::hardware::vibrator::Braking;
using aidl::android::hardware::vibrator::BrakingPwle;
using aidl::android::hardware::vibrator::CompositeEffect;
using aidl::android::hardware::vibrator::CompositePrimitive;
using aidl::android::hardware::vibrator::CompositePwleV2;
using aidl::android::hardware::vibrator::Effect;
using aidl::android::hardware::vibrator::EffectStrength;
using aidl::android::hardware::vibrator::FrequencyAccelerationMapEntry;
using aidl::android::hardware::vibrator::IVibrator;
using aidl::android::hardware::vibrator::IVibratorManager;
using aidl::android::hardware::vibrator::PrimitivePwle;
using aidl::android::hardware::vibrator::PwleV2Primitive;
using aidl::android::hardware::vibrator::VendorEffect;
using aidl::android::os::PersistableBundle;
using std::chrono::high_resolution_clock;
using namespace ::std::chrono_literals;
namespace pwle_v2_utils = aidl::android::hardware::vibrator::testing::pwlev2;
const std::vector<Effect> kEffects{ndk::enum_range<Effect>().begin(),
ndk::enum_range<Effect>().end()};
const std::vector<EffectStrength> kEffectStrengths{ndk::enum_range<EffectStrength>().begin(),
ndk::enum_range<EffectStrength>().end()};
const std::vector<Effect> kInvalidEffects = {
static_cast<Effect>(static_cast<int32_t>(kEffects.front()) - 1),
static_cast<Effect>(static_cast<int32_t>(kEffects.back()) + 1),
};
const std::vector<EffectStrength> kInvalidEffectStrengths = {
static_cast<EffectStrength>(static_cast<int8_t>(kEffectStrengths.front()) - 1),
static_cast<EffectStrength>(static_cast<int8_t>(kEffectStrengths.back()) + 1),
};
const std::vector<CompositePrimitive> kCompositePrimitives{
ndk::enum_range<CompositePrimitive>().begin(), ndk::enum_range<CompositePrimitive>().end()};
const std::vector<CompositePrimitive> kRequiredPrimitives = {
CompositePrimitive::CLICK, CompositePrimitive::LIGHT_TICK,
CompositePrimitive::QUICK_RISE, CompositePrimitive::SLOW_RISE,
CompositePrimitive::QUICK_FALL,
};
const std::vector<CompositePrimitive> kInvalidPrimitives = {
static_cast<CompositePrimitive>(static_cast<int32_t>(kCompositePrimitives.front()) - 1),
static_cast<CompositePrimitive>(static_cast<int32_t>(kCompositePrimitives.back()) + 1),
};
// Timeout to wait for vibration callback completion.
static constexpr std::chrono::milliseconds VIBRATION_CALLBACK_TIMEOUT = 100ms;
static constexpr int32_t VENDOR_EFFECTS_MIN_VERSION = 3;
static constexpr int32_t PWLE_V2_MIN_VERSION = 3;
static std::vector<std::string> findVibratorManagerNames() {
std::vector<std::string> names;
constexpr auto callback = [](const char* instance, void* context) {
auto fullName = std::string(IVibratorManager::descriptor) + "/" + instance;
static_cast<std::vector<std::string>*>(context)->emplace_back(fullName);
};
AServiceManager_forEachDeclaredInstance(IVibratorManager::descriptor,
static_cast<void*>(&names), callback);
return names;
}
static std::vector<std::string> findUnmanagedVibratorNames() {
std::vector<std::string> names;
constexpr auto callback = [](const char* instance, void* context) {
auto fullName = std::string(IVibrator::descriptor) + "/" + instance;
static_cast<std::vector<std::string>*>(context)->emplace_back(fullName);
};
AServiceManager_forEachDeclaredInstance(IVibrator::descriptor, static_cast<void*>(&names),
callback);
return names;
}
class CompletionCallback : public BnVibratorCallback {
public:
CompletionCallback(const std::function<void()> &callback) : mCallback(callback) {}
ndk::ScopedAStatus onComplete() override {
mCallback();
return ndk::ScopedAStatus::ok();
}
private:
std::function<void()> mCallback;
};
class VibratorAidl : public testing::TestWithParam<std::tuple<int32_t, int32_t>> {
public:
virtual void SetUp() override {
int32_t managerIdx = std::get<0>(GetParam());
int32_t vibratorId = std::get<1>(GetParam());
if (managerIdx < 0) {
// Testing a unmanaged vibrator, using vibratorId as index from registered HALs
std::vector<std::string> vibratorNames = findUnmanagedVibratorNames();
ASSERT_LT(vibratorId, vibratorNames.size());
vibrator = IVibrator::fromBinder(ndk::SpAIBinder(
AServiceManager_waitForService(vibratorNames[vibratorId].c_str())));
} else {
// Testing a managed vibrator, using vibratorId to retrieve it from the manager
std::vector<std::string> managerNames = findVibratorManagerNames();
ASSERT_LT(managerIdx, managerNames.size());
auto vibratorManager = IVibratorManager::fromBinder(ndk::SpAIBinder(
AServiceManager_waitForService(managerNames[managerIdx].c_str())));
EXPECT_OK(vibratorManager->getVibrator(vibratorId, &vibrator))
<< "\n For vibrator id: " << vibratorId;
}
ASSERT_NE(vibrator, nullptr);
EXPECT_OK(vibrator->getInterfaceVersion(&version));
EXPECT_OK(vibrator->getCapabilities(&capabilities));
}
virtual void TearDown() override {
// Reset vibrator state between tests.
EXPECT_OK(vibrator->off());
}
std::shared_ptr<IVibrator> vibrator;
int32_t version;
int32_t capabilities;
};
static float getResonantFrequencyHz(const std::shared_ptr<IVibrator>& vibrator,
int32_t capabilities) {
float resonantFrequencyHz;
ndk::ScopedAStatus status = vibrator->getResonantFrequency(&resonantFrequencyHz);
if (capabilities & IVibrator::CAP_GET_RESONANT_FREQUENCY) {
EXPECT_OK(std::move(status));
EXPECT_GT(resonantFrequencyHz, 0);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
return resonantFrequencyHz;
}
static bool shouldValidateLegacyFrequencyControlResult(int32_t capabilities, int32_t version,
ndk::ScopedAStatus& status) {
bool hasFrequencyControl = capabilities & IVibrator::CAP_FREQUENCY_CONTROL;
// Legacy frequency control APIs deprecated with PWLE V2 feature.
bool isDeprecated = version >= PWLE_V2_MIN_VERSION;
bool isUnknownOrUnsupported = status.getExceptionCode() == EX_UNSUPPORTED_OPERATION ||
status.getStatus() == STATUS_UNKNOWN_TRANSACTION;
// Validate if older HAL or if result is provided, even after deprecation.
return hasFrequencyControl && (!isDeprecated || !isUnknownOrUnsupported);
}
static float getFrequencyResolutionHz(const std::shared_ptr<IVibrator>& vibrator,
int32_t capabilities, int32_t version) {
float freqResolutionHz = -1;
ndk::ScopedAStatus status = vibrator->getFrequencyResolution(&freqResolutionHz);
if (shouldValidateLegacyFrequencyControlResult(capabilities, version, status)) {
EXPECT_OK(std::move(status));
EXPECT_GT(freqResolutionHz, 0);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
return freqResolutionHz;
}
static float getFrequencyMinimumHz(const std::shared_ptr<IVibrator>& vibrator, int32_t capabilities,
int32_t version) {
float freqMinimumHz;
ndk::ScopedAStatus status = vibrator->getFrequencyMinimum(&freqMinimumHz);
if (shouldValidateLegacyFrequencyControlResult(capabilities, version, status)) {
EXPECT_OK(std::move(status));
float resonantFrequencyHz = getResonantFrequencyHz(vibrator, capabilities);
EXPECT_GT(freqMinimumHz, 0);
EXPECT_LE(freqMinimumHz, resonantFrequencyHz);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
return freqMinimumHz;
}
static float getFrequencyMaximumHz(const std::shared_ptr<IVibrator>& vibrator, int32_t capabilities,
int32_t version) {
std::vector<float> bandwidthAmplitudeMap;
ndk::ScopedAStatus status = vibrator->getBandwidthAmplitudeMap(&bandwidthAmplitudeMap);
if (shouldValidateLegacyFrequencyControlResult(capabilities, version, status)) {
EXPECT_OK(std::move(status));
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
float freqMaximumHz = ((bandwidthAmplitudeMap.size() - 1) *
getFrequencyResolutionHz(vibrator, capabilities, version)) +
getFrequencyMinimumHz(vibrator, capabilities, version);
return freqMaximumHz;
}
static float getAmplitudeMin() {
return 0.0;
}
static float getAmplitudeMax() {
return 1.0;
}
static ActivePwle composeValidActivePwle(const std::shared_ptr<IVibrator>& vibrator,
int32_t capabilities, int32_t version) {
float frequencyHz;
if (capabilities & IVibrator::CAP_GET_RESONANT_FREQUENCY) {
frequencyHz = getResonantFrequencyHz(vibrator, capabilities);
} else if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
if (version < PWLE_V2_MIN_VERSION) {
frequencyHz = getFrequencyMinimumHz(vibrator, capabilities, version);
} else {
frequencyHz = pwle_v2_utils::getPwleV2FrequencyMinHz(vibrator);
}
} else {
frequencyHz = 150.0; // default value commonly used
}
ActivePwle active;
active.startAmplitude = (getAmplitudeMin() + getAmplitudeMax()) / 2;
active.startFrequency = frequencyHz;
active.endAmplitude = (getAmplitudeMin() + getAmplitudeMax()) / 2;
active.endFrequency = frequencyHz;
vibrator->getPwlePrimitiveDurationMax(&(active.duration));
return active;
}
TEST_P(VibratorAidl, OnThenOffBeforeTimeout) {
EXPECT_OK(vibrator->on(2000, nullptr /*callback*/));
sleep(1);
EXPECT_OK(vibrator->off());
}
TEST_P(VibratorAidl, OnWithCallback) {
if (!(capabilities & IVibrator::CAP_ON_CALLBACK))
return;
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
auto callback = ndk::SharedRefBase::make<CompletionCallback>(
[&completionPromise] { completionPromise.set_value(); });
uint32_t durationMs = 250;
auto timeout = std::chrono::milliseconds(durationMs) + VIBRATION_CALLBACK_TIMEOUT;
EXPECT_OK(vibrator->on(durationMs, callback));
EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
EXPECT_OK(vibrator->off());
}
TEST_P(VibratorAidl, OnCallbackNotSupported) {
if (!(capabilities & IVibrator::CAP_ON_CALLBACK)) {
auto callback = ndk::SharedRefBase::make<CompletionCallback>([] {});
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->on(250, callback));
}
}
TEST_P(VibratorAidl, ValidateEffect) {
std::vector<Effect> supported;
EXPECT_OK(vibrator->getSupportedEffects(&supported));
for (Effect effect : kEffects) {
bool isEffectSupported =
std::find(supported.begin(), supported.end(), effect) != supported.end();
for (EffectStrength strength : kEffectStrengths) {
int32_t lengthMs = 0;
ndk::ScopedAStatus status =
vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs);
if (isEffectSupported) {
EXPECT_OK(std::move(status))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
EXPECT_GT(lengthMs, 0);
usleep(lengthMs * 1000);
EXPECT_OK(vibrator->off());
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
}
}
}
}
TEST_P(VibratorAidl, ValidateEffectWithCallback) {
if (!(capabilities & IVibrator::CAP_PERFORM_CALLBACK))
return;
std::vector<Effect> supported;
EXPECT_OK(vibrator->getSupportedEffects(&supported));
for (Effect effect : kEffects) {
bool isEffectSupported =
std::find(supported.begin(), supported.end(), effect) != supported.end();
for (EffectStrength strength : kEffectStrengths) {
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
auto callback = ndk::SharedRefBase::make<CompletionCallback>(
[&completionPromise] { completionPromise.set_value(); });
int lengthMs = 0;
ndk::ScopedAStatus status = vibrator->perform(effect, strength, callback, &lengthMs);
if (isEffectSupported) {
EXPECT_OK(std::move(status))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
EXPECT_GT(lengthMs, 0);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
}
if (lengthMs <= 0) continue;
auto timeout = std::chrono::milliseconds(lengthMs) + VIBRATION_CALLBACK_TIMEOUT;
EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
EXPECT_OK(vibrator->off());
}
}
}
TEST_P(VibratorAidl, ValidateEffectWithCallbackNotSupported) {
if (capabilities & IVibrator::CAP_PERFORM_CALLBACK)
return;
for (Effect effect : kEffects) {
for (EffectStrength strength : kEffectStrengths) {
auto callback = ndk::SharedRefBase::make<CompletionCallback>([] {});
int lengthMs;
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->perform(effect, strength, callback, &lengthMs))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
}
}
}
TEST_P(VibratorAidl, InvalidEffectsUnsupported) {
for (Effect effect : kInvalidEffects) {
for (EffectStrength strength : kEffectStrengths) {
int32_t lengthMs;
EXPECT_UNKNOWN_OR_UNSUPPORTED(
vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
}
}
for (Effect effect : kEffects) {
for (EffectStrength strength : kInvalidEffectStrengths) {
int32_t lengthMs;
EXPECT_UNKNOWN_OR_UNSUPPORTED(
vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
}
}
}
TEST_P(VibratorAidl, PerformVendorEffectSupported) {
if ((capabilities & IVibrator::CAP_PERFORM_VENDOR_EFFECTS) == 0) return;
float scale = 0.0f;
float vendorScale = 0.0f;
for (EffectStrength strength : kEffectStrengths) {
PersistableBundle vendorData;
::aidl::android::hardware::vibrator::testing::fillBasicData(&vendorData);
PersistableBundle nestedData;
::aidl::android::hardware::vibrator::testing::fillBasicData(&nestedData);
vendorData.putPersistableBundle("test_nested_bundle", nestedData);
VendorEffect effect;
effect.vendorData = vendorData;
effect.strength = strength;
effect.scale = scale;
effect.vendorScale = vendorScale;
scale += 0.5f;
vendorScale += 0.2f;
auto callback = ndk::SharedRefBase::make<CompletionCallback>([] {});
ndk::ScopedAStatus status = vibrator->performVendorEffect(effect, callback);
// No expectations on the actual status, the effect might be refused with illegal argument
// or the vendor might return a service-specific error code.
EXPECT_TRUE(status.getExceptionCode() != EX_UNSUPPORTED_OPERATION &&
status.getStatus() != STATUS_UNKNOWN_TRANSACTION)
<< status << "\n For vendor effect with strength" << toString(strength)
<< " and scale " << effect.scale;
if (status.isOk()) {
// Generic vendor data should not trigger vibrations, but if it does trigger one
// then we make sure the vibrator is reset by triggering off().
EXPECT_OK(vibrator->off());
}
}
}
TEST_P(VibratorAidl, PerformVendorEffectStability) {
if ((capabilities & IVibrator::CAP_PERFORM_VENDOR_EFFECTS) == 0) return;
// Run some iterations of performVendorEffect with randomized vendor data to check basic
// stability of the implementation.
uint8_t iterations = 200;
for (EffectStrength strength : kEffectStrengths) {
float scale = 0.5f;
float vendorScale = 0.2f;
for (uint8_t i = 0; i < iterations; i++) {
PersistableBundle vendorData;
::aidl::android::hardware::vibrator::testing::fillRandomData(&vendorData);
VendorEffect effect;
effect.vendorData = vendorData;
effect.strength = strength;
effect.scale = scale;
effect.vendorScale = vendorScale;
scale *= 2;
vendorScale *= 1.5f;
auto callback = ndk::SharedRefBase::make<CompletionCallback>([] {});
ndk::ScopedAStatus status = vibrator->performVendorEffect(effect, callback);
// No expectations on the actual status, the effect might be refused with illegal
// argument or the vendor might return a service-specific error code.
EXPECT_TRUE(status.getExceptionCode() != EX_UNSUPPORTED_OPERATION &&
status.getStatus() != STATUS_UNKNOWN_TRANSACTION)
<< status << "\n For random vendor effect with strength " << toString(strength)
<< " and scale " << effect.scale;
if (status.isOk()) {
// Random vendor data should not trigger vibrations, but if it does trigger one
// then we make sure the vibrator is reset by triggering off().
EXPECT_OK(vibrator->off());
}
}
}
}
TEST_P(VibratorAidl, PerformVendorEffectEmptyVendorData) {
if ((capabilities & IVibrator::CAP_PERFORM_VENDOR_EFFECTS) == 0) return;
for (EffectStrength strength : kEffectStrengths) {
VendorEffect effect;
effect.strength = strength;
effect.scale = 1.0f;
effect.vendorScale = 1.0f;
ndk::ScopedAStatus status = vibrator->performVendorEffect(effect, nullptr /*callback*/);
EXPECT_TRUE(status.getExceptionCode() == EX_SERVICE_SPECIFIC)
<< status << "\n For vendor effect with strength " << toString(strength)
<< " and scale " << effect.scale;
}
}
TEST_P(VibratorAidl, PerformVendorEffectInvalidScale) {
if ((capabilities & IVibrator::CAP_PERFORM_VENDOR_EFFECTS) == 0) return;
VendorEffect effect;
effect.strength = EffectStrength::MEDIUM;
effect.scale = -1.0f;
effect.vendorScale = 1.0f;
EXPECT_ILLEGAL_ARGUMENT(vibrator->performVendorEffect(effect, nullptr /*callback*/));
effect.scale = 1.0f;
effect.vendorScale = -1.0f;
EXPECT_ILLEGAL_ARGUMENT(vibrator->performVendorEffect(effect, nullptr /*callback*/));
}
TEST_P(VibratorAidl, PerformVendorEffectUnsupported) {
if (version < VENDOR_EFFECTS_MIN_VERSION) {
EXPECT_EQ(capabilities & IVibrator::CAP_PERFORM_VENDOR_EFFECTS, 0)
<< "Vibrator version " << version << " should not report vendor effects capability";
}
if (capabilities & IVibrator::CAP_PERFORM_VENDOR_EFFECTS) return;
for (EffectStrength strength : kEffectStrengths) {
VendorEffect effect;
effect.strength = strength;
effect.scale = 1.0f;
effect.vendorScale = 1.0f;
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->performVendorEffect(effect, nullptr /*callback*/))
<< "\n For vendor effect with strength " << toString(strength);
}
}
TEST_P(VibratorAidl, ChangeVibrationAmplitude) {
if (capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) {
EXPECT_OK(vibrator->setAmplitude(0.1f));
EXPECT_OK(vibrator->on(2000, nullptr /*callback*/));
EXPECT_OK(vibrator->setAmplitude(0.5f));
sleep(1);
EXPECT_OK(vibrator->setAmplitude(1.0f));
sleep(1);
EXPECT_OK(vibrator->off());
}
}
TEST_P(VibratorAidl, AmplitudeOutsideRangeFails) {
if (capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) {
EXPECT_ILLEGAL_ARGUMENT(vibrator->setAmplitude(-1));
EXPECT_ILLEGAL_ARGUMENT(vibrator->setAmplitude(0));
EXPECT_ILLEGAL_ARGUMENT(vibrator->setAmplitude(1.1));
}
}
TEST_P(VibratorAidl, AmplitudeReturnsUnsupportedMatchingCapabilities) {
if ((capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) == 0) {
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->setAmplitude(1));
}
}
TEST_P(VibratorAidl, ChangeVibrationExternalControl) {
if (capabilities & IVibrator::CAP_EXTERNAL_CONTROL) {
EXPECT_OK(vibrator->setExternalControl(true));
sleep(1);
EXPECT_OK(vibrator->setExternalControl(false));
sleep(1);
}
}
TEST_P(VibratorAidl, ExternalAmplitudeControl) {
const bool supportsExternalAmplitudeControl =
(capabilities & IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL) > 0;
if (capabilities & IVibrator::CAP_EXTERNAL_CONTROL) {
EXPECT_OK(vibrator->setExternalControl(true));
if (supportsExternalAmplitudeControl) {
EXPECT_OK(vibrator->setAmplitude(0.5));
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->setAmplitude(0.5));
}
EXPECT_OK(vibrator->setExternalControl(false));
} else {
EXPECT_FALSE(supportsExternalAmplitudeControl);
}
}
TEST_P(VibratorAidl, ExternalControlUnsupportedMatchingCapabilities) {
if ((capabilities & IVibrator::CAP_EXTERNAL_CONTROL) == 0) {
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->setExternalControl(true));
}
}
TEST_P(VibratorAidl, GetSupportedPrimitives) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
std::vector<CompositePrimitive> supported;
EXPECT_OK(vibrator->getSupportedPrimitives(&supported));
for (CompositePrimitive primitive : kCompositePrimitives) {
bool isPrimitiveSupported =
std::find(supported.begin(), supported.end(), primitive) != supported.end();
bool isPrimitiveRequired =
std::find(kRequiredPrimitives.begin(), kRequiredPrimitives.end(), primitive) !=
kRequiredPrimitives.end();
EXPECT_TRUE(isPrimitiveSupported || !isPrimitiveRequired) << toString(primitive);
}
}
}
TEST_P(VibratorAidl, GetPrimitiveDuration) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
std::vector<CompositePrimitive> supported;
EXPECT_OK(vibrator->getSupportedPrimitives(&supported));
for (CompositePrimitive primitive : kCompositePrimitives) {
bool isPrimitiveSupported =
std::find(supported.begin(), supported.end(), primitive) != supported.end();
int32_t duration;
if (isPrimitiveSupported) {
EXPECT_OK(vibrator->getPrimitiveDuration(primitive, &duration))
<< "\n For primitive: " << toString(primitive) << " " << duration;
if (primitive != CompositePrimitive::NOOP) {
ASSERT_GT(duration, 0)
<< "\n For primitive: " << toString(primitive) << " " << duration;
}
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->getPrimitiveDuration(primitive, &duration))
<< "\n For primitive: " << toString(primitive);
}
}
}
}
TEST_P(VibratorAidl, ComposeValidPrimitives) {
if (!(capabilities & IVibrator::CAP_COMPOSE_EFFECTS)) {
GTEST_SKIP() << "CAP_COMPOSE_EFFECTS not supported";
}
std::vector<CompositePrimitive> supported;
int32_t maxDelay, maxSize;
EXPECT_OK(vibrator->getSupportedPrimitives(&supported));
EXPECT_OK(vibrator->getCompositionDelayMax(&maxDelay));
EXPECT_OK(vibrator->getCompositionSizeMax(&maxSize));
std::vector<CompositeEffect> composite;
for (int i = 0; i < supported.size(); i++) {
CompositePrimitive primitive = supported[i];
float t = static_cast<float>(i + 1) / supported.size();
CompositeEffect effect;
effect.delayMs = maxDelay * t;
effect.primitive = primitive;
effect.scale = t;
if (composite.size() == maxSize) {
break;
}
}
if (composite.size() != 0) {
EXPECT_OK(vibrator->compose(composite, nullptr));
EXPECT_OK(vibrator->off());
}
}
TEST_P(VibratorAidl, ComposeUnsupportedPrimitives) {
if (!(capabilities & IVibrator::CAP_COMPOSE_EFFECTS)) {
GTEST_SKIP() << "CAP_COMPOSE_EFFECTS not supported";
}
std::vector<CompositePrimitive> unsupported(kInvalidPrimitives);
std::vector<CompositePrimitive> supported;
EXPECT_OK(vibrator->getSupportedPrimitives(&supported));
for (CompositePrimitive primitive : kCompositePrimitives) {
bool isPrimitiveSupported =
std::find(supported.begin(), supported.end(), primitive) != supported.end();
if (!isPrimitiveSupported) {
unsupported.push_back(primitive);
}
}
for (CompositePrimitive primitive : unsupported) {
std::vector<CompositeEffect> composite(1);
for (CompositeEffect& effect : composite) {
effect.delayMs = 0;
effect.primitive = primitive;
effect.scale = 1.0f;
}
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->compose(composite, nullptr));
}
}
TEST_P(VibratorAidl, ComposeScaleBoundary) {
if (!(capabilities & IVibrator::CAP_COMPOSE_EFFECTS)) {
GTEST_SKIP() << "CAP_COMPOSE_EFFECTS not supported";
}
std::vector<CompositeEffect> composite(1);
CompositeEffect& effect = composite[0];
effect.delayMs = 0;
effect.primitive = CompositePrimitive::CLICK;
effect.scale = std::nextafter(0.0f, -1.0f);
EXPECT_ILLEGAL_ARGUMENT(vibrator->compose(composite, nullptr));
effect.scale = 0.0f;
EXPECT_OK(vibrator->compose(composite, nullptr));
EXPECT_OK(vibrator->off());
effect.scale = 1.0f;
EXPECT_OK(vibrator->compose(composite, nullptr));
EXPECT_OK(vibrator->off());
effect.scale = std::nextafter(1.0f, 2.0f);
EXPECT_ILLEGAL_ARGUMENT(vibrator->compose(composite, nullptr));
}
TEST_P(VibratorAidl, ComposeDelayBoundary) {
if (!(capabilities & IVibrator::CAP_COMPOSE_EFFECTS)) {
GTEST_SKIP() << "CAP_COMPOSE_EFFECTS not supported";
}
int32_t maxDelay;
EXPECT_OK(vibrator->getCompositionDelayMax(&maxDelay));
std::vector<CompositeEffect> composite(1);
CompositeEffect& effect = composite[0];
effect.primitive = CompositePrimitive::CLICK;
effect.scale = 1.0f;
effect.delayMs = 0;
EXPECT_OK(vibrator->compose(composite, nullptr));
EXPECT_OK(vibrator->off());
effect.delayMs = 1;
EXPECT_OK(vibrator->compose(composite, nullptr));
EXPECT_OK(vibrator->off());
effect.delayMs = maxDelay;
EXPECT_OK(vibrator->compose(composite, nullptr));
EXPECT_OK(vibrator->off());
effect.delayMs = maxDelay + 1;
EXPECT_ILLEGAL_ARGUMENT(vibrator->compose(composite, nullptr));
}
TEST_P(VibratorAidl, ComposeSizeBoundary) {
if (!(capabilities & IVibrator::CAP_COMPOSE_EFFECTS)) {
GTEST_SKIP() << "CAP_COMPOSE_EFFECTS not supported";
}
int32_t maxSize;
EXPECT_OK(vibrator->getCompositionSizeMax(&maxSize));
std::vector<CompositeEffect> composite(maxSize);
CompositeEffect effect;
effect.delayMs = 1;
effect.primitive = CompositePrimitive::CLICK;
effect.scale = 1.0f;
std::fill(composite.begin(), composite.end(), effect);
EXPECT_OK(vibrator->compose(composite, nullptr));
EXPECT_OK(vibrator->off());
composite.emplace_back(effect);
EXPECT_ILLEGAL_ARGUMENT(vibrator->compose(composite, nullptr));
}
TEST_P(VibratorAidl, ComposeCallback) {
if (!(capabilities & IVibrator::CAP_COMPOSE_EFFECTS)) {
GTEST_SKIP() << "CAP_COMPOSE_EFFECTS not supported";
}
std::vector<CompositePrimitive> supported;
EXPECT_OK(vibrator->getSupportedPrimitives(&supported));
for (CompositePrimitive primitive : supported) {
if (primitive == CompositePrimitive::NOOP) {
continue;
}
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
auto callback = ndk::SharedRefBase::make<CompletionCallback>(
[&completionPromise] { completionPromise.set_value(); });
CompositeEffect effect;
std::vector<CompositeEffect> composite;
int32_t durationMs;
std::chrono::milliseconds duration;
std::chrono::time_point<high_resolution_clock> start, end;
std::chrono::milliseconds elapsed;
effect.delayMs = 0;
effect.primitive = primitive;
effect.scale = 1.0f;
composite.emplace_back(effect);
EXPECT_OK(vibrator->getPrimitiveDuration(primitive, &durationMs))
<< "\n For primitive: " << toString(primitive);
duration = std::chrono::milliseconds(durationMs);
start = high_resolution_clock::now();
EXPECT_OK(vibrator->compose(composite, callback))
<< "\n For primitive: " << toString(primitive);
EXPECT_EQ(completionFuture.wait_for(duration + VIBRATION_CALLBACK_TIMEOUT),
std::future_status::ready)
<< "\n For primitive: " << toString(primitive);
end = high_resolution_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
EXPECT_GE(elapsed.count(), duration.count())
<< "\n For primitive: " << toString(primitive);
EXPECT_OK(vibrator->off()) << "\n For primitive: " << toString(primitive);
}
}
TEST_P(VibratorAidl, AlwaysOn) {
if (capabilities & IVibrator::CAP_ALWAYS_ON_CONTROL) {
std::vector<Effect> supported;
EXPECT_OK(vibrator->getSupportedAlwaysOnEffects(&supported));
for (Effect effect : kEffects) {
bool isEffectSupported =
std::find(supported.begin(), supported.end(), effect) != supported.end();
for (EffectStrength strength : kEffectStrengths) {
ndk::ScopedAStatus status = vibrator->alwaysOnEnable(0, effect, strength);
if (isEffectSupported) {
EXPECT_OK(std::move(status))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status))
<< "\n For effect: " << toString(effect) << " " << toString(strength);
}
}
}
EXPECT_OK(vibrator->alwaysOnDisable(0));
}
}
TEST_P(VibratorAidl, GetResonantFrequency) {
getResonantFrequencyHz(vibrator, capabilities);
}
TEST_P(VibratorAidl, GetQFactor) {
float qFactor;
ndk::ScopedAStatus status = vibrator->getQFactor(&qFactor);
if (capabilities & IVibrator::CAP_GET_Q_FACTOR) {
EXPECT_OK(std::move(status));
ASSERT_GT(qFactor, 0);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
}
TEST_P(VibratorAidl, GetFrequencyResolution) {
getFrequencyResolutionHz(vibrator, capabilities, version);
}
TEST_P(VibratorAidl, GetFrequencyMinimum) {
getFrequencyMinimumHz(vibrator, capabilities, version);
}
TEST_P(VibratorAidl, GetBandwidthAmplitudeMap) {
std::vector<float> bandwidthAmplitudeMap;
ndk::ScopedAStatus status = vibrator->getBandwidthAmplitudeMap(&bandwidthAmplitudeMap);
if (shouldValidateLegacyFrequencyControlResult(capabilities, version, status)) {
EXPECT_OK(std::move(status));
ASSERT_FALSE(bandwidthAmplitudeMap.empty());
int minMapSize = (getResonantFrequencyHz(vibrator, capabilities) -
getFrequencyMinimumHz(vibrator, capabilities, version)) /
getFrequencyResolutionHz(vibrator, capabilities, version);
ASSERT_GT(bandwidthAmplitudeMap.size(), minMapSize);
for (float e : bandwidthAmplitudeMap) {
ASSERT_GE(e, 0.0);
ASSERT_LE(e, 1.0);
}
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
}
TEST_P(VibratorAidl, GetPwlePrimitiveDurationMax) {
int32_t durationMs;
ndk::ScopedAStatus status = vibrator->getPwlePrimitiveDurationMax(&durationMs);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
EXPECT_OK(std::move(status));
ASSERT_NE(durationMs, 0);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
}
TEST_P(VibratorAidl, GetPwleCompositionSizeMax) {
int32_t maxSize;
ndk::ScopedAStatus status = vibrator->getPwleCompositionSizeMax(&maxSize);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
EXPECT_OK(std::move(status));
ASSERT_NE(maxSize, 0);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
}
TEST_P(VibratorAidl, GetSupportedBraking) {
std::vector<Braking> supported;
ndk::ScopedAStatus status = vibrator->getSupportedBraking(&supported);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
bool isDefaultNoneSupported =
std::find(supported.begin(), supported.end(), Braking::NONE) != supported.end();
EXPECT_OK(std::move(status));
ASSERT_TRUE(isDefaultNoneSupported);
} else {
EXPECT_UNKNOWN_OR_UNSUPPORTED(std::move(status));
}
}
TEST_P(VibratorAidl, ComposeValidPwle) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ActivePwle firstActive = composeValidActivePwle(vibrator, capabilities, version);
std::vector<Braking> supported;
EXPECT_OK(vibrator->getSupportedBraking(&supported));
bool isClabSupported =
std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end();
BrakingPwle firstBraking;
firstBraking.braking = isClabSupported ? Braking::CLAB : Braking::NONE;
firstBraking.duration = 100;
ActivePwle secondActive = composeValidActivePwle(vibrator, capabilities, version);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
float minFrequencyHz = getFrequencyMinimumHz(vibrator, capabilities, version);
float maxFrequencyHz = getFrequencyMaximumHz(vibrator, capabilities, version);
float freqResolutionHz = getFrequencyResolutionHz(vibrator, capabilities, version);
// As of API 16 these APIs are deprecated and no longer required to be implemented
// with frequency control capability.
if (minFrequencyHz >= 0 && maxFrequencyHz >= 0 && freqResolutionHz >= 0) {
secondActive.startFrequency = minFrequencyHz + (freqResolutionHz / 2.0f);
secondActive.endFrequency = maxFrequencyHz - (freqResolutionHz / 3.0f);
}
}
BrakingPwle secondBraking;
secondBraking.braking = Braking::NONE;
secondBraking.duration = 10;
std::vector<PrimitivePwle> pwleQueue = {firstActive, firstBraking, secondActive,
secondBraking};
EXPECT_OK(vibrator->composePwle(pwleQueue, nullptr));
EXPECT_OK(vibrator->off());
}
}
TEST_P(VibratorAidl, ComposeValidPwleWithCallback) {
if (!((capabilities & IVibrator::CAP_ON_CALLBACK) &&
(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS)))
return;
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
auto callback = ndk::SharedRefBase::make<CompletionCallback>(
[&completionPromise] { completionPromise.set_value(); });
int32_t segmentDurationMaxMs;
vibrator->getPwlePrimitiveDurationMax(&segmentDurationMaxMs);
uint32_t durationMs = segmentDurationMaxMs * 2 + 100; // Sum of 2 active and 1 braking below
auto timeout = std::chrono::milliseconds(durationMs) + VIBRATION_CALLBACK_TIMEOUT;
ActivePwle active = composeValidActivePwle(vibrator, capabilities, version);
std::vector<Braking> supported;
EXPECT_OK(vibrator->getSupportedBraking(&supported));
bool isClabSupported =
std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end();
BrakingPwle braking;
braking.braking = isClabSupported ? Braking::CLAB : Braking::NONE;
braking.duration = 100;
std::vector<PrimitivePwle> pwleQueue = {active, braking, active};
EXPECT_OK(vibrator->composePwle(pwleQueue, callback));
EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
EXPECT_OK(vibrator->off());
}
TEST_P(VibratorAidl, ComposePwleSegmentBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
std::vector<PrimitivePwle> pwleQueue;
// test empty queue
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwle(pwleQueue, nullptr));
ActivePwle active = composeValidActivePwle(vibrator, capabilities, version);
PrimitivePwle pwle;
pwle = active;
int segmentCountMax;
vibrator->getPwleCompositionSizeMax(&segmentCountMax);
// Create PWLE queue with more segments than allowed
for (int i = 0; i < segmentCountMax + 10; i++) {
pwleQueue.emplace_back(std::move(pwle));
}
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwle(pwleQueue, nullptr));
}
}
TEST_P(VibratorAidl, ComposePwleAmplitudeParameterBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ActivePwle active = composeValidActivePwle(vibrator, capabilities, version);
active.startAmplitude = getAmplitudeMax() + 1.0; // Amplitude greater than allowed
active.endAmplitude = getAmplitudeMax() + 1.0; // Amplitude greater than allowed
std::vector<PrimitivePwle> pwleQueueGreater = {active};
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwle(pwleQueueGreater, nullptr));
active.startAmplitude = getAmplitudeMin() - 1.0; // Amplitude less than allowed
active.endAmplitude = getAmplitudeMin() - 1.0; // Amplitude less than allowed
std::vector<PrimitivePwle> pwleQueueLess = {active};
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwle(pwleQueueLess, nullptr));
}
}
TEST_P(VibratorAidl, ComposePwleFrequencyParameterBoundary) {
if ((capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) &&
(capabilities & IVibrator::CAP_FREQUENCY_CONTROL)) {
float freqMinimumHz = getFrequencyMinimumHz(vibrator, capabilities, version);
float freqMaximumHz = getFrequencyMaximumHz(vibrator, capabilities, version);
float freqResolutionHz = getFrequencyResolutionHz(vibrator, capabilities, version);
// As of API 16 these APIs are deprecated and no longer required to be implemented with
// frequency control capability.
if (freqMinimumHz < 0 || freqMaximumHz < 0 || freqResolutionHz < 0) {
GTEST_SKIP() << "PWLE V1 is not supported, skipping test";
return;
}
ActivePwle active = composeValidActivePwle(vibrator, capabilities, version);
active.startFrequency =
freqMaximumHz + freqResolutionHz; // Frequency greater than allowed
active.endFrequency = freqMaximumHz + freqResolutionHz; // Frequency greater than allowed
std::vector<PrimitivePwle> pwleQueueGreater = {active};
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwle(pwleQueueGreater, nullptr));
active.startFrequency = freqMinimumHz - freqResolutionHz; // Frequency less than allowed
active.endFrequency = freqMinimumHz - freqResolutionHz; // Frequency less than allowed
std::vector<PrimitivePwle> pwleQueueLess = {active};
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwle(pwleQueueLess, nullptr));
}
}
TEST_P(VibratorAidl, ComposePwleSegmentDurationBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ActivePwle active = composeValidActivePwle(vibrator, capabilities, version);
int32_t segmentDurationMaxMs;
vibrator->getPwlePrimitiveDurationMax(&segmentDurationMaxMs);
active.duration = segmentDurationMaxMs + 10; // Segment duration greater than allowed
std::vector<PrimitivePwle> pwleQueue = {active};
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwle(pwleQueue, nullptr));
}
}
TEST_P(VibratorAidl, FrequencyToOutputAccelerationMapHasValidFrequencyRange) {
if (version < PWLE_V2_MIN_VERSION || !(capabilities & IVibrator::CAP_FREQUENCY_CONTROL)) {
GTEST_SKIP() << "Frequency control is not supported, skipping test";
return;
}
std::vector<FrequencyAccelerationMapEntry> frequencyToOutputAccelerationMap;
ndk::ScopedAStatus status =
vibrator->getFrequencyToOutputAccelerationMap(&frequencyToOutputAccelerationMap);
EXPECT_OK(std::move(status));
ASSERT_FALSE(frequencyToOutputAccelerationMap.empty());
auto sharpnessRange =
pwle_v2_utils::getPwleV2SharpnessRange(vibrator, frequencyToOutputAccelerationMap);
// Validate the curve provides a usable sharpness range, which is a range of frequencies
// that are supported by the device.
ASSERT_TRUE(sharpnessRange.first >= 0);
// Validate that the sharpness range is a valid interval, not a single point.
ASSERT_TRUE(sharpnessRange.first < sharpnessRange.second);
}
TEST_P(VibratorAidl, FrequencyToOutputAccelerationMapUnsupported) {
if ((capabilities & IVibrator::CAP_FREQUENCY_CONTROL)) return;
std::vector<FrequencyAccelerationMapEntry> frequencyToOutputAccelerationMap;
EXPECT_UNKNOWN_OR_UNSUPPORTED(
vibrator->getFrequencyToOutputAccelerationMap(&frequencyToOutputAccelerationMap));
}
TEST_P(VibratorAidl, GetPwleV2PrimitiveDurationMaxMillis) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
int32_t durationMs;
ndk::ScopedAStatus status = vibrator->getPwleV2PrimitiveDurationMaxMillis(&durationMs);
EXPECT_OK(std::move(status));
ASSERT_GT(durationMs, 0); // Ensure greater than zero
ASSERT_GE(durationMs, pwle_v2_utils::COMPOSE_PWLE_V2_MIN_REQUIRED_PRIMITIVE_MAX_DURATION_MS);
}
TEST_P(VibratorAidl, GetPwleV2CompositionSizeMax) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
int32_t maxSize;
ndk::ScopedAStatus status = vibrator->getPwleV2CompositionSizeMax(&maxSize);
EXPECT_OK(std::move(status));
ASSERT_GT(maxSize, 0); // Ensure greater than zero
ASSERT_GE(maxSize, pwle_v2_utils::COMPOSE_PWLE_V2_MIN_REQUIRED_SIZE);
}
TEST_P(VibratorAidl, GetPwleV2PrimitiveDurationMinMillis) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
int32_t durationMs;
ndk::ScopedAStatus status = vibrator->getPwleV2PrimitiveDurationMinMillis(&durationMs);
EXPECT_OK(std::move(status));
ASSERT_GT(durationMs, 0); // Ensure greater than zero
ASSERT_LE(durationMs, pwle_v2_utils::COMPOSE_PWLE_V2_MAX_ALLOWED_PRIMITIVE_MIN_DURATION_MS);
}
TEST_P(VibratorAidl, ValidatePwleV2DependencyOnFrequencyControl) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
// Check if frequency control is supported
bool hasFrequencyControl = (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) != 0;
ASSERT_TRUE(hasFrequencyControl) << "Frequency control MUST be supported when PWLE V2 is.";
}
TEST_P(VibratorAidl, ComposeValidPwleV2Effect) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
EXPECT_OK(vibrator->composePwleV2(pwle_v2_utils::composeValidPwleV2Effect(vibrator), nullptr));
EXPECT_OK(vibrator->off());
}
TEST_P(VibratorAidl, ComposePwleV2Unsupported) {
if (version < PWLE_V2_MIN_VERSION) {
EXPECT_EQ(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2, 0)
<< "Vibrator version " << version << " should not report PWLE V2 capability.";
}
if ((capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) return;
CompositePwleV2 composite;
composite.pwlePrimitives.emplace_back(/*amplitude=*/1.0f, /*frequencyHz=*/100.0f,
/*timeMillis=*/50);
EXPECT_UNKNOWN_OR_UNSUPPORTED(vibrator->composePwleV2(composite, nullptr));
}
TEST_P(VibratorAidl, ComposeValidPwleV2EffectWithCallback) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
auto callback = ndk::SharedRefBase::make<CompletionCallback>(
[&completionPromise] { completionPromise.set_value(); });
int32_t minDuration;
EXPECT_OK(vibrator->getPwleV2PrimitiveDurationMinMillis(&minDuration));
auto timeout = std::chrono::milliseconds(minDuration) + VIBRATION_CALLBACK_TIMEOUT;
float minFrequency = pwle_v2_utils::getPwleV2FrequencyMinHz(vibrator);
CompositePwleV2 composite;
composite.pwlePrimitives.emplace_back(/*amplitude=*/0.5, minFrequency, minDuration);
EXPECT_OK(vibrator->composePwleV2(composite, callback));
EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
EXPECT_OK(vibrator->off());
}
TEST_P(VibratorAidl, composePwleV2EffectWithTooManyPoints) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwleV2(
pwle_v2_utils::composePwleV2EffectWithTooManyPoints(vibrator), nullptr));
}
TEST_P(VibratorAidl, composeInvalidPwleV2Effect) {
if (!(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS_V2)) {
GTEST_SKIP() << "PWLE V2 not supported, skipping test";
return;
}
// Retrieve min and max durations
int32_t minDurationMs, maxDurationMs;
EXPECT_OK(vibrator->getPwleV2PrimitiveDurationMinMillis(&minDurationMs));
EXPECT_OK(vibrator->getPwleV2PrimitiveDurationMaxMillis(&maxDurationMs));
CompositePwleV2 composePwle;
// Negative amplitude
composePwle.pwlePrimitives.push_back(
PwleV2Primitive(/*amplitude=*/-0.8f, /*frequency=*/100, minDurationMs));
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwleV2(composePwle, nullptr))
<< "Composing PWLE V2 effect with negative amplitude should fail";
composePwle.pwlePrimitives.clear();
// Amplitude exceeding 1.0
composePwle.pwlePrimitives.push_back(
PwleV2Primitive(/*amplitude=*/1.2f, /*frequency=*/100, minDurationMs));
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwleV2(composePwle, nullptr))
<< "Composing PWLE V2 effect with amplitude greater than 1.0 should fail";
composePwle.pwlePrimitives.clear();
// Duration exceeding maximum
composePwle.pwlePrimitives.push_back(
PwleV2Primitive(/*amplitude=*/0.2f, /*frequency=*/100, maxDurationMs + 10));
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwleV2(composePwle, nullptr))
<< "Composing PWLE V2 effect with duration exceeding maximum should fail";
composePwle.pwlePrimitives.clear();
// Negative duration
composePwle.pwlePrimitives.push_back(
PwleV2Primitive(/*amplitude=*/0.2f, /*frequency=*/100, /*time=*/-1));
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwleV2(composePwle, nullptr))
<< "Composing PWLE V2 effect with negative duration should fail";
composePwle.pwlePrimitives.clear();
// Frequency below minimum
float minFrequency = pwle_v2_utils::getPwleV2FrequencyMinHz(vibrator);
composePwle.pwlePrimitives.push_back(
PwleV2Primitive(/*amplitude=*/0.2f, minFrequency - 1, minDurationMs));
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwleV2(composePwle, nullptr))
<< "Composing PWLE V2 effect with frequency below minimum should fail";
composePwle.pwlePrimitives.clear();
// Frequency above maximum
float maxFrequency = pwle_v2_utils::getPwleV2FrequencyMaxHz(vibrator);
composePwle.pwlePrimitives.push_back(
PwleV2Primitive(/*amplitude=*/0.2f, maxFrequency + 1, minDurationMs));
EXPECT_ILLEGAL_ARGUMENT(vibrator->composePwleV2(composePwle, nullptr))
<< "Composing PWLE V2 effect with frequency above maximum should fail";
}
std::vector<std::tuple<int32_t, int32_t>> GenerateVibratorMapping() {
std::vector<std::tuple<int32_t, int32_t>> tuples;
std::vector<std::string> managerNames = findVibratorManagerNames();
std::vector<int32_t> vibratorIds;
for (int i = 0; i < managerNames.size(); i++) {
auto vibratorManager = IVibratorManager::fromBinder(
ndk::SpAIBinder(AServiceManager_waitForService(managerNames[i].c_str())));
if (vibratorManager->getVibratorIds(&vibratorIds).isOk()) {
for (int32_t vibratorId : vibratorIds) {
tuples.emplace_back(i, vibratorId);
}
}
}
std::vector<std::string> vibratorNames = findUnmanagedVibratorNames();
for (int i = 0; i < vibratorNames.size(); i++) {
tuples.emplace_back(-1, i);
}
return tuples;
}
std::string PrintGeneratedTest(const testing::TestParamInfo<VibratorAidl::ParamType> &info) {
const auto &[managerIdx, vibratorId] = info.param;
if (managerIdx < 0) {
return std::string("TOP_LEVEL_VIBRATOR_") + std::to_string(vibratorId);
}
return std::string("MANAGER_") + std::to_string(managerIdx) + "_VIBRATOR_ID_" +
std::to_string(vibratorId);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(VibratorAidl);
INSTANTIATE_TEST_SUITE_P(Vibrator, VibratorAidl, testing::ValuesIn(GenerateVibratorMapping()),
PrintGeneratedTest);
int main(int argc, char **argv) {
// Random values are used in the implementation.
std::srand(std::time(nullptr));
::testing::InitGoogleTest(&argc, argv);
ABinderProcess_setThreadPoolMaxThreadCount(1);
ABinderProcess_startThreadPool();
return RUN_ALL_TESTS();
}