blob: 5fa2ff6a874c84d00c5eec2a05387be0e4a6a097 [file] [log] [blame]
Dan Stozad630e522016-12-01 15:16:31 -08001/*
2 * Copyright 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#pragma once
18
19#include <binder/IInterface.h>
20#include <binder/Parcel.h>
21#include <cutils/compiler.h>
22
23// Set to 1 to enable CallStacks when logging errors
24#define SI_DUMP_CALLSTACKS 0
25#if SI_DUMP_CALLSTACKS
26#include <utils/CallStack.h>
27#endif
28
Dan Stoza2537db72017-04-07 16:32:38 -070029#include <utils/NativeHandle.h>
30
Dan Stozad630e522016-12-01 15:16:31 -080031#include <functional>
32#include <type_traits>
33
34namespace android {
35namespace SafeInterface {
36
37// ParcelHandler is responsible for writing/reading various types to/from a Parcel in a generic way
38class ParcelHandler {
39public:
40 explicit ParcelHandler(const char* logTag) : mLogTag(logTag) {}
41
42 // Specializations for types with dedicated handling in Parcel
43 status_t read(const Parcel& parcel, bool* b) const {
44 return callParcel("readBool", [&]() { return parcel.readBool(b); });
45 }
46 status_t write(Parcel* parcel, bool b) const {
47 return callParcel("writeBool", [&]() { return parcel->writeBool(b); });
48 }
Dan Stoza81ea3ef2017-04-07 15:00:18 -070049 template <typename E>
50 typename std::enable_if<std::is_enum<E>::value, status_t>::type read(const Parcel& parcel,
51 E* e) const {
52 typename std::underlying_type<E>::type u{};
53 status_t result = read(parcel, &u);
54 *e = static_cast<E>(u);
55 return result;
56 }
57 template <typename E>
58 typename std::enable_if<std::is_enum<E>::value, status_t>::type write(Parcel* parcel,
59 E e) const {
60 return write(parcel, static_cast<typename std::underlying_type<E>::type>(e));
61 }
Dan Stozad630e522016-12-01 15:16:31 -080062 template <typename T>
Dan Stozadf614ae2017-03-28 17:02:05 -070063 typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
64 const Parcel& parcel, T* t) const {
65 return callParcel("read(Flattenable)", [&]() { return parcel.read(*t); });
66 }
67 template <typename T>
68 typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
69 Parcel* parcel, const T& t) const {
70 return callParcel("write(Flattenable)", [&]() { return parcel->write(t); });
71 }
72 template <typename T>
Dan Stoza6dd325b2017-04-07 14:31:51 -070073 typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
74 const Parcel& parcel, sp<T>* t) const {
75 *t = new T{};
76 return callParcel("read(sp<Flattenable>)", [&]() { return parcel.read(*(t->get())); });
77 }
78 template <typename T>
79 typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
80 Parcel* parcel, const sp<T>& t) const {
81 return callParcel("write(sp<Flattenable>)", [&]() { return parcel->write(*(t.get())); });
82 }
83 template <typename T>
Dan Stozad630e522016-12-01 15:16:31 -080084 typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type read(
85 const Parcel& parcel, T* t) const {
86 return callParcel("read(LightFlattenable)", [&]() { return parcel.read(*t); });
87 }
88 template <typename T>
89 typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type write(
90 Parcel* parcel, const T& t) const {
91 return callParcel("write(LightFlattenable)", [&]() { return parcel->write(t); });
92 }
Dan Stoza2537db72017-04-07 16:32:38 -070093 template <typename NH>
94 typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type read(
95 const Parcel& parcel, NH* nh) {
96 *nh = NativeHandle::create(parcel.readNativeHandle(), true);
97 return NO_ERROR;
98 }
99 template <typename NH>
100 typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type write(
101 Parcel* parcel, const NH& nh) {
102 return callParcel("write(sp<NativeHandle>)",
103 [&]() { return parcel->writeNativeHandle(nh->handle()); });
104 }
Dan Stozad630e522016-12-01 15:16:31 -0800105 template <typename T>
106 typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
107 const Parcel& parcel, T* t) const {
108 return callParcel("readParcelable", [&]() { return parcel.readParcelable(t); });
109 }
110 template <typename T>
111 typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
112 Parcel* parcel, const T& t) const {
113 return callParcel("writeParcelable", [&]() { return parcel->writeParcelable(t); });
114 }
115 status_t read(const Parcel& parcel, String8* str) const {
116 return callParcel("readString8", [&]() { return parcel.readString8(str); });
117 }
118 status_t write(Parcel* parcel, const String8& str) const {
119 return callParcel("writeString8", [&]() { return parcel->writeString8(str); });
120 }
121 template <typename T>
Dan Stoza6dd325b2017-04-07 14:31:51 -0700122 typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type read(
123 const Parcel& parcel, sp<T>* pointer) const {
Dan Stozad630e522016-12-01 15:16:31 -0800124 return callParcel("readNullableStrongBinder",
125 [&]() { return parcel.readNullableStrongBinder(pointer); });
126 }
127 template <typename T>
128 typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type write(
129 Parcel* parcel, const sp<T>& pointer) const {
130 return callParcel("writeStrongBinder",
131 [&]() { return parcel->writeStrongBinder(pointer); });
132 }
133 template <typename T>
Dan Stoza6dd325b2017-04-07 14:31:51 -0700134 typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type read(
135 const Parcel& parcel, sp<T>* pointer) const {
136 return callParcel("readNullableStrongBinder[IInterface]",
137 [&]() { return parcel.readNullableStrongBinder(pointer); });
138 }
139 template <typename T>
Dan Stozad630e522016-12-01 15:16:31 -0800140 typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type write(
141 Parcel* parcel, const sp<T>& interface) const {
142 return write(parcel, IInterface::asBinder(interface));
143 }
Dan Stoza1af8a882017-04-10 13:28:54 -0700144 template <typename T>
145 typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
146 const Parcel& parcel, std::vector<T>* v) const {
147 return callParcel("readParcelableVector", [&]() { return parcel.readParcelableVector(v); });
148 }
149 template <typename T>
150 typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
151 Parcel* parcel, const std::vector<T>& v) const {
152 return callParcel("writeParcelableVector",
153 [&]() { return parcel->writeParcelableVector(v); });
154 }
Dan Stoza4c6d9732018-11-14 10:18:14 -0800155 status_t read(const Parcel& parcel, float* f) const {
156 return callParcel("readFloat", [&]() { return parcel.readFloat(f); });
157 }
158 status_t write(Parcel* parcel, float f) const {
159 return callParcel("writeFloat", [&]() { return parcel->writeFloat(f); });
160 }
Dan Stozad630e522016-12-01 15:16:31 -0800161
162 // Templates to handle integral types. We use a struct template to require that the called
163 // function exactly matches the signedness and size of the argument (e.g., the argument isn't
164 // silently widened).
165 template <bool isSigned, size_t size, typename I>
166 struct HandleInt;
167 template <typename I>
168 struct HandleInt<true, 4, I> {
169 static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
170 return handler.callParcel("readInt32", [&]() { return parcel.readInt32(i); });
171 }
172 static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
173 return handler.callParcel("writeInt32", [&]() { return parcel->writeInt32(i); });
174 }
175 };
176 template <typename I>
177 struct HandleInt<false, 4, I> {
178 static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
179 return handler.callParcel("readUint32", [&]() { return parcel.readUint32(i); });
180 }
181 static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
182 return handler.callParcel("writeUint32", [&]() { return parcel->writeUint32(i); });
183 }
184 };
185 template <typename I>
Dan Stoza662a8992017-04-06 16:18:39 -0700186 struct HandleInt<true, 8, I> {
187 static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
188 return handler.callParcel("readInt64", [&]() { return parcel.readInt64(i); });
189 }
190 static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
191 return handler.callParcel("writeInt64", [&]() { return parcel->writeInt64(i); });
192 }
193 };
194 template <typename I>
195 struct HandleInt<false, 8, I> {
196 static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
197 return handler.callParcel("readUint64", [&]() { return parcel.readUint64(i); });
198 }
199 static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
200 return handler.callParcel("writeUint64", [&]() { return parcel->writeUint64(i); });
201 }
202 };
203 template <typename I>
Dan Stozad630e522016-12-01 15:16:31 -0800204 typename std::enable_if<std::is_integral<I>::value, status_t>::type read(const Parcel& parcel,
205 I* i) const {
206 return HandleInt<std::is_signed<I>::value, sizeof(I), I>::read(*this, parcel, i);
207 }
208 template <typename I>
209 typename std::enable_if<std::is_integral<I>::value, status_t>::type write(Parcel* parcel,
210 I i) const {
211 return HandleInt<std::is_signed<I>::value, sizeof(I), I>::write(*this, parcel, i);
212 }
213
214private:
215 const char* const mLogTag;
216
217 // Helper to encapsulate error handling while calling the various Parcel methods
218 template <typename Function>
219 status_t callParcel(const char* name, Function f) const {
220 status_t error = f();
221 if (CC_UNLIKELY(error != NO_ERROR)) {
222 ALOG(LOG_ERROR, mLogTag, "Failed to %s, (%d: %s)", name, error, strerror(-error));
223#if SI_DUMP_CALLSTACKS
224 CallStack callStack(mLogTag);
225#endif
226 }
227 return error;
228 }
229};
230
231// Utility struct template which allows us to retrieve the types of the parameters of a member
232// function pointer
233template <typename T>
234struct ParamExtractor;
235template <typename Class, typename Return, typename... Params>
236struct ParamExtractor<Return (Class::*)(Params...)> {
237 using ParamTuple = std::tuple<Params...>;
238};
239template <typename Class, typename Return, typename... Params>
240struct ParamExtractor<Return (Class::*)(Params...) const> {
241 using ParamTuple = std::tuple<Params...>;
242};
243
244} // namespace SafeInterface
245
246template <typename Interface>
247class SafeBpInterface : public BpInterface<Interface> {
248protected:
249 SafeBpInterface(const sp<IBinder>& impl, const char* logTag)
250 : BpInterface<Interface>(impl), mLogTag(logTag) {}
251 ~SafeBpInterface() override = default;
252
253 // callRemote is used to invoke a synchronous procedure call over Binder
254 template <typename Method, typename TagType, typename... Args>
255 status_t callRemote(TagType tag, Args&&... args) const {
256 static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");
257
258 // Verify that the arguments are compatible with the parameters
259 using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
260 static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
261 "Invalid argument type");
262
263 // Write the input arguments to the data Parcel
264 Parcel data;
265 data.writeInterfaceToken(this->getInterfaceDescriptor());
266
267 status_t error = writeInputs(&data, std::forward<Args>(args)...);
268 if (CC_UNLIKELY(error != NO_ERROR)) {
269 // A message will have been logged by writeInputs
270 return error;
271 }
272
273 // Send the data Parcel to the remote and retrieve the reply parcel
274 Parcel reply;
275 error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply);
276 if (CC_UNLIKELY(error != NO_ERROR)) {
277 ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
278#if SI_DUMP_CALLSTACKS
279 CallStack callStack(mLogTag);
280#endif
281 return error;
282 }
283
284 // Read the outputs from the reply Parcel into the output arguments
285 error = readOutputs(reply, std::forward<Args>(args)...);
286 if (CC_UNLIKELY(error != NO_ERROR)) {
287 // A message will have been logged by readOutputs
288 return error;
289 }
290
291 // Retrieve the result code from the reply Parcel
292 status_t result = NO_ERROR;
293 error = reply.readInt32(&result);
294 if (CC_UNLIKELY(error != NO_ERROR)) {
295 ALOG(LOG_ERROR, mLogTag, "Failed to obtain result");
296#if SI_DUMP_CALLSTACKS
297 CallStack callStack(mLogTag);
298#endif
299 return error;
300 }
301 return result;
302 }
303
304 // callRemoteAsync is used to invoke an asynchronous procedure call over Binder
305 template <typename Method, typename TagType, typename... Args>
306 void callRemoteAsync(TagType tag, Args&&... args) const {
307 static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");
308
309 // Verify that the arguments are compatible with the parameters
310 using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
311 static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
312 "Invalid argument type");
313
314 // Write the input arguments to the data Parcel
315 Parcel data;
316 data.writeInterfaceToken(this->getInterfaceDescriptor());
317 status_t error = writeInputs(&data, std::forward<Args>(args)...);
318 if (CC_UNLIKELY(error != NO_ERROR)) {
319 // A message will have been logged by writeInputs
320 return;
321 }
322
323 // There will be no data in the reply Parcel since the call is one-way
324 Parcel reply;
325 error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply,
326 IBinder::FLAG_ONEWAY);
327 if (CC_UNLIKELY(error != NO_ERROR)) {
328 ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
329#if SI_DUMP_CALLSTACKS
330 CallStack callStack(mLogTag);
331#endif
332 }
333 }
334
335private:
336 const char* const mLogTag;
337
338 // This struct provides information on whether the decayed types of the elements at Index in the
339 // tuple types T and U (that is, the types after stripping cv-qualifiers, removing references,
340 // and a few other less common operations) are the same
341 template <size_t Index, typename T, typename U>
342 struct DecayedElementsMatch {
343 private:
344 using FirstT = typename std::tuple_element<Index, T>::type;
345 using DecayedT = typename std::decay<FirstT>::type;
346 using FirstU = typename std::tuple_element<Index, U>::type;
347 using DecayedU = typename std::decay<FirstU>::type;
348
349 public:
350 static constexpr bool value = std::is_same<DecayedT, DecayedU>::value;
351 };
352
353 // When comparing whether the argument types match the parameter types, we first decay them (see
354 // DecayedElementsMatch) to avoid falsely flagging, say, T&& against T even though they are
355 // equivalent enough for our purposes
356 template <typename T, typename U>
357 struct ArgsMatchParams {};
358 template <typename... Args, typename... Params>
359 struct ArgsMatchParams<std::tuple<Args...>, std::tuple<Params...>> {
360 static_assert(sizeof...(Args) <= sizeof...(Params), "Too many arguments");
361 static_assert(sizeof...(Args) >= sizeof...(Params), "Not enough arguments");
362
363 private:
364 template <size_t Index>
365 static constexpr typename std::enable_if<(Index < sizeof...(Args)), bool>::type
366 elementsMatch() {
367 if (!DecayedElementsMatch<Index, std::tuple<Args...>, std::tuple<Params...>>::value) {
368 return false;
369 }
370 return elementsMatch<Index + 1>();
371 }
372 template <size_t Index>
373 static constexpr typename std::enable_if<(Index >= sizeof...(Args)), bool>::type
374 elementsMatch() {
375 return true;
376 }
377
378 public:
379 static constexpr bool value = elementsMatch<0>();
380 };
381
382 // Since we assume that pointer arguments are outputs, we can use this template struct to
383 // determine whether or not a given argument is fundamentally a pointer type and thus an output
384 template <typename T>
385 struct IsPointerIfDecayed {
386 private:
387 using Decayed = typename std::decay<T>::type;
388
389 public:
390 static constexpr bool value = std::is_pointer<Decayed>::value;
391 };
392
393 template <typename T>
394 typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
395 Parcel* data, T&& t) const {
396 return SafeInterface::ParcelHandler{mLogTag}.write(data, std::forward<T>(t));
397 }
398 template <typename T>
399 typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
400 Parcel* /*data*/, T&& /*t*/) const {
401 return NO_ERROR;
402 }
403
404 // This method iterates through all of the arguments, writing them to the data Parcel if they
405 // are an input (i.e., if they are not a pointer type)
406 template <typename T, typename... Remaining>
407 status_t writeInputs(Parcel* data, T&& t, Remaining&&... remaining) const {
408 status_t error = writeIfInput(data, std::forward<T>(t));
409 if (CC_UNLIKELY(error != NO_ERROR)) {
410 // A message will have been logged by writeIfInput
411 return error;
412 }
413 return writeInputs(data, std::forward<Remaining>(remaining)...);
414 }
415 static status_t writeInputs(Parcel* /*data*/) { return NO_ERROR; }
416
417 template <typename T>
418 typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
419 const Parcel& reply, T&& t) const {
420 return SafeInterface::ParcelHandler{mLogTag}.read(reply, std::forward<T>(t));
421 }
422 template <typename T>
423 static typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
424 const Parcel& /*reply*/, T&& /*t*/) {
425 return NO_ERROR;
426 }
427
428 // Similar to writeInputs except that it reads output arguments from the reply Parcel
429 template <typename T, typename... Remaining>
430 status_t readOutputs(const Parcel& reply, T&& t, Remaining&&... remaining) const {
431 status_t error = readIfOutput(reply, std::forward<T>(t));
432 if (CC_UNLIKELY(error != NO_ERROR)) {
433 // A message will have been logged by readIfOutput
434 return error;
435 }
436 return readOutputs(reply, std::forward<Remaining>(remaining)...);
437 }
438 static status_t readOutputs(const Parcel& /*data*/) { return NO_ERROR; }
439};
440
441template <typename Interface>
442class SafeBnInterface : public BnInterface<Interface> {
443public:
444 explicit SafeBnInterface(const char* logTag) : mLogTag(logTag) {}
445
446protected:
447 template <typename Method>
448 status_t callLocal(const Parcel& data, Parcel* reply, Method method) {
449 CHECK_INTERFACE(this, data, reply);
450
451 // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
452 // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
453 // outputs. When we ultimately call into the method, we will pass the addresses of the
454 // output arguments instead of their tuple members directly, but the storage will live in
455 // the tuple.
456 using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
457 typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};
458
459 // Read the inputs from the data Parcel into the argument tuple
460 status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
461 if (CC_UNLIKELY(error != NO_ERROR)) {
462 // A message will have been logged by read
463 return error;
464 }
465
466 // Call the local method
467 status_t result = MethodCaller<ParamTuple>::call(this, method, &rawArgs);
468
469 // Extract the outputs from the argument tuple and write them into the reply Parcel
470 error = OutputWriter<ParamTuple>{mLogTag}.writeOutputs(reply, &rawArgs);
471 if (CC_UNLIKELY(error != NO_ERROR)) {
472 // A message will have been logged by write
473 return error;
474 }
475
476 // Return the result code in the reply Parcel
477 error = reply->writeInt32(result);
478 if (CC_UNLIKELY(error != NO_ERROR)) {
479 ALOG(LOG_ERROR, mLogTag, "Failed to write result");
480#if SI_DUMP_CALLSTACKS
481 CallStack callStack(mLogTag);
482#endif
483 return error;
484 }
485 return NO_ERROR;
486 }
487
488 template <typename Method>
489 status_t callLocalAsync(const Parcel& data, Parcel* /*reply*/, Method method) {
490 // reply is not actually used by CHECK_INTERFACE
491 CHECK_INTERFACE(this, data, reply);
492
493 // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
494 // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
495 // outputs. When we ultimately call into the method, we will pass the addresses of the
496 // output arguments instead of their tuple members directly, but the storage will live in
497 // the tuple.
498 using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
499 typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};
500
501 // Read the inputs from the data Parcel into the argument tuple
502 status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
503 if (CC_UNLIKELY(error != NO_ERROR)) {
504 // A message will have been logged by read
505 return error;
506 }
507
508 // Call the local method
509 MethodCaller<ParamTuple>::callVoid(this, method, &rawArgs);
510
511 // After calling, there is nothing more to do since asynchronous calls do not return a value
512 // to the caller
513 return NO_ERROR;
514 }
515
516private:
517 const char* const mLogTag;
518
519 // RemoveFirst strips the first element from a tuple.
520 // For example, given T = std::tuple<A, B, C>, RemoveFirst<T>::type = std::tuple<B, C>
521 template <typename T, typename... Args>
522 struct RemoveFirst;
523 template <typename T, typename... Args>
524 struct RemoveFirst<std::tuple<T, Args...>> {
525 using type = std::tuple<Args...>;
526 };
527
528 // RawConverter strips a tuple down to its fundamental types, discarding both pointers and
529 // references. This allows us to allocate storage for both input (non-pointer) arguments and
530 // output (pointer) arguments in one tuple.
531 // For example, given T = std::tuple<const A&, B*>, RawConverter<T>::type = std::tuple<A, B>
532 template <typename Unconverted, typename... Converted>
533 struct RawConverter;
534 template <typename Unconverted, typename... Converted>
535 struct RawConverter<std::tuple<Converted...>, Unconverted> {
536 private:
537 using ElementType = typename std::tuple_element<0, Unconverted>::type;
538 using Decayed = typename std::decay<ElementType>::type;
539 using WithoutPointer = typename std::remove_pointer<Decayed>::type;
540
541 public:
542 using type = typename RawConverter<std::tuple<Converted..., WithoutPointer>,
543 typename RemoveFirst<Unconverted>::type>::type;
544 };
545 template <typename... Converted>
546 struct RawConverter<std::tuple<Converted...>, std::tuple<>> {
547 using type = std::tuple<Converted...>;
548 };
549
550 // This provides a simple way to determine whether the indexed element of Args... is a pointer
551 template <size_t I, typename... Args>
552 struct ElementIsPointer {
553 private:
554 using ElementType = typename std::tuple_element<I, std::tuple<Args...>>::type;
555
556 public:
557 static constexpr bool value = std::is_pointer<ElementType>::value;
558 };
559
560 // This class iterates over the parameter types, and if a given parameter is an input
561 // (i.e., is not a pointer), reads the corresponding argument tuple element from the data Parcel
562 template <typename... Params>
563 class InputReader;
564 template <typename... Params>
565 class InputReader<std::tuple<Params...>> {
566 public:
567 explicit InputReader(const char* logTag) : mLogTag(logTag) {}
568
569 // Note that in this case (as opposed to in SafeBpInterface), we iterate using an explicit
570 // index (starting with 0 here) instead of using recursion and stripping the first element.
571 // This is because in SafeBpInterface we aren't actually operating on a real tuple, but are
572 // instead just using a tuple as a convenient container for variadic types, whereas here we
573 // can't modify the argument tuple without causing unnecessary copies or moves of the data
574 // contained therein.
575 template <typename RawTuple>
576 status_t readInputs(const Parcel& data, RawTuple* args) {
577 return dispatchArg<0>(data, args);
578 }
579
580 private:
581 const char* const mLogTag;
582
583 template <std::size_t I, typename RawTuple>
584 typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
585 const Parcel& data, RawTuple* args) {
586 return SafeInterface::ParcelHandler{mLogTag}.read(data, &std::get<I>(*args));
587 }
588 template <std::size_t I, typename RawTuple>
589 typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
590 const Parcel& /*data*/, RawTuple* /*args*/) {
591 return NO_ERROR;
592 }
593
594 // Recursively iterate through the arguments
595 template <std::size_t I, typename RawTuple>
596 typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
597 const Parcel& data, RawTuple* args) {
598 status_t error = readIfInput<I>(data, args);
599 if (CC_UNLIKELY(error != NO_ERROR)) {
600 // A message will have been logged in read
601 return error;
602 }
603 return dispatchArg<I + 1>(data, args);
604 }
605 template <std::size_t I, typename RawTuple>
606 typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
607 const Parcel& /*data*/, RawTuple* /*args*/) {
608 return NO_ERROR;
609 }
610 };
611
612 // getForCall uses the types of the parameters to determine whether a given element of the
613 // argument tuple is an input, which should be passed directly into the call, or an output, for
614 // which its address should be passed into the call
615 template <size_t I, typename RawTuple, typename... Params>
616 static typename std::enable_if<
617 ElementIsPointer<I, Params...>::value,
618 typename std::tuple_element<I, std::tuple<Params...>>::type>::type
619 getForCall(RawTuple* args) {
620 return &std::get<I>(*args);
621 }
622 template <size_t I, typename RawTuple, typename... Params>
623 static typename std::enable_if<
624 !ElementIsPointer<I, Params...>::value,
625 typename std::tuple_element<I, std::tuple<Params...>>::type>::type&
626 getForCall(RawTuple* args) {
627 return std::get<I>(*args);
628 }
629
630 // This template class uses std::index_sequence and parameter pack expansion to call the given
631 // method using the elements of the argument tuple (after those arguments are passed through
632 // getForCall to get addresses instead of values for output arguments)
633 template <typename... Params>
634 struct MethodCaller;
635 template <typename... Params>
636 struct MethodCaller<std::tuple<Params...>> {
637 public:
638 // The calls through these to the helper methods are necessary to generate the
639 // std::index_sequences used to unpack the argument tuple into the method call
640 template <typename Class, typename MemberFunction, typename RawTuple>
641 static status_t call(Class* instance, MemberFunction function, RawTuple* args) {
642 return callHelper(instance, function, args, std::index_sequence_for<Params...>{});
643 }
644 template <typename Class, typename MemberFunction, typename RawTuple>
645 static void callVoid(Class* instance, MemberFunction function, RawTuple* args) {
646 callVoidHelper(instance, function, args, std::index_sequence_for<Params...>{});
647 }
648
649 private:
650 template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
651 static status_t callHelper(Class* instance, MemberFunction function, RawTuple* args,
652 std::index_sequence<I...> /*unused*/) {
653 return (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
654 }
655 template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
656 static void callVoidHelper(Class* instance, MemberFunction function, RawTuple* args,
657 std::index_sequence<I...> /*unused*/) {
658 (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
659 }
660 };
661
662 // This class iterates over the parameter types, and if a given parameter is an output
663 // (i.e., is a pointer), writes the corresponding argument tuple element into the reply Parcel
664 template <typename... Params>
665 struct OutputWriter;
666 template <typename... Params>
667 struct OutputWriter<std::tuple<Params...>> {
668 public:
669 explicit OutputWriter(const char* logTag) : mLogTag(logTag) {}
670
671 // See the note on InputReader::readInputs for why this differs from the arguably simpler
672 // RemoveFirst approach in SafeBpInterface
673 template <typename RawTuple>
674 status_t writeOutputs(Parcel* reply, RawTuple* args) {
675 return dispatchArg<0>(reply, args);
676 }
677
678 private:
679 const char* const mLogTag;
680
681 template <std::size_t I, typename RawTuple>
682 typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type
683 writeIfOutput(Parcel* reply, RawTuple* args) {
684 return SafeInterface::ParcelHandler{mLogTag}.write(reply, std::get<I>(*args));
685 }
686 template <std::size_t I, typename RawTuple>
687 typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type
688 writeIfOutput(Parcel* /*reply*/, RawTuple* /*args*/) {
689 return NO_ERROR;
690 }
691
692 // Recursively iterate through the arguments
693 template <std::size_t I, typename RawTuple>
694 typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
695 Parcel* reply, RawTuple* args) {
696 status_t error = writeIfOutput<I>(reply, args);
697 if (CC_UNLIKELY(error != NO_ERROR)) {
698 // A message will have been logged in read
699 return error;
700 }
701 return dispatchArg<I + 1>(reply, args);
702 }
703 template <std::size_t I, typename RawTuple>
704 typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
705 Parcel* /*reply*/, RawTuple* /*args*/) {
706 return NO_ERROR;
707 }
708 };
709};
710
711} // namespace android