Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2023 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "MotionPredictorMetricsManager" |
| 18 | |
| 19 | #include <input/MotionPredictorMetricsManager.h> |
| 20 | |
| 21 | #include <algorithm> |
| 22 | |
| 23 | #include <android-base/logging.h> |
Cody Heiner | b0b5b6c | 2024-05-09 18:31:12 -0700 | [diff] [blame] | 24 | #ifdef __ANDROID__ |
| 25 | #include <statslog_libinput.h> |
| 26 | #endif // __ANDROID__ |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 27 | |
| 28 | #include "Eigen/Core" |
| 29 | #include "Eigen/Geometry" |
| 30 | |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 31 | namespace android { |
| 32 | namespace { |
| 33 | |
| 34 | inline constexpr int NANOS_PER_SECOND = 1'000'000'000; // nanoseconds per second |
| 35 | inline constexpr int NANOS_PER_MILLIS = 1'000'000; // nanoseconds per millisecond |
| 36 | |
| 37 | // Velocity threshold at which we report "high-velocity" metrics, in pixels per second. |
| 38 | // This value was selected from manual experimentation, as a threshold that separates "fast" |
| 39 | // (semi-sloppy) handwriting from more careful medium to slow handwriting. |
| 40 | inline constexpr float HIGH_VELOCITY_THRESHOLD = 1100.0; |
| 41 | |
| 42 | // Small value to add to the path length when computing scale-invariant error to avoid division by |
| 43 | // zero. |
| 44 | inline constexpr float PATH_LENGTH_EPSILON = 0.001; |
| 45 | |
| 46 | } // namespace |
| 47 | |
Cody Heiner | 7b26dbe | 2023-11-14 14:47:10 -0800 | [diff] [blame] | 48 | void MotionPredictorMetricsManager::defaultReportAtomFunction( |
| 49 | const MotionPredictorMetricsManager::AtomFields& atomFields) { |
Cody Heiner | b0b5b6c | 2024-05-09 18:31:12 -0700 | [diff] [blame] | 50 | #ifdef __ANDROID__ |
| 51 | android::libinput::stats_write(android::libinput::STYLUS_PREDICTION_METRICS_REPORTED, |
| 52 | /*stylus_vendor_id=*/0, |
| 53 | /*stylus_product_id=*/0, |
| 54 | atomFields.deltaTimeBucketMilliseconds, |
| 55 | atomFields.alongTrajectoryErrorMeanMillipixels, |
| 56 | atomFields.alongTrajectoryErrorStdMillipixels, |
| 57 | atomFields.offTrajectoryRmseMillipixels, |
| 58 | atomFields.pressureRmseMilliunits, |
| 59 | atomFields.highVelocityAlongTrajectoryRmse, |
| 60 | atomFields.highVelocityOffTrajectoryRmse, |
| 61 | atomFields.scaleInvariantAlongTrajectoryRmse, |
| 62 | atomFields.scaleInvariantOffTrajectoryRmse); |
| 63 | #endif // __ANDROID__ |
Cody Heiner | 7b26dbe | 2023-11-14 14:47:10 -0800 | [diff] [blame] | 64 | } |
| 65 | |
| 66 | MotionPredictorMetricsManager::MotionPredictorMetricsManager( |
| 67 | nsecs_t predictionInterval, |
| 68 | size_t maxNumPredictions, |
| 69 | ReportAtomFunction reportAtomFunction) |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 70 | : mPredictionInterval(predictionInterval), |
| 71 | mMaxNumPredictions(maxNumPredictions), |
| 72 | mRecentGroundTruthPoints(maxNumPredictions + 1), |
| 73 | mAggregatedMetrics(maxNumPredictions), |
Cody Heiner | 7b26dbe | 2023-11-14 14:47:10 -0800 | [diff] [blame] | 74 | mAtomFields(maxNumPredictions), |
| 75 | mReportAtomFunction(reportAtomFunction ? reportAtomFunction : defaultReportAtomFunction) {} |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 76 | |
| 77 | void MotionPredictorMetricsManager::onRecord(const MotionEvent& inputEvent) { |
| 78 | // Convert MotionEvent to GroundTruthPoint. |
| 79 | const PointerCoords* coords = inputEvent.getRawPointerCoords(/*pointerIndex=*/0); |
| 80 | LOG_ALWAYS_FATAL_IF(coords == nullptr); |
| 81 | const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f{coords->getY(), |
| 82 | coords->getX()}, |
| 83 | .pressure = |
| 84 | inputEvent.getPressure(/*pointerIndex=*/0)}, |
| 85 | .timestamp = inputEvent.getEventTime()}; |
| 86 | |
| 87 | // Handle event based on action type. |
| 88 | switch (inputEvent.getActionMasked()) { |
| 89 | case AMOTION_EVENT_ACTION_DOWN: { |
| 90 | clearStrokeData(); |
| 91 | incorporateNewGroundTruth(groundTruthPoint); |
| 92 | break; |
| 93 | } |
| 94 | case AMOTION_EVENT_ACTION_MOVE: { |
| 95 | incorporateNewGroundTruth(groundTruthPoint); |
| 96 | break; |
| 97 | } |
| 98 | case AMOTION_EVENT_ACTION_UP: |
| 99 | case AMOTION_EVENT_ACTION_CANCEL: { |
| 100 | // Only expect meaningful predictions when given at least two input points. |
| 101 | if (mRecentGroundTruthPoints.size() >= 2) { |
| 102 | computeAtomFields(); |
| 103 | reportMetrics(); |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 104 | } |
Cody Heiner | 7b26dbe | 2023-11-14 14:47:10 -0800 | [diff] [blame] | 105 | break; |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 106 | } |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | // Adds new predictions to mRecentPredictions and maintains the invariant that elements are |
| 111 | // sorted in ascending order of targetTimestamp. |
| 112 | void MotionPredictorMetricsManager::onPredict(const MotionEvent& predictionEvent) { |
Cody Heiner | 50582ba | 2024-02-20 17:47:37 -0800 | [diff] [blame] | 113 | const size_t numPredictions = predictionEvent.getHistorySize() + 1; |
| 114 | if (numPredictions > mMaxNumPredictions) { |
| 115 | LOG(WARNING) << "numPredictions (" << numPredictions << ") > mMaxNumPredictions (" |
| 116 | << mMaxNumPredictions << "). Ignoring extra predictions in metrics."; |
| 117 | } |
| 118 | for (size_t i = 0; (i < numPredictions) && (i < mMaxNumPredictions); ++i) { |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 119 | // Convert MotionEvent to PredictionPoint. |
| 120 | const PointerCoords* coords = |
| 121 | predictionEvent.getHistoricalRawPointerCoords(/*pointerIndex=*/0, i); |
| 122 | LOG_ALWAYS_FATAL_IF(coords == nullptr); |
| 123 | const nsecs_t targetTimestamp = predictionEvent.getHistoricalEventTime(i); |
| 124 | mRecentPredictions.push_back( |
| 125 | PredictionPoint{{.position = Eigen::Vector2f{coords->getY(), coords->getX()}, |
| 126 | .pressure = |
| 127 | predictionEvent.getHistoricalPressure(/*pointerIndex=*/0, |
| 128 | i)}, |
| 129 | .originTimestamp = mRecentGroundTruthPoints.back().timestamp, |
| 130 | .targetTimestamp = targetTimestamp}); |
| 131 | } |
| 132 | |
| 133 | std::sort(mRecentPredictions.begin(), mRecentPredictions.end()); |
| 134 | } |
| 135 | |
| 136 | void MotionPredictorMetricsManager::clearStrokeData() { |
| 137 | mRecentGroundTruthPoints.clear(); |
| 138 | mRecentPredictions.clear(); |
| 139 | std::fill(mAggregatedMetrics.begin(), mAggregatedMetrics.end(), AggregatedStrokeMetrics{}); |
| 140 | std::fill(mAtomFields.begin(), mAtomFields.end(), AtomFields{}); |
| 141 | } |
| 142 | |
| 143 | void MotionPredictorMetricsManager::incorporateNewGroundTruth( |
| 144 | const GroundTruthPoint& groundTruthPoint) { |
| 145 | // Note: this removes the oldest point if `mRecentGroundTruthPoints` is already at capacity. |
| 146 | mRecentGroundTruthPoints.pushBack(groundTruthPoint); |
| 147 | |
| 148 | // Remove outdated predictions – those that can never be matched with the current or any future |
| 149 | // ground truth points. We use fuzzy association for the timestamps here, because ground truth |
| 150 | // and prediction timestamps may not be perfectly synchronized. |
| 151 | const nsecs_t fuzzy_association_time_delta = mPredictionInterval / 4; |
| 152 | const auto firstCurrentIt = |
| 153 | std::find_if(mRecentPredictions.begin(), mRecentPredictions.end(), |
| 154 | [&groundTruthPoint, |
| 155 | fuzzy_association_time_delta](const PredictionPoint& prediction) { |
| 156 | return prediction.targetTimestamp > |
| 157 | groundTruthPoint.timestamp - fuzzy_association_time_delta; |
| 158 | }); |
| 159 | mRecentPredictions.erase(mRecentPredictions.begin(), firstCurrentIt); |
| 160 | |
| 161 | // Fuzzily match the new ground truth's timestamp to recent predictions' targetTimestamp and |
| 162 | // update the corresponding metrics. |
| 163 | for (const PredictionPoint& prediction : mRecentPredictions) { |
| 164 | if ((prediction.targetTimestamp > |
| 165 | groundTruthPoint.timestamp - fuzzy_association_time_delta) && |
| 166 | (prediction.targetTimestamp < |
| 167 | groundTruthPoint.timestamp + fuzzy_association_time_delta)) { |
| 168 | updateAggregatedMetrics(prediction); |
| 169 | } |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | void MotionPredictorMetricsManager::updateAggregatedMetrics( |
| 174 | const PredictionPoint& predictionPoint) { |
| 175 | if (mRecentGroundTruthPoints.size() < 2) { |
| 176 | return; |
| 177 | } |
| 178 | |
| 179 | const GroundTruthPoint& latestGroundTruthPoint = mRecentGroundTruthPoints.back(); |
| 180 | const GroundTruthPoint& previousGroundTruthPoint = |
| 181 | mRecentGroundTruthPoints[mRecentGroundTruthPoints.size() - 2]; |
| 182 | // Calculate prediction error vector. |
| 183 | const Eigen::Vector2f groundTruthTrajectory = |
| 184 | latestGroundTruthPoint.position - previousGroundTruthPoint.position; |
| 185 | const Eigen::Vector2f predictionTrajectory = |
| 186 | predictionPoint.position - previousGroundTruthPoint.position; |
| 187 | const Eigen::Vector2f predictionError = predictionTrajectory - groundTruthTrajectory; |
| 188 | |
| 189 | // By default, prediction error counts fully as both off-trajectory and along-trajectory error. |
| 190 | // This serves as the fallback when the two most recent ground truth points are equal. |
| 191 | const float predictionErrorNorm = predictionError.norm(); |
| 192 | float alongTrajectoryError = predictionErrorNorm; |
| 193 | float offTrajectoryError = predictionErrorNorm; |
| 194 | if (groundTruthTrajectory.squaredNorm() > 0) { |
| 195 | // Rotate the prediction error vector by the angle of the ground truth trajectory vector. |
| 196 | // This yields a vector whose first component is the along-trajectory error and whose |
| 197 | // second component is the off-trajectory error. |
| 198 | const float theta = std::atan2(groundTruthTrajectory[1], groundTruthTrajectory[0]); |
| 199 | const Eigen::Vector2f rotatedPredictionError = Eigen::Rotation2Df(-theta) * predictionError; |
| 200 | alongTrajectoryError = rotatedPredictionError[0]; |
| 201 | offTrajectoryError = rotatedPredictionError[1]; |
| 202 | } |
| 203 | |
| 204 | // Compute the multiple of mPredictionInterval nearest to the amount of time into the |
| 205 | // future being predicted. This serves as the time bucket index into mAggregatedMetrics. |
| 206 | const float timestampDeltaFloat = |
| 207 | static_cast<float>(predictionPoint.targetTimestamp - predictionPoint.originTimestamp); |
| 208 | const size_t tIndex = |
| 209 | static_cast<size_t>(std::round(timestampDeltaFloat / mPredictionInterval - 1)); |
| 210 | |
| 211 | // Aggregate values into "general errors". |
| 212 | mAggregatedMetrics[tIndex].alongTrajectoryErrorSum += alongTrajectoryError; |
| 213 | mAggregatedMetrics[tIndex].alongTrajectorySumSquaredErrors += |
| 214 | alongTrajectoryError * alongTrajectoryError; |
| 215 | mAggregatedMetrics[tIndex].offTrajectorySumSquaredErrors += |
| 216 | offTrajectoryError * offTrajectoryError; |
| 217 | const float pressureError = predictionPoint.pressure - latestGroundTruthPoint.pressure; |
| 218 | mAggregatedMetrics[tIndex].pressureSumSquaredErrors += pressureError * pressureError; |
| 219 | ++mAggregatedMetrics[tIndex].generalErrorsCount; |
| 220 | |
| 221 | // Aggregate values into high-velocity metrics, if we are in one of the last two time buckets |
| 222 | // and the velocity is above the threshold. Velocity here is measured in pixels per second. |
| 223 | const float velocity = groundTruthTrajectory.norm() / |
| 224 | (static_cast<float>(latestGroundTruthPoint.timestamp - |
| 225 | previousGroundTruthPoint.timestamp) / |
| 226 | NANOS_PER_SECOND); |
| 227 | if ((tIndex + 2 >= mMaxNumPredictions) && (velocity > HIGH_VELOCITY_THRESHOLD)) { |
| 228 | mAggregatedMetrics[tIndex].highVelocityAlongTrajectorySse += |
| 229 | alongTrajectoryError * alongTrajectoryError; |
| 230 | mAggregatedMetrics[tIndex].highVelocityOffTrajectorySse += |
| 231 | offTrajectoryError * offTrajectoryError; |
| 232 | ++mAggregatedMetrics[tIndex].highVelocityErrorsCount; |
| 233 | } |
| 234 | |
| 235 | // Compute path length for scale-invariant errors. |
| 236 | float pathLength = 0; |
| 237 | for (size_t i = 1; i < mRecentGroundTruthPoints.size(); ++i) { |
| 238 | pathLength += |
| 239 | (mRecentGroundTruthPoints[i].position - mRecentGroundTruthPoints[i - 1].position) |
| 240 | .norm(); |
| 241 | } |
| 242 | // Avoid overweighting errors at the beginning of a stroke: compute the path length as if there |
| 243 | // were a full ground truth history by filling in missing segments with the average length. |
| 244 | // Note: the "- 1" is needed to translate from number of endpoints to number of segments. |
| 245 | pathLength *= static_cast<float>(mRecentGroundTruthPoints.capacity() - 1) / |
| 246 | (mRecentGroundTruthPoints.size() - 1); |
| 247 | pathLength += PATH_LENGTH_EPSILON; // Ensure path length is nonzero (>= PATH_LENGTH_EPSILON). |
| 248 | |
| 249 | // Compute and aggregate scale-invariant errors. |
| 250 | const float scaleInvariantAlongTrajectoryError = alongTrajectoryError / pathLength; |
| 251 | const float scaleInvariantOffTrajectoryError = offTrajectoryError / pathLength; |
| 252 | mAggregatedMetrics[tIndex].scaleInvariantAlongTrajectorySse += |
| 253 | scaleInvariantAlongTrajectoryError * scaleInvariantAlongTrajectoryError; |
| 254 | mAggregatedMetrics[tIndex].scaleInvariantOffTrajectorySse += |
| 255 | scaleInvariantOffTrajectoryError * scaleInvariantOffTrajectoryError; |
| 256 | ++mAggregatedMetrics[tIndex].scaleInvariantErrorsCount; |
| 257 | } |
| 258 | |
| 259 | void MotionPredictorMetricsManager::computeAtomFields() { |
| 260 | for (size_t i = 0; i < mAggregatedMetrics.size(); ++i) { |
| 261 | if (mAggregatedMetrics[i].generalErrorsCount == 0) { |
| 262 | // We have not received data corresponding to metrics for this time bucket. |
| 263 | continue; |
| 264 | } |
| 265 | |
| 266 | mAtomFields[i].deltaTimeBucketMilliseconds = |
| 267 | static_cast<int>(mPredictionInterval / NANOS_PER_MILLIS * (i + 1)); |
| 268 | |
| 269 | // Note: we need the "* 1000"s below because we report values in integral milli-units. |
| 270 | |
| 271 | { // General errors: reported for every time bucket. |
| 272 | const float alongTrajectoryErrorMean = mAggregatedMetrics[i].alongTrajectoryErrorSum / |
| 273 | mAggregatedMetrics[i].generalErrorsCount; |
| 274 | mAtomFields[i].alongTrajectoryErrorMeanMillipixels = |
| 275 | static_cast<int>(alongTrajectoryErrorMean * 1000); |
| 276 | |
| 277 | const float alongTrajectoryMse = mAggregatedMetrics[i].alongTrajectorySumSquaredErrors / |
| 278 | mAggregatedMetrics[i].generalErrorsCount; |
| 279 | // Take the max with 0 to avoid negative values caused by numerical instability. |
| 280 | const float alongTrajectoryErrorVariance = |
| 281 | std::max(0.0f, |
| 282 | alongTrajectoryMse - |
| 283 | alongTrajectoryErrorMean * alongTrajectoryErrorMean); |
| 284 | const float alongTrajectoryErrorStd = std::sqrt(alongTrajectoryErrorVariance); |
| 285 | mAtomFields[i].alongTrajectoryErrorStdMillipixels = |
| 286 | static_cast<int>(alongTrajectoryErrorStd * 1000); |
| 287 | |
| 288 | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].offTrajectorySumSquaredErrors < 0, |
| 289 | "mAggregatedMetrics[%zu].offTrajectorySumSquaredErrors = %f should " |
| 290 | "not be negative", |
| 291 | i, mAggregatedMetrics[i].offTrajectorySumSquaredErrors); |
| 292 | const float offTrajectoryRmse = |
| 293 | std::sqrt(mAggregatedMetrics[i].offTrajectorySumSquaredErrors / |
| 294 | mAggregatedMetrics[i].generalErrorsCount); |
| 295 | mAtomFields[i].offTrajectoryRmseMillipixels = |
| 296 | static_cast<int>(offTrajectoryRmse * 1000); |
| 297 | |
| 298 | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].pressureSumSquaredErrors < 0, |
| 299 | "mAggregatedMetrics[%zu].pressureSumSquaredErrors = %f should not " |
| 300 | "be negative", |
| 301 | i, mAggregatedMetrics[i].pressureSumSquaredErrors); |
| 302 | const float pressureRmse = std::sqrt(mAggregatedMetrics[i].pressureSumSquaredErrors / |
| 303 | mAggregatedMetrics[i].generalErrorsCount); |
| 304 | mAtomFields[i].pressureRmseMilliunits = static_cast<int>(pressureRmse * 1000); |
| 305 | } |
| 306 | |
| 307 | // High-velocity errors: reported only for last two time buckets. |
| 308 | // Check if we are in one of the last two time buckets, and there is high-velocity data. |
| 309 | if ((i + 2 >= mMaxNumPredictions) && (mAggregatedMetrics[i].highVelocityErrorsCount > 0)) { |
| 310 | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityAlongTrajectorySse < 0, |
| 311 | "mAggregatedMetrics[%zu].highVelocityAlongTrajectorySse = %f " |
| 312 | "should not be negative", |
| 313 | i, mAggregatedMetrics[i].highVelocityAlongTrajectorySse); |
| 314 | const float alongTrajectoryRmse = |
| 315 | std::sqrt(mAggregatedMetrics[i].highVelocityAlongTrajectorySse / |
| 316 | mAggregatedMetrics[i].highVelocityErrorsCount); |
| 317 | mAtomFields[i].highVelocityAlongTrajectoryRmse = |
| 318 | static_cast<int>(alongTrajectoryRmse * 1000); |
| 319 | |
| 320 | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityOffTrajectorySse < 0, |
| 321 | "mAggregatedMetrics[%zu].highVelocityOffTrajectorySse = %f should " |
| 322 | "not be negative", |
| 323 | i, mAggregatedMetrics[i].highVelocityOffTrajectorySse); |
| 324 | const float offTrajectoryRmse = |
| 325 | std::sqrt(mAggregatedMetrics[i].highVelocityOffTrajectorySse / |
| 326 | mAggregatedMetrics[i].highVelocityErrorsCount); |
| 327 | mAtomFields[i].highVelocityOffTrajectoryRmse = |
| 328 | static_cast<int>(offTrajectoryRmse * 1000); |
| 329 | } |
Cody Heiner | 50582ba | 2024-02-20 17:47:37 -0800 | [diff] [blame] | 330 | } |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 331 | |
Cody Heiner | 50582ba | 2024-02-20 17:47:37 -0800 | [diff] [blame] | 332 | // Scale-invariant errors: the average scale-invariant error across all time buckets |
| 333 | // is reported in the last time bucket. |
| 334 | { |
| 335 | // Compute error averages. |
| 336 | float alongTrajectoryRmseSum = 0; |
| 337 | float offTrajectoryRmseSum = 0; |
| 338 | int bucket_count = 0; |
| 339 | for (size_t j = 0; j < mAggregatedMetrics.size(); ++j) { |
| 340 | if (mAggregatedMetrics[j].scaleInvariantErrorsCount == 0) { |
| 341 | continue; |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 342 | } |
| 343 | |
Cody Heiner | 50582ba | 2024-02-20 17:47:37 -0800 | [diff] [blame] | 344 | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse < 0, |
| 345 | "mAggregatedMetrics[%zu].scaleInvariantAlongTrajectorySse = %f " |
| 346 | "should not be negative", |
| 347 | j, mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse); |
| 348 | alongTrajectoryRmseSum += |
| 349 | std::sqrt(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse / |
| 350 | mAggregatedMetrics[j].scaleInvariantErrorsCount); |
| 351 | |
| 352 | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse < 0, |
| 353 | "mAggregatedMetrics[%zu].scaleInvariantOffTrajectorySse = %f " |
| 354 | "should not be negative", |
| 355 | j, mAggregatedMetrics[j].scaleInvariantOffTrajectorySse); |
| 356 | offTrajectoryRmseSum += std::sqrt(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse / |
| 357 | mAggregatedMetrics[j].scaleInvariantErrorsCount); |
| 358 | |
| 359 | ++bucket_count; |
| 360 | } |
| 361 | |
| 362 | if (bucket_count > 0) { |
| 363 | const float averageAlongTrajectoryRmse = alongTrajectoryRmseSum / bucket_count; |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 364 | mAtomFields.back().scaleInvariantAlongTrajectoryRmse = |
| 365 | static_cast<int>(averageAlongTrajectoryRmse * 1000); |
| 366 | |
Cody Heiner | 50582ba | 2024-02-20 17:47:37 -0800 | [diff] [blame] | 367 | const float averageOffTrajectoryRmse = offTrajectoryRmseSum / bucket_count; |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 368 | mAtomFields.back().scaleInvariantOffTrajectoryRmse = |
| 369 | static_cast<int>(averageOffTrajectoryRmse * 1000); |
| 370 | } |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | void MotionPredictorMetricsManager::reportMetrics() { |
Cody Heiner | 7b26dbe | 2023-11-14 14:47:10 -0800 | [diff] [blame] | 375 | LOG_ALWAYS_FATAL_IF(!mReportAtomFunction); |
| 376 | // Report one atom for each prediction time bucket. |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 377 | for (size_t i = 0; i < mAtomFields.size(); ++i) { |
Cody Heiner | 7b26dbe | 2023-11-14 14:47:10 -0800 | [diff] [blame] | 378 | mReportAtomFunction(mAtomFields[i]); |
Cody Heiner | 52db474 | 2023-06-29 13:19:01 -0700 | [diff] [blame] | 379 | } |
| 380 | } |
| 381 | |
| 382 | } // namespace android |