| Philip Quinn | 8f953ab | 2022-12-06 15:37:07 -0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2023 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | 5 | * you may not use this file except in compliance with the License. | 
|  | 6 | * You may obtain a copy of the License at | 
|  | 7 | * | 
|  | 8 | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 9 | * | 
|  | 10 | * Unless required by applicable law or agreed to in writing, software | 
|  | 11 | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 13 | * See the License for the specific language governing permissions and | 
|  | 14 | * limitations under the License. | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #define LOG_TAG "TfLiteMotionPredictor" | 
|  | 18 | #include <input/TfLiteMotionPredictor.h> | 
|  | 19 |  | 
|  | 20 | #include <algorithm> | 
|  | 21 | #include <cmath> | 
|  | 22 | #include <cstddef> | 
|  | 23 | #include <cstdint> | 
|  | 24 | #include <fstream> | 
|  | 25 | #include <ios> | 
|  | 26 | #include <iterator> | 
|  | 27 | #include <memory> | 
|  | 28 | #include <span> | 
|  | 29 | #include <string> | 
|  | 30 | #include <type_traits> | 
|  | 31 | #include <utility> | 
|  | 32 |  | 
|  | 33 | #define ATRACE_TAG ATRACE_TAG_INPUT | 
|  | 34 | #include <cutils/trace.h> | 
|  | 35 | #include <log/log.h> | 
|  | 36 |  | 
|  | 37 | #include "tensorflow/lite/core/api/error_reporter.h" | 
|  | 38 | #include "tensorflow/lite/interpreter.h" | 
|  | 39 | #include "tensorflow/lite/kernels/register.h" | 
|  | 40 | #include "tensorflow/lite/model.h" | 
|  | 41 |  | 
|  | 42 | namespace android { | 
|  | 43 | namespace { | 
|  | 44 |  | 
|  | 45 | constexpr char SIGNATURE_KEY[] = "serving_default"; | 
|  | 46 |  | 
|  | 47 | // Input tensor names. | 
|  | 48 | constexpr char INPUT_R[] = "r"; | 
|  | 49 | constexpr char INPUT_PHI[] = "phi"; | 
|  | 50 | constexpr char INPUT_PRESSURE[] = "pressure"; | 
|  | 51 | constexpr char INPUT_TILT[] = "tilt"; | 
|  | 52 | constexpr char INPUT_ORIENTATION[] = "orientation"; | 
|  | 53 |  | 
|  | 54 | // Output tensor names. | 
|  | 55 | constexpr char OUTPUT_R[] = "r"; | 
|  | 56 | constexpr char OUTPUT_PHI[] = "phi"; | 
|  | 57 | constexpr char OUTPUT_PRESSURE[] = "pressure"; | 
|  | 58 |  | 
|  | 59 | // A TFLite ErrorReporter that logs to logcat. | 
|  | 60 | class LoggingErrorReporter : public tflite::ErrorReporter { | 
|  | 61 | public: | 
|  | 62 | int Report(const char* format, va_list args) override { | 
|  | 63 | return LOG_PRI_VA(ANDROID_LOG_ERROR, LOG_TAG, format, args); | 
|  | 64 | } | 
|  | 65 | }; | 
|  | 66 |  | 
|  | 67 | // Searches a runner for an input tensor. | 
|  | 68 | TfLiteTensor* findInputTensor(const char* name, tflite::SignatureRunner* runner) { | 
|  | 69 | TfLiteTensor* tensor = runner->input_tensor(name); | 
|  | 70 | LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find input tensor '%s'", name); | 
|  | 71 | return tensor; | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | // Searches a runner for an output tensor. | 
|  | 75 | const TfLiteTensor* findOutputTensor(const char* name, tflite::SignatureRunner* runner) { | 
|  | 76 | const TfLiteTensor* tensor = runner->output_tensor(name); | 
|  | 77 | LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find output tensor '%s'", name); | 
|  | 78 | return tensor; | 
|  | 79 | } | 
|  | 80 |  | 
|  | 81 | // Returns the buffer for a tensor of type T. | 
|  | 82 | template <typename T> | 
|  | 83 | std::span<T> getTensorBuffer(typename std::conditional<std::is_const<T>::value, const TfLiteTensor*, | 
|  | 84 | TfLiteTensor*>::type tensor) { | 
|  | 85 | LOG_ALWAYS_FATAL_IF(!tensor); | 
|  | 86 |  | 
|  | 87 | const TfLiteType type = tflite::typeToTfLiteType<typename std::remove_cv<T>::type>(); | 
|  | 88 | LOG_ALWAYS_FATAL_IF(tensor->type != type, "Unexpected type for '%s' tensor: %s (expected %s)", | 
|  | 89 | tensor->name, TfLiteTypeGetName(tensor->type), TfLiteTypeGetName(type)); | 
|  | 90 |  | 
|  | 91 | LOG_ALWAYS_FATAL_IF(!tensor->data.data); | 
|  | 92 | return {reinterpret_cast<T*>(tensor->data.data), | 
|  | 93 | static_cast<typename std::span<T>::index_type>(tensor->bytes / sizeof(T))}; | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | // Verifies that a tensor exists and has an underlying buffer of type T. | 
|  | 97 | template <typename T> | 
|  | 98 | void checkTensor(const TfLiteTensor* tensor) { | 
|  | 99 | LOG_ALWAYS_FATAL_IF(!tensor); | 
|  | 100 |  | 
|  | 101 | const auto buffer = getTensorBuffer<const T>(tensor); | 
|  | 102 | LOG_ALWAYS_FATAL_IF(buffer.empty(), "No buffer for tensor '%s'", tensor->name); | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | } // namespace | 
|  | 106 |  | 
|  | 107 | TfLiteMotionPredictorBuffers::TfLiteMotionPredictorBuffers(size_t inputLength) { | 
|  | 108 | LOG_ALWAYS_FATAL_IF(inputLength == 0, "Buffer input size must be greater than 0"); | 
|  | 109 | mInputR.resize(inputLength); | 
|  | 110 | mInputPhi.resize(inputLength); | 
|  | 111 | mInputPressure.resize(inputLength); | 
|  | 112 | mInputTilt.resize(inputLength); | 
|  | 113 | mInputOrientation.resize(inputLength); | 
|  | 114 | } | 
|  | 115 |  | 
|  | 116 | void TfLiteMotionPredictorBuffers::reset() { | 
|  | 117 | std::fill(mInputR.begin(), mInputR.end(), 0); | 
|  | 118 | std::fill(mInputPhi.begin(), mInputPhi.end(), 0); | 
|  | 119 | std::fill(mInputPressure.begin(), mInputPressure.end(), 0); | 
|  | 120 | std::fill(mInputTilt.begin(), mInputTilt.end(), 0); | 
|  | 121 | std::fill(mInputOrientation.begin(), mInputOrientation.end(), 0); | 
|  | 122 | mAxisFrom.reset(); | 
|  | 123 | mAxisTo.reset(); | 
|  | 124 | } | 
|  | 125 |  | 
|  | 126 | void TfLiteMotionPredictorBuffers::copyTo(TfLiteMotionPredictorModel& model) const { | 
|  | 127 | LOG_ALWAYS_FATAL_IF(mInputR.size() != model.inputLength(), | 
|  | 128 | "Buffer length %zu doesn't match model input length %zu", mInputR.size(), | 
|  | 129 | model.inputLength()); | 
|  | 130 | LOG_ALWAYS_FATAL_IF(!isReady(), "Buffers are incomplete"); | 
|  | 131 |  | 
|  | 132 | std::copy(mInputR.begin(), mInputR.end(), model.inputR().begin()); | 
|  | 133 | std::copy(mInputPhi.begin(), mInputPhi.end(), model.inputPhi().begin()); | 
|  | 134 | std::copy(mInputPressure.begin(), mInputPressure.end(), model.inputPressure().begin()); | 
|  | 135 | std::copy(mInputTilt.begin(), mInputTilt.end(), model.inputTilt().begin()); | 
|  | 136 | std::copy(mInputOrientation.begin(), mInputOrientation.end(), model.inputOrientation().begin()); | 
|  | 137 | } | 
|  | 138 |  | 
|  | 139 | void TfLiteMotionPredictorBuffers::pushSample(int64_t timestamp, | 
|  | 140 | const TfLiteMotionPredictorSample sample) { | 
|  | 141 | // Convert the sample (x, y) into polar (r, φ) based on a reference axis | 
|  | 142 | // from the preceding two points (mAxisFrom/mAxisTo). | 
|  | 143 |  | 
|  | 144 | mTimestamp = timestamp; | 
|  | 145 |  | 
|  | 146 | if (!mAxisTo) { // First point. | 
|  | 147 | mAxisTo = sample; | 
|  | 148 | return; | 
|  | 149 | } | 
|  | 150 |  | 
|  | 151 | // Vector from the last point to the current sample point. | 
|  | 152 | const TfLiteMotionPredictorSample::Point v = sample.position - mAxisTo->position; | 
|  | 153 |  | 
|  | 154 | const float r = std::hypot(v.x, v.y); | 
|  | 155 | float phi = 0; | 
|  | 156 | float orientation = 0; | 
|  | 157 |  | 
|  | 158 | // Ignore the sample if there is no movement. These samples can occur when there's change to a | 
|  | 159 | // property other than the coordinates and pollute the input to the model. | 
|  | 160 | if (r == 0) { | 
|  | 161 | return; | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | if (!mAxisFrom) { // Second point. | 
|  | 165 | // We can only determine the distance from the first point, and not any | 
|  | 166 | // angle. However, if the second point forms an axis, the orientation can | 
|  | 167 | // be transformed relative to that axis. | 
|  | 168 | const float axisPhi = std::atan2(v.y, v.x); | 
|  | 169 | // A MotionEvent's orientation is measured clockwise from the vertical | 
|  | 170 | // axis, but axisPhi is measured counter-clockwise from the horizontal | 
|  | 171 | // axis. | 
|  | 172 | orientation = M_PI_2 - sample.orientation - axisPhi; | 
|  | 173 | } else { | 
|  | 174 | const TfLiteMotionPredictorSample::Point axis = mAxisTo->position - mAxisFrom->position; | 
|  | 175 | const float axisPhi = std::atan2(axis.y, axis.x); | 
|  | 176 | phi = std::atan2(v.y, v.x) - axisPhi; | 
|  | 177 |  | 
|  | 178 | if (std::hypot(axis.x, axis.y) > 0) { | 
|  | 179 | // See note above. | 
|  | 180 | orientation = M_PI_2 - sample.orientation - axisPhi; | 
|  | 181 | } | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | // Update the axis for the next point. | 
|  | 185 | mAxisFrom = mAxisTo; | 
|  | 186 | mAxisTo = sample; | 
|  | 187 |  | 
|  | 188 | // Push the current sample onto the end of the input buffers. | 
|  | 189 | mInputR.erase(mInputR.begin()); | 
|  | 190 | mInputPhi.erase(mInputPhi.begin()); | 
|  | 191 | mInputPressure.erase(mInputPressure.begin()); | 
|  | 192 | mInputTilt.erase(mInputTilt.begin()); | 
|  | 193 | mInputOrientation.erase(mInputOrientation.begin()); | 
|  | 194 |  | 
|  | 195 | mInputR.push_back(r); | 
|  | 196 | mInputPhi.push_back(phi); | 
|  | 197 | mInputPressure.push_back(sample.pressure); | 
|  | 198 | mInputTilt.push_back(sample.tilt); | 
|  | 199 | mInputOrientation.push_back(orientation); | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | std::unique_ptr<TfLiteMotionPredictorModel> TfLiteMotionPredictorModel::create( | 
|  | 203 | const char* modelPath) { | 
|  | 204 | std::ifstream f(modelPath, std::ios::binary); | 
|  | 205 | LOG_ALWAYS_FATAL_IF(!f, "Could not read model from %s", modelPath); | 
|  | 206 |  | 
|  | 207 | std::string data; | 
|  | 208 | data.assign(std::istreambuf_iterator<char>(f), std::istreambuf_iterator<char>()); | 
|  | 209 |  | 
|  | 210 | return std::unique_ptr<TfLiteMotionPredictorModel>( | 
|  | 211 | new TfLiteMotionPredictorModel(std::move(data))); | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | TfLiteMotionPredictorModel::TfLiteMotionPredictorModel(std::string model) | 
|  | 215 | : mFlatBuffer(std::move(model)) { | 
|  | 216 | mErrorReporter = std::make_unique<LoggingErrorReporter>(); | 
|  | 217 | mModel = tflite::FlatBufferModel::VerifyAndBuildFromBuffer(mFlatBuffer.data(), | 
|  | 218 | mFlatBuffer.length(), | 
|  | 219 | /*extra_verifier=*/nullptr, | 
|  | 220 | mErrorReporter.get()); | 
|  | 221 | LOG_ALWAYS_FATAL_IF(!mModel); | 
|  | 222 |  | 
|  | 223 | tflite::ops::builtin::BuiltinOpResolver resolver; | 
|  | 224 | tflite::InterpreterBuilder builder(*mModel, resolver); | 
|  | 225 |  | 
|  | 226 | if (builder(&mInterpreter) != kTfLiteOk || !mInterpreter) { | 
|  | 227 | LOG_ALWAYS_FATAL("Failed to build interpreter"); | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | mRunner = mInterpreter->GetSignatureRunner(SIGNATURE_KEY); | 
|  | 231 | LOG_ALWAYS_FATAL_IF(!mRunner, "Failed to find runner for signature '%s'", SIGNATURE_KEY); | 
|  | 232 |  | 
|  | 233 | allocateTensors(); | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | void TfLiteMotionPredictorModel::allocateTensors() { | 
|  | 237 | if (mRunner->AllocateTensors() != kTfLiteOk) { | 
|  | 238 | LOG_ALWAYS_FATAL("Failed to allocate tensors"); | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | attachInputTensors(); | 
|  | 242 | attachOutputTensors(); | 
|  | 243 |  | 
|  | 244 | checkTensor<float>(mInputR); | 
|  | 245 | checkTensor<float>(mInputPhi); | 
|  | 246 | checkTensor<float>(mInputPressure); | 
|  | 247 | checkTensor<float>(mInputTilt); | 
|  | 248 | checkTensor<float>(mInputOrientation); | 
|  | 249 | checkTensor<float>(mOutputR); | 
|  | 250 | checkTensor<float>(mOutputPhi); | 
|  | 251 | checkTensor<float>(mOutputPressure); | 
|  | 252 |  | 
|  | 253 | const auto checkInputTensorSize = [this](const TfLiteTensor* tensor) { | 
|  | 254 | const size_t size = getTensorBuffer<const float>(tensor).size(); | 
|  | 255 | LOG_ALWAYS_FATAL_IF(size != inputLength(), | 
|  | 256 | "Tensor '%s' length %zu does not match input length %zu", tensor->name, | 
|  | 257 | size, inputLength()); | 
|  | 258 | }; | 
|  | 259 |  | 
|  | 260 | checkInputTensorSize(mInputR); | 
|  | 261 | checkInputTensorSize(mInputPhi); | 
|  | 262 | checkInputTensorSize(mInputPressure); | 
|  | 263 | checkInputTensorSize(mInputTilt); | 
|  | 264 | checkInputTensorSize(mInputOrientation); | 
|  | 265 | } | 
|  | 266 |  | 
|  | 267 | void TfLiteMotionPredictorModel::attachInputTensors() { | 
|  | 268 | mInputR = findInputTensor(INPUT_R, mRunner); | 
|  | 269 | mInputPhi = findInputTensor(INPUT_PHI, mRunner); | 
|  | 270 | mInputPressure = findInputTensor(INPUT_PRESSURE, mRunner); | 
|  | 271 | mInputTilt = findInputTensor(INPUT_TILT, mRunner); | 
|  | 272 | mInputOrientation = findInputTensor(INPUT_ORIENTATION, mRunner); | 
|  | 273 | } | 
|  | 274 |  | 
|  | 275 | void TfLiteMotionPredictorModel::attachOutputTensors() { | 
|  | 276 | mOutputR = findOutputTensor(OUTPUT_R, mRunner); | 
|  | 277 | mOutputPhi = findOutputTensor(OUTPUT_PHI, mRunner); | 
|  | 278 | mOutputPressure = findOutputTensor(OUTPUT_PRESSURE, mRunner); | 
|  | 279 | } | 
|  | 280 |  | 
|  | 281 | bool TfLiteMotionPredictorModel::invoke() { | 
|  | 282 | ATRACE_BEGIN("TfLiteMotionPredictorModel::invoke"); | 
|  | 283 | TfLiteStatus result = mRunner->Invoke(); | 
|  | 284 | ATRACE_END(); | 
|  | 285 |  | 
|  | 286 | if (result != kTfLiteOk) { | 
|  | 287 | return false; | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | // Invoke() might reallocate tensors, so they need to be reattached. | 
|  | 291 | attachInputTensors(); | 
|  | 292 | attachOutputTensors(); | 
|  | 293 |  | 
|  | 294 | if (outputR().size() != outputPhi().size() || outputR().size() != outputPressure().size()) { | 
|  | 295 | LOG_ALWAYS_FATAL("Output size mismatch: (r: %zu, phi: %zu, pressure: %zu)", | 
|  | 296 | outputR().size(), outputPhi().size(), outputPressure().size()); | 
|  | 297 | } | 
|  | 298 |  | 
|  | 299 | return true; | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | size_t TfLiteMotionPredictorModel::inputLength() const { | 
|  | 303 | return getTensorBuffer<const float>(mInputR).size(); | 
|  | 304 | } | 
|  | 305 |  | 
|  | 306 | std::span<float> TfLiteMotionPredictorModel::inputR() { | 
|  | 307 | return getTensorBuffer<float>(mInputR); | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | std::span<float> TfLiteMotionPredictorModel::inputPhi() { | 
|  | 311 | return getTensorBuffer<float>(mInputPhi); | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | std::span<float> TfLiteMotionPredictorModel::inputPressure() { | 
|  | 315 | return getTensorBuffer<float>(mInputPressure); | 
|  | 316 | } | 
|  | 317 |  | 
|  | 318 | std::span<float> TfLiteMotionPredictorModel::inputTilt() { | 
|  | 319 | return getTensorBuffer<float>(mInputTilt); | 
|  | 320 | } | 
|  | 321 |  | 
|  | 322 | std::span<float> TfLiteMotionPredictorModel::inputOrientation() { | 
|  | 323 | return getTensorBuffer<float>(mInputOrientation); | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | std::span<const float> TfLiteMotionPredictorModel::outputR() const { | 
|  | 327 | return getTensorBuffer<const float>(mOutputR); | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | std::span<const float> TfLiteMotionPredictorModel::outputPhi() const { | 
|  | 331 | return getTensorBuffer<const float>(mOutputPhi); | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | std::span<const float> TfLiteMotionPredictorModel::outputPressure() const { | 
|  | 335 | return getTensorBuffer<const float>(mOutputPressure); | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | } // namespace android |