| Mike Lockwood | f99ad11 | 2013-10-03 10:29:39 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2010 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | 5 | * you may not use this file except in compliance with the License. | 
|  | 6 | * You may obtain a copy of the License at | 
|  | 7 | * | 
|  | 8 | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 9 | * | 
|  | 10 | * Unless required by applicable law or agreed to in writing, software | 
|  | 11 | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 13 | * See the License for the specific language governing permissions and | 
|  | 14 | * limitations under the License. | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | //#define LOG_NDEBUG 0 | 
|  | 18 | #define LOG_TAG "szipinf" | 
|  | 19 | #include <utils/Log.h> | 
|  | 20 |  | 
|  | 21 | #include <androidfw/StreamingZipInflater.h> | 
|  | 22 | #include <utils/FileMap.h> | 
|  | 23 | #include <string.h> | 
|  | 24 | #include <stddef.h> | 
|  | 25 | #include <assert.h> | 
|  | 26 | #include <unistd.h> | 
|  | 27 | #include <errno.h> | 
|  | 28 |  | 
|  | 29 | /* | 
|  | 30 | * TEMP_FAILURE_RETRY is defined by some, but not all, versions of | 
|  | 31 | * <unistd.h>. (Alas, it is not as standard as we'd hoped!) So, if it's | 
|  | 32 | * not already defined, then define it here. | 
|  | 33 | */ | 
|  | 34 | #ifndef TEMP_FAILURE_RETRY | 
|  | 35 | /* Used to retry syscalls that can return EINTR. */ | 
|  | 36 | #define TEMP_FAILURE_RETRY(exp) ({         \ | 
|  | 37 | typeof (exp) _rc;                      \ | 
|  | 38 | do {                                   \ | 
|  | 39 | _rc = (exp);                       \ | 
|  | 40 | } while (_rc == -1 && errno == EINTR); \ | 
|  | 41 | _rc; }) | 
|  | 42 | #endif | 
|  | 43 |  | 
|  | 44 | static inline size_t min_of(size_t a, size_t b) { return (a < b) ? a : b; } | 
|  | 45 |  | 
|  | 46 | using namespace android; | 
|  | 47 |  | 
|  | 48 | /* | 
|  | 49 | * Streaming access to compressed asset data in an open fd | 
|  | 50 | */ | 
|  | 51 | StreamingZipInflater::StreamingZipInflater(int fd, off64_t compDataStart, | 
|  | 52 | size_t uncompSize, size_t compSize) { | 
|  | 53 | mFd = fd; | 
|  | 54 | mDataMap = NULL; | 
|  | 55 | mInFileStart = compDataStart; | 
|  | 56 | mOutTotalSize = uncompSize; | 
|  | 57 | mInTotalSize = compSize; | 
|  | 58 |  | 
|  | 59 | mInBufSize = StreamingZipInflater::INPUT_CHUNK_SIZE; | 
|  | 60 | mInBuf = new uint8_t[mInBufSize]; | 
|  | 61 |  | 
|  | 62 | mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE; | 
|  | 63 | mOutBuf = new uint8_t[mOutBufSize]; | 
|  | 64 |  | 
|  | 65 | initInflateState(); | 
|  | 66 | } | 
|  | 67 |  | 
|  | 68 | /* | 
|  | 69 | * Streaming access to compressed data held in an mmapped region of memory | 
|  | 70 | */ | 
|  | 71 | StreamingZipInflater::StreamingZipInflater(FileMap* dataMap, size_t uncompSize) { | 
|  | 72 | mFd = -1; | 
|  | 73 | mDataMap = dataMap; | 
|  | 74 | mOutTotalSize = uncompSize; | 
|  | 75 | mInTotalSize = dataMap->getDataLength(); | 
|  | 76 |  | 
|  | 77 | mInBuf = (uint8_t*) dataMap->getDataPtr(); | 
|  | 78 | mInBufSize = mInTotalSize; | 
|  | 79 |  | 
|  | 80 | mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE; | 
|  | 81 | mOutBuf = new uint8_t[mOutBufSize]; | 
|  | 82 |  | 
|  | 83 | initInflateState(); | 
|  | 84 | } | 
|  | 85 |  | 
|  | 86 | StreamingZipInflater::~StreamingZipInflater() { | 
|  | 87 | // tear down the in-flight zip state just in case | 
|  | 88 | ::inflateEnd(&mInflateState); | 
|  | 89 |  | 
|  | 90 | if (mDataMap == NULL) { | 
|  | 91 | delete [] mInBuf; | 
|  | 92 | } | 
|  | 93 | delete [] mOutBuf; | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | void StreamingZipInflater::initInflateState() { | 
|  | 97 | ALOGV("Initializing inflate state"); | 
|  | 98 |  | 
|  | 99 | memset(&mInflateState, 0, sizeof(mInflateState)); | 
|  | 100 | mInflateState.zalloc = Z_NULL; | 
|  | 101 | mInflateState.zfree = Z_NULL; | 
|  | 102 | mInflateState.opaque = Z_NULL; | 
|  | 103 | mInflateState.next_in = (Bytef*)mInBuf; | 
|  | 104 | mInflateState.next_out = (Bytef*) mOutBuf; | 
|  | 105 | mInflateState.avail_out = mOutBufSize; | 
|  | 106 | mInflateState.data_type = Z_UNKNOWN; | 
|  | 107 |  | 
|  | 108 | mOutLastDecoded = mOutDeliverable = mOutCurPosition = 0; | 
|  | 109 | mInNextChunkOffset = 0; | 
|  | 110 | mStreamNeedsInit = true; | 
|  | 111 |  | 
|  | 112 | if (mDataMap == NULL) { | 
|  | 113 | ::lseek(mFd, mInFileStart, SEEK_SET); | 
|  | 114 | mInflateState.avail_in = 0; // set when a chunk is read in | 
|  | 115 | } else { | 
|  | 116 | mInflateState.avail_in = mInBufSize; | 
|  | 117 | } | 
|  | 118 | } | 
|  | 119 |  | 
|  | 120 | /* | 
|  | 121 | * Basic approach: | 
|  | 122 | * | 
|  | 123 | * 1. If we have undelivered uncompressed data, send it.  At this point | 
|  | 124 | *    either we've satisfied the request, or we've exhausted the available | 
|  | 125 | *    output data in mOutBuf. | 
|  | 126 | * | 
|  | 127 | * 2. While we haven't sent enough data to satisfy the request: | 
|  | 128 | *    0. if the request is for more data than exists, bail. | 
|  | 129 | *    a. if there is no input data to decode, read some into the input buffer | 
|  | 130 | *       and readjust the z_stream input pointers | 
|  | 131 | *    b. point the output to the start of the output buffer and decode what we can | 
|  | 132 | *    c. deliver whatever output data we can | 
|  | 133 | */ | 
|  | 134 | ssize_t StreamingZipInflater::read(void* outBuf, size_t count) { | 
|  | 135 | uint8_t* dest = (uint8_t*) outBuf; | 
|  | 136 | size_t bytesRead = 0; | 
|  | 137 | size_t toRead = min_of(count, size_t(mOutTotalSize - mOutCurPosition)); | 
|  | 138 | while (toRead > 0) { | 
|  | 139 | // First, write from whatever we already have decoded and ready to go | 
|  | 140 | size_t deliverable = min_of(toRead, mOutLastDecoded - mOutDeliverable); | 
|  | 141 | if (deliverable > 0) { | 
|  | 142 | if (outBuf != NULL) memcpy(dest, mOutBuf + mOutDeliverable, deliverable); | 
|  | 143 | mOutDeliverable += deliverable; | 
|  | 144 | mOutCurPosition += deliverable; | 
|  | 145 | dest += deliverable; | 
|  | 146 | bytesRead += deliverable; | 
|  | 147 | toRead -= deliverable; | 
|  | 148 | } | 
|  | 149 |  | 
|  | 150 | // need more data?  time to decode some. | 
|  | 151 | if (toRead > 0) { | 
|  | 152 | // if we don't have any data to decode, read some in.  If we're working | 
|  | 153 | // from mmapped data this won't happen, because the clipping to total size | 
|  | 154 | // will prevent reading off the end of the mapped input chunk. | 
|  | 155 | if ((mInflateState.avail_in == 0) && (mDataMap == NULL)) { | 
|  | 156 | int err = readNextChunk(); | 
|  | 157 | if (err < 0) { | 
|  | 158 | ALOGE("Unable to access asset data: %d", err); | 
|  | 159 | if (!mStreamNeedsInit) { | 
|  | 160 | ::inflateEnd(&mInflateState); | 
|  | 161 | initInflateState(); | 
|  | 162 | } | 
|  | 163 | return -1; | 
|  | 164 | } | 
|  | 165 | } | 
|  | 166 | // we know we've drained whatever is in the out buffer now, so just | 
|  | 167 | // start from scratch there, reading all the input we have at present. | 
|  | 168 | mInflateState.next_out = (Bytef*) mOutBuf; | 
|  | 169 | mInflateState.avail_out = mOutBufSize; | 
|  | 170 |  | 
|  | 171 | /* | 
|  | 172 | ALOGV("Inflating to outbuf: avail_in=%u avail_out=%u next_in=%p next_out=%p", | 
|  | 173 | mInflateState.avail_in, mInflateState.avail_out, | 
|  | 174 | mInflateState.next_in, mInflateState.next_out); | 
|  | 175 | */ | 
|  | 176 | int result = Z_OK; | 
|  | 177 | if (mStreamNeedsInit) { | 
|  | 178 | ALOGV("Initializing zlib to inflate"); | 
|  | 179 | result = inflateInit2(&mInflateState, -MAX_WBITS); | 
|  | 180 | mStreamNeedsInit = false; | 
|  | 181 | } | 
|  | 182 | if (result == Z_OK) result = ::inflate(&mInflateState, Z_SYNC_FLUSH); | 
|  | 183 | if (result < 0) { | 
|  | 184 | // Whoops, inflation failed | 
|  | 185 | ALOGE("Error inflating asset: %d", result); | 
|  | 186 | ::inflateEnd(&mInflateState); | 
|  | 187 | initInflateState(); | 
|  | 188 | return -1; | 
|  | 189 | } else { | 
|  | 190 | if (result == Z_STREAM_END) { | 
|  | 191 | // we know we have to have reached the target size here and will | 
|  | 192 | // not try to read any further, so just wind things up. | 
|  | 193 | ::inflateEnd(&mInflateState); | 
|  | 194 | } | 
|  | 195 |  | 
|  | 196 | // Note how much data we got, and off we go | 
|  | 197 | mOutDeliverable = 0; | 
|  | 198 | mOutLastDecoded = mOutBufSize - mInflateState.avail_out; | 
|  | 199 | } | 
|  | 200 | } | 
|  | 201 | } | 
|  | 202 | return bytesRead; | 
|  | 203 | } | 
|  | 204 |  | 
|  | 205 | int StreamingZipInflater::readNextChunk() { | 
|  | 206 | assert(mDataMap == NULL); | 
|  | 207 |  | 
|  | 208 | if (mInNextChunkOffset < mInTotalSize) { | 
|  | 209 | size_t toRead = min_of(mInBufSize, mInTotalSize - mInNextChunkOffset); | 
|  | 210 | if (toRead > 0) { | 
|  | 211 | ssize_t didRead = TEMP_FAILURE_RETRY(::read(mFd, mInBuf, toRead)); | 
|  | 212 | //ALOGV("Reading input chunk, size %08x didread %08x", toRead, didRead); | 
|  | 213 | if (didRead < 0) { | 
|  | 214 | ALOGE("Error reading asset data: %s", strerror(errno)); | 
|  | 215 | return didRead; | 
|  | 216 | } else { | 
|  | 217 | mInNextChunkOffset += didRead; | 
|  | 218 | mInflateState.next_in = (Bytef*) mInBuf; | 
|  | 219 | mInflateState.avail_in = didRead; | 
|  | 220 | } | 
|  | 221 | } | 
|  | 222 | } | 
|  | 223 | return 0; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | // seeking backwards requires uncompressing fom the beginning, so is very | 
|  | 227 | // expensive.  seeking forwards only requires uncompressing from the current | 
|  | 228 | // position to the destination. | 
|  | 229 | off64_t StreamingZipInflater::seekAbsolute(off64_t absoluteInputPosition) { | 
|  | 230 | if (absoluteInputPosition < mOutCurPosition) { | 
|  | 231 | // rewind and reprocess the data from the beginning | 
|  | 232 | if (!mStreamNeedsInit) { | 
|  | 233 | ::inflateEnd(&mInflateState); | 
|  | 234 | } | 
|  | 235 | initInflateState(); | 
|  | 236 | read(NULL, absoluteInputPosition); | 
|  | 237 | } else if (absoluteInputPosition > mOutCurPosition) { | 
|  | 238 | read(NULL, absoluteInputPosition - mOutCurPosition); | 
|  | 239 | } | 
|  | 240 | // else if the target position *is* our current position, do nothing | 
|  | 241 | return absoluteInputPosition; | 
|  | 242 | } |