| Jeff Brown | 5912f95 | 2013-07-01 19:10:31 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2012 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | 5 | * you may not use this file except in compliance with the License. | 
|  | 6 | * You may obtain a copy of the License at | 
|  | 7 | * | 
|  | 8 | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 9 | * | 
|  | 10 | * Unless required by applicable law or agreed to in writing, software | 
|  | 11 | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 13 | * See the License for the specific language governing permissions and | 
|  | 14 | * limitations under the License. | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #define LOG_TAG "VelocityTracker" | 
|  | 18 | //#define LOG_NDEBUG 0 | 
|  | 19 |  | 
|  | 20 | // Log debug messages about velocity tracking. | 
|  | 21 | #define DEBUG_VELOCITY 0 | 
|  | 22 |  | 
|  | 23 | // Log debug messages about the progress of the algorithm itself. | 
|  | 24 | #define DEBUG_STRATEGY 0 | 
|  | 25 |  | 
|  | 26 | #include <math.h> | 
|  | 27 | #include <limits.h> | 
|  | 28 |  | 
|  | 29 | #include <cutils/properties.h> | 
|  | 30 | #include <input/VelocityTracker.h> | 
|  | 31 | #include <utils/BitSet.h> | 
|  | 32 | #include <utils/String8.h> | 
|  | 33 | #include <utils/Timers.h> | 
|  | 34 |  | 
|  | 35 | namespace android { | 
|  | 36 |  | 
|  | 37 | // Nanoseconds per milliseconds. | 
|  | 38 | static const nsecs_t NANOS_PER_MS = 1000000; | 
|  | 39 |  | 
|  | 40 | // Threshold for determining that a pointer has stopped moving. | 
|  | 41 | // Some input devices do not send ACTION_MOVE events in the case where a pointer has | 
|  | 42 | // stopped.  We need to detect this case so that we can accurately predict the | 
|  | 43 | // velocity after the pointer starts moving again. | 
|  | 44 | static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS; | 
|  | 45 |  | 
|  | 46 |  | 
|  | 47 | static float vectorDot(const float* a, const float* b, uint32_t m) { | 
|  | 48 | float r = 0; | 
|  | 49 | while (m--) { | 
|  | 50 | r += *(a++) * *(b++); | 
|  | 51 | } | 
|  | 52 | return r; | 
|  | 53 | } | 
|  | 54 |  | 
|  | 55 | static float vectorNorm(const float* a, uint32_t m) { | 
|  | 56 | float r = 0; | 
|  | 57 | while (m--) { | 
|  | 58 | float t = *(a++); | 
|  | 59 | r += t * t; | 
|  | 60 | } | 
|  | 61 | return sqrtf(r); | 
|  | 62 | } | 
|  | 63 |  | 
|  | 64 | #if DEBUG_STRATEGY || DEBUG_VELOCITY | 
|  | 65 | static String8 vectorToString(const float* a, uint32_t m) { | 
|  | 66 | String8 str; | 
|  | 67 | str.append("["); | 
|  | 68 | while (m--) { | 
|  | 69 | str.appendFormat(" %f", *(a++)); | 
|  | 70 | if (m) { | 
|  | 71 | str.append(","); | 
|  | 72 | } | 
|  | 73 | } | 
|  | 74 | str.append(" ]"); | 
|  | 75 | return str; | 
|  | 76 | } | 
|  | 77 |  | 
|  | 78 | static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { | 
|  | 79 | String8 str; | 
|  | 80 | str.append("["); | 
|  | 81 | for (size_t i = 0; i < m; i++) { | 
|  | 82 | if (i) { | 
|  | 83 | str.append(","); | 
|  | 84 | } | 
|  | 85 | str.append(" ["); | 
|  | 86 | for (size_t j = 0; j < n; j++) { | 
|  | 87 | if (j) { | 
|  | 88 | str.append(","); | 
|  | 89 | } | 
|  | 90 | str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); | 
|  | 91 | } | 
|  | 92 | str.append(" ]"); | 
|  | 93 | } | 
|  | 94 | str.append(" ]"); | 
|  | 95 | return str; | 
|  | 96 | } | 
|  | 97 | #endif | 
|  | 98 |  | 
|  | 99 |  | 
|  | 100 | // --- VelocityTracker --- | 
|  | 101 |  | 
|  | 102 | // The default velocity tracker strategy. | 
|  | 103 | // Although other strategies are available for testing and comparison purposes, | 
|  | 104 | // this is the strategy that applications will actually use.  Be very careful | 
|  | 105 | // when adjusting the default strategy because it can dramatically affect | 
|  | 106 | // (often in a bad way) the user experience. | 
|  | 107 | const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2"; | 
|  | 108 |  | 
|  | 109 | VelocityTracker::VelocityTracker(const char* strategy) : | 
|  | 110 | mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) { | 
|  | 111 | char value[PROPERTY_VALUE_MAX]; | 
|  | 112 |  | 
|  | 113 | // Allow the default strategy to be overridden using a system property for debugging. | 
|  | 114 | if (!strategy) { | 
|  | 115 | int length = property_get("debug.velocitytracker.strategy", value, NULL); | 
|  | 116 | if (length > 0) { | 
|  | 117 | strategy = value; | 
|  | 118 | } else { | 
|  | 119 | strategy = DEFAULT_STRATEGY; | 
|  | 120 | } | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | // Configure the strategy. | 
|  | 124 | if (!configureStrategy(strategy)) { | 
|  | 125 | ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy); | 
|  | 126 | if (!configureStrategy(DEFAULT_STRATEGY)) { | 
|  | 127 | LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!", | 
|  | 128 | strategy); | 
|  | 129 | } | 
|  | 130 | } | 
|  | 131 | } | 
|  | 132 |  | 
|  | 133 | VelocityTracker::~VelocityTracker() { | 
|  | 134 | delete mStrategy; | 
|  | 135 | } | 
|  | 136 |  | 
|  | 137 | bool VelocityTracker::configureStrategy(const char* strategy) { | 
|  | 138 | mStrategy = createStrategy(strategy); | 
|  | 139 | return mStrategy != NULL; | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) { | 
|  | 143 | if (!strcmp("lsq1", strategy)) { | 
|  | 144 | // 1st order least squares.  Quality: POOR. | 
|  | 145 | // Frequently underfits the touch data especially when the finger accelerates | 
|  | 146 | // or changes direction.  Often underestimates velocity.  The direction | 
|  | 147 | // is overly influenced by historical touch points. | 
|  | 148 | return new LeastSquaresVelocityTrackerStrategy(1); | 
|  | 149 | } | 
|  | 150 | if (!strcmp("lsq2", strategy)) { | 
|  | 151 | // 2nd order least squares.  Quality: VERY GOOD. | 
|  | 152 | // Pretty much ideal, but can be confused by certain kinds of touch data, | 
|  | 153 | // particularly if the panel has a tendency to generate delayed, | 
|  | 154 | // duplicate or jittery touch coordinates when the finger is released. | 
|  | 155 | return new LeastSquaresVelocityTrackerStrategy(2); | 
|  | 156 | } | 
|  | 157 | if (!strcmp("lsq3", strategy)) { | 
|  | 158 | // 3rd order least squares.  Quality: UNUSABLE. | 
|  | 159 | // Frequently overfits the touch data yielding wildly divergent estimates | 
|  | 160 | // of the velocity when the finger is released. | 
|  | 161 | return new LeastSquaresVelocityTrackerStrategy(3); | 
|  | 162 | } | 
|  | 163 | if (!strcmp("wlsq2-delta", strategy)) { | 
|  | 164 | // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL | 
|  | 165 | return new LeastSquaresVelocityTrackerStrategy(2, | 
|  | 166 | LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA); | 
|  | 167 | } | 
|  | 168 | if (!strcmp("wlsq2-central", strategy)) { | 
|  | 169 | // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL | 
|  | 170 | return new LeastSquaresVelocityTrackerStrategy(2, | 
|  | 171 | LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL); | 
|  | 172 | } | 
|  | 173 | if (!strcmp("wlsq2-recent", strategy)) { | 
|  | 174 | // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL | 
|  | 175 | return new LeastSquaresVelocityTrackerStrategy(2, | 
|  | 176 | LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT); | 
|  | 177 | } | 
|  | 178 | if (!strcmp("int1", strategy)) { | 
|  | 179 | // 1st order integrating filter.  Quality: GOOD. | 
|  | 180 | // Not as good as 'lsq2' because it cannot estimate acceleration but it is | 
|  | 181 | // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate | 
|  | 182 | // the velocity of a fling but this strategy tends to respond to changes in | 
|  | 183 | // direction more quickly and accurately. | 
|  | 184 | return new IntegratingVelocityTrackerStrategy(1); | 
|  | 185 | } | 
|  | 186 | if (!strcmp("int2", strategy)) { | 
|  | 187 | // 2nd order integrating filter.  Quality: EXPERIMENTAL. | 
|  | 188 | // For comparison purposes only.  Unlike 'int1' this strategy can compensate | 
|  | 189 | // for acceleration but it typically overestimates the effect. | 
|  | 190 | return new IntegratingVelocityTrackerStrategy(2); | 
|  | 191 | } | 
|  | 192 | if (!strcmp("legacy", strategy)) { | 
|  | 193 | // Legacy velocity tracker algorithm.  Quality: POOR. | 
|  | 194 | // For comparison purposes only.  This algorithm is strongly influenced by | 
|  | 195 | // old data points, consistently underestimates velocity and takes a very long | 
|  | 196 | // time to adjust to changes in direction. | 
|  | 197 | return new LegacyVelocityTrackerStrategy(); | 
|  | 198 | } | 
|  | 199 | return NULL; | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | void VelocityTracker::clear() { | 
|  | 203 | mCurrentPointerIdBits.clear(); | 
|  | 204 | mActivePointerId = -1; | 
|  | 205 |  | 
|  | 206 | mStrategy->clear(); | 
|  | 207 | } | 
|  | 208 |  | 
|  | 209 | void VelocityTracker::clearPointers(BitSet32 idBits) { | 
|  | 210 | BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value); | 
|  | 211 | mCurrentPointerIdBits = remainingIdBits; | 
|  | 212 |  | 
|  | 213 | if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { | 
|  | 214 | mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; | 
|  | 215 | } | 
|  | 216 |  | 
|  | 217 | mStrategy->clearPointers(idBits); | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { | 
|  | 221 | while (idBits.count() > MAX_POINTERS) { | 
|  | 222 | idBits.clearLastMarkedBit(); | 
|  | 223 | } | 
|  | 224 |  | 
|  | 225 | if ((mCurrentPointerIdBits.value & idBits.value) | 
|  | 226 | && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) { | 
|  | 227 | #if DEBUG_VELOCITY | 
|  | 228 | ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.", | 
|  | 229 | (eventTime - mLastEventTime) * 0.000001f); | 
|  | 230 | #endif | 
|  | 231 | // We have not received any movements for too long.  Assume that all pointers | 
|  | 232 | // have stopped. | 
|  | 233 | mStrategy->clear(); | 
|  | 234 | } | 
|  | 235 | mLastEventTime = eventTime; | 
|  | 236 |  | 
|  | 237 | mCurrentPointerIdBits = idBits; | 
|  | 238 | if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { | 
|  | 239 | mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit(); | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | mStrategy->addMovement(eventTime, idBits, positions); | 
|  | 243 |  | 
|  | 244 | #if DEBUG_VELOCITY | 
|  | 245 | ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", | 
|  | 246 | eventTime, idBits.value, mActivePointerId); | 
|  | 247 | for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { | 
|  | 248 | uint32_t id = iterBits.firstMarkedBit(); | 
|  | 249 | uint32_t index = idBits.getIndexOfBit(id); | 
|  | 250 | iterBits.clearBit(id); | 
|  | 251 | Estimator estimator; | 
|  | 252 | getEstimator(id, &estimator); | 
|  | 253 | ALOGD("  %d: position (%0.3f, %0.3f), " | 
|  | 254 | "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", | 
|  | 255 | id, positions[index].x, positions[index].y, | 
|  | 256 | int(estimator.degree), | 
|  | 257 | vectorToString(estimator.xCoeff, estimator.degree + 1).string(), | 
|  | 258 | vectorToString(estimator.yCoeff, estimator.degree + 1).string(), | 
|  | 259 | estimator.confidence); | 
|  | 260 | } | 
|  | 261 | #endif | 
|  | 262 | } | 
|  | 263 |  | 
|  | 264 | void VelocityTracker::addMovement(const MotionEvent* event) { | 
|  | 265 | int32_t actionMasked = event->getActionMasked(); | 
|  | 266 |  | 
|  | 267 | switch (actionMasked) { | 
|  | 268 | case AMOTION_EVENT_ACTION_DOWN: | 
|  | 269 | case AMOTION_EVENT_ACTION_HOVER_ENTER: | 
|  | 270 | // Clear all pointers on down before adding the new movement. | 
|  | 271 | clear(); | 
|  | 272 | break; | 
|  | 273 | case AMOTION_EVENT_ACTION_POINTER_DOWN: { | 
|  | 274 | // Start a new movement trace for a pointer that just went down. | 
|  | 275 | // We do this on down instead of on up because the client may want to query the | 
|  | 276 | // final velocity for a pointer that just went up. | 
|  | 277 | BitSet32 downIdBits; | 
|  | 278 | downIdBits.markBit(event->getPointerId(event->getActionIndex())); | 
|  | 279 | clearPointers(downIdBits); | 
|  | 280 | break; | 
|  | 281 | } | 
|  | 282 | case AMOTION_EVENT_ACTION_MOVE: | 
|  | 283 | case AMOTION_EVENT_ACTION_HOVER_MOVE: | 
|  | 284 | break; | 
|  | 285 | default: | 
|  | 286 | // Ignore all other actions because they do not convey any new information about | 
|  | 287 | // pointer movement.  We also want to preserve the last known velocity of the pointers. | 
|  | 288 | // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position | 
|  | 289 | // of the pointers that went up.  ACTION_POINTER_UP does include the new position of | 
|  | 290 | // pointers that remained down but we will also receive an ACTION_MOVE with this | 
|  | 291 | // information if any of them actually moved.  Since we don't know how many pointers | 
|  | 292 | // will be going up at once it makes sense to just wait for the following ACTION_MOVE | 
|  | 293 | // before adding the movement. | 
|  | 294 | return; | 
|  | 295 | } | 
|  | 296 |  | 
|  | 297 | size_t pointerCount = event->getPointerCount(); | 
|  | 298 | if (pointerCount > MAX_POINTERS) { | 
|  | 299 | pointerCount = MAX_POINTERS; | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | BitSet32 idBits; | 
|  | 303 | for (size_t i = 0; i < pointerCount; i++) { | 
|  | 304 | idBits.markBit(event->getPointerId(i)); | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | uint32_t pointerIndex[MAX_POINTERS]; | 
|  | 308 | for (size_t i = 0; i < pointerCount; i++) { | 
|  | 309 | pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i)); | 
|  | 310 | } | 
|  | 311 |  | 
|  | 312 | nsecs_t eventTime; | 
|  | 313 | Position positions[pointerCount]; | 
|  | 314 |  | 
|  | 315 | size_t historySize = event->getHistorySize(); | 
|  | 316 | for (size_t h = 0; h < historySize; h++) { | 
|  | 317 | eventTime = event->getHistoricalEventTime(h); | 
|  | 318 | for (size_t i = 0; i < pointerCount; i++) { | 
|  | 319 | uint32_t index = pointerIndex[i]; | 
|  | 320 | positions[index].x = event->getHistoricalX(i, h); | 
|  | 321 | positions[index].y = event->getHistoricalY(i, h); | 
|  | 322 | } | 
|  | 323 | addMovement(eventTime, idBits, positions); | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | eventTime = event->getEventTime(); | 
|  | 327 | for (size_t i = 0; i < pointerCount; i++) { | 
|  | 328 | uint32_t index = pointerIndex[i]; | 
|  | 329 | positions[index].x = event->getX(i); | 
|  | 330 | positions[index].y = event->getY(i); | 
|  | 331 | } | 
|  | 332 | addMovement(eventTime, idBits, positions); | 
|  | 333 | } | 
|  | 334 |  | 
|  | 335 | bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { | 
|  | 336 | Estimator estimator; | 
|  | 337 | if (getEstimator(id, &estimator) && estimator.degree >= 1) { | 
|  | 338 | *outVx = estimator.xCoeff[1]; | 
|  | 339 | *outVy = estimator.yCoeff[1]; | 
|  | 340 | return true; | 
|  | 341 | } | 
|  | 342 | *outVx = 0; | 
|  | 343 | *outVy = 0; | 
|  | 344 | return false; | 
|  | 345 | } | 
|  | 346 |  | 
|  | 347 | bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const { | 
|  | 348 | return mStrategy->getEstimator(id, outEstimator); | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 |  | 
|  | 352 | // --- LeastSquaresVelocityTrackerStrategy --- | 
|  | 353 |  | 
|  | 354 | const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON; | 
|  | 355 | const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE; | 
|  | 356 |  | 
|  | 357 | LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy( | 
|  | 358 | uint32_t degree, Weighting weighting) : | 
|  | 359 | mDegree(degree), mWeighting(weighting) { | 
|  | 360 | clear(); | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() { | 
|  | 364 | } | 
|  | 365 |  | 
|  | 366 | void LeastSquaresVelocityTrackerStrategy::clear() { | 
|  | 367 | mIndex = 0; | 
|  | 368 | mMovements[0].idBits.clear(); | 
|  | 369 | } | 
|  | 370 |  | 
|  | 371 | void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { | 
|  | 372 | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); | 
|  | 373 | mMovements[mIndex].idBits = remainingIdBits; | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, | 
|  | 377 | const VelocityTracker::Position* positions) { | 
|  | 378 | if (++mIndex == HISTORY_SIZE) { | 
|  | 379 | mIndex = 0; | 
|  | 380 | } | 
|  | 381 |  | 
|  | 382 | Movement& movement = mMovements[mIndex]; | 
|  | 383 | movement.eventTime = eventTime; | 
|  | 384 | movement.idBits = idBits; | 
|  | 385 | uint32_t count = idBits.count(); | 
|  | 386 | for (uint32_t i = 0; i < count; i++) { | 
|  | 387 | movement.positions[i] = positions[i]; | 
|  | 388 | } | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | /** | 
|  | 392 | * Solves a linear least squares problem to obtain a N degree polynomial that fits | 
|  | 393 | * the specified input data as nearly as possible. | 
|  | 394 | * | 
|  | 395 | * Returns true if a solution is found, false otherwise. | 
|  | 396 | * | 
|  | 397 | * The input consists of two vectors of data points X and Y with indices 0..m-1 | 
|  | 398 | * along with a weight vector W of the same size. | 
|  | 399 | * | 
|  | 400 | * The output is a vector B with indices 0..n that describes a polynomial | 
|  | 401 | * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i] | 
|  | 402 | * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized. | 
|  | 403 | * | 
|  | 404 | * Accordingly, the weight vector W should be initialized by the caller with the | 
|  | 405 | * reciprocal square root of the variance of the error in each input data point. | 
|  | 406 | * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]). | 
|  | 407 | * The weights express the relative importance of each data point.  If the weights are | 
|  | 408 | * all 1, then the data points are considered to be of equal importance when fitting | 
|  | 409 | * the polynomial.  It is a good idea to choose weights that diminish the importance | 
|  | 410 | * of data points that may have higher than usual error margins. | 
|  | 411 | * | 
|  | 412 | * Errors among data points are assumed to be independent.  W is represented here | 
|  | 413 | * as a vector although in the literature it is typically taken to be a diagonal matrix. | 
|  | 414 | * | 
|  | 415 | * That is to say, the function that generated the input data can be approximated | 
|  | 416 | * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. | 
|  | 417 | * | 
|  | 418 | * The coefficient of determination (R^2) is also returned to describe the goodness | 
|  | 419 | * of fit of the model for the given data.  It is a value between 0 and 1, where 1 | 
|  | 420 | * indicates perfect correspondence. | 
|  | 421 | * | 
|  | 422 | * This function first expands the X vector to a m by n matrix A such that | 
|  | 423 | * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then | 
|  | 424 | * multiplies it by w[i]./ | 
|  | 425 | * | 
|  | 426 | * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q | 
|  | 427 | * and an m by n upper triangular matrix R.  Because R is upper triangular (lower | 
|  | 428 | * part is all zeroes), we can simplify the decomposition into an m by n matrix | 
|  | 429 | * Q1 and a n by n matrix R1 such that A = Q1 R1. | 
|  | 430 | * | 
|  | 431 | * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y) | 
|  | 432 | * to find B. | 
|  | 433 | * | 
|  | 434 | * For efficiency, we lay out A and Q column-wise in memory because we frequently | 
|  | 435 | * operate on the column vectors.  Conversely, we lay out R row-wise. | 
|  | 436 | * | 
|  | 437 | * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares | 
|  | 438 | * http://en.wikipedia.org/wiki/Gram-Schmidt | 
|  | 439 | */ | 
|  | 440 | static bool solveLeastSquares(const float* x, const float* y, | 
|  | 441 | const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) { | 
|  | 442 | #if DEBUG_STRATEGY | 
|  | 443 | ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n), | 
|  | 444 | vectorToString(x, m).string(), vectorToString(y, m).string(), | 
|  | 445 | vectorToString(w, m).string()); | 
|  | 446 | #endif | 
|  | 447 |  | 
|  | 448 | // Expand the X vector to a matrix A, pre-multiplied by the weights. | 
|  | 449 | float a[n][m]; // column-major order | 
|  | 450 | for (uint32_t h = 0; h < m; h++) { | 
|  | 451 | a[0][h] = w[h]; | 
|  | 452 | for (uint32_t i = 1; i < n; i++) { | 
|  | 453 | a[i][h] = a[i - 1][h] * x[h]; | 
|  | 454 | } | 
|  | 455 | } | 
|  | 456 | #if DEBUG_STRATEGY | 
|  | 457 | ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); | 
|  | 458 | #endif | 
|  | 459 |  | 
|  | 460 | // Apply the Gram-Schmidt process to A to obtain its QR decomposition. | 
|  | 461 | float q[n][m]; // orthonormal basis, column-major order | 
|  | 462 | float r[n][n]; // upper triangular matrix, row-major order | 
|  | 463 | for (uint32_t j = 0; j < n; j++) { | 
|  | 464 | for (uint32_t h = 0; h < m; h++) { | 
|  | 465 | q[j][h] = a[j][h]; | 
|  | 466 | } | 
|  | 467 | for (uint32_t i = 0; i < j; i++) { | 
|  | 468 | float dot = vectorDot(&q[j][0], &q[i][0], m); | 
|  | 469 | for (uint32_t h = 0; h < m; h++) { | 
|  | 470 | q[j][h] -= dot * q[i][h]; | 
|  | 471 | } | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | float norm = vectorNorm(&q[j][0], m); | 
|  | 475 | if (norm < 0.000001f) { | 
|  | 476 | // vectors are linearly dependent or zero so no solution | 
|  | 477 | #if DEBUG_STRATEGY | 
|  | 478 | ALOGD("  - no solution, norm=%f", norm); | 
|  | 479 | #endif | 
|  | 480 | return false; | 
|  | 481 | } | 
|  | 482 |  | 
|  | 483 | float invNorm = 1.0f / norm; | 
|  | 484 | for (uint32_t h = 0; h < m; h++) { | 
|  | 485 | q[j][h] *= invNorm; | 
|  | 486 | } | 
|  | 487 | for (uint32_t i = 0; i < n; i++) { | 
|  | 488 | r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); | 
|  | 489 | } | 
|  | 490 | } | 
|  | 491 | #if DEBUG_STRATEGY | 
|  | 492 | ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); | 
|  | 493 | ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); | 
|  | 494 |  | 
|  | 495 | // calculate QR, if we factored A correctly then QR should equal A | 
|  | 496 | float qr[n][m]; | 
|  | 497 | for (uint32_t h = 0; h < m; h++) { | 
|  | 498 | for (uint32_t i = 0; i < n; i++) { | 
|  | 499 | qr[i][h] = 0; | 
|  | 500 | for (uint32_t j = 0; j < n; j++) { | 
|  | 501 | qr[i][h] += q[j][h] * r[j][i]; | 
|  | 502 | } | 
|  | 503 | } | 
|  | 504 | } | 
|  | 505 | ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); | 
|  | 506 | #endif | 
|  | 507 |  | 
|  | 508 | // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular. | 
|  | 509 | // We just work from bottom-right to top-left calculating B's coefficients. | 
|  | 510 | float wy[m]; | 
|  | 511 | for (uint32_t h = 0; h < m; h++) { | 
|  | 512 | wy[h] = y[h] * w[h]; | 
|  | 513 | } | 
|  | 514 | for (uint32_t i = n; i-- != 0; ) { | 
|  | 515 | outB[i] = vectorDot(&q[i][0], wy, m); | 
|  | 516 | for (uint32_t j = n - 1; j > i; j--) { | 
|  | 517 | outB[i] -= r[i][j] * outB[j]; | 
|  | 518 | } | 
|  | 519 | outB[i] /= r[i][i]; | 
|  | 520 | } | 
|  | 521 | #if DEBUG_STRATEGY | 
|  | 522 | ALOGD("  - b=%s", vectorToString(outB, n).string()); | 
|  | 523 | #endif | 
|  | 524 |  | 
|  | 525 | // Calculate the coefficient of determination as 1 - (SSerr / SStot) where | 
|  | 526 | // SSerr is the residual sum of squares (variance of the error), | 
|  | 527 | // and SStot is the total sum of squares (variance of the data) where each | 
|  | 528 | // has been weighted. | 
|  | 529 | float ymean = 0; | 
|  | 530 | for (uint32_t h = 0; h < m; h++) { | 
|  | 531 | ymean += y[h]; | 
|  | 532 | } | 
|  | 533 | ymean /= m; | 
|  | 534 |  | 
|  | 535 | float sserr = 0; | 
|  | 536 | float sstot = 0; | 
|  | 537 | for (uint32_t h = 0; h < m; h++) { | 
|  | 538 | float err = y[h] - outB[0]; | 
|  | 539 | float term = 1; | 
|  | 540 | for (uint32_t i = 1; i < n; i++) { | 
|  | 541 | term *= x[h]; | 
|  | 542 | err -= term * outB[i]; | 
|  | 543 | } | 
|  | 544 | sserr += w[h] * w[h] * err * err; | 
|  | 545 | float var = y[h] - ymean; | 
|  | 546 | sstot += w[h] * w[h] * var * var; | 
|  | 547 | } | 
|  | 548 | *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; | 
|  | 549 | #if DEBUG_STRATEGY | 
|  | 550 | ALOGD("  - sserr=%f", sserr); | 
|  | 551 | ALOGD("  - sstot=%f", sstot); | 
|  | 552 | ALOGD("  - det=%f", *outDet); | 
|  | 553 | #endif | 
|  | 554 | return true; | 
|  | 555 | } | 
|  | 556 |  | 
|  | 557 | bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id, | 
|  | 558 | VelocityTracker::Estimator* outEstimator) const { | 
|  | 559 | outEstimator->clear(); | 
|  | 560 |  | 
|  | 561 | // Iterate over movement samples in reverse time order and collect samples. | 
|  | 562 | float x[HISTORY_SIZE]; | 
|  | 563 | float y[HISTORY_SIZE]; | 
|  | 564 | float w[HISTORY_SIZE]; | 
|  | 565 | float time[HISTORY_SIZE]; | 
|  | 566 | uint32_t m = 0; | 
|  | 567 | uint32_t index = mIndex; | 
|  | 568 | const Movement& newestMovement = mMovements[mIndex]; | 
|  | 569 | do { | 
|  | 570 | const Movement& movement = mMovements[index]; | 
|  | 571 | if (!movement.idBits.hasBit(id)) { | 
|  | 572 | break; | 
|  | 573 | } | 
|  | 574 |  | 
|  | 575 | nsecs_t age = newestMovement.eventTime - movement.eventTime; | 
|  | 576 | if (age > HORIZON) { | 
|  | 577 | break; | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | const VelocityTracker::Position& position = movement.getPosition(id); | 
|  | 581 | x[m] = position.x; | 
|  | 582 | y[m] = position.y; | 
|  | 583 | w[m] = chooseWeight(index); | 
|  | 584 | time[m] = -age * 0.000000001f; | 
|  | 585 | index = (index == 0 ? HISTORY_SIZE : index) - 1; | 
|  | 586 | } while (++m < HISTORY_SIZE); | 
|  | 587 |  | 
|  | 588 | if (m == 0) { | 
|  | 589 | return false; // no data | 
|  | 590 | } | 
|  | 591 |  | 
|  | 592 | // Calculate a least squares polynomial fit. | 
|  | 593 | uint32_t degree = mDegree; | 
|  | 594 | if (degree > m - 1) { | 
|  | 595 | degree = m - 1; | 
|  | 596 | } | 
|  | 597 | if (degree >= 1) { | 
|  | 598 | float xdet, ydet; | 
|  | 599 | uint32_t n = degree + 1; | 
|  | 600 | if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet) | 
|  | 601 | && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) { | 
|  | 602 | outEstimator->time = newestMovement.eventTime; | 
|  | 603 | outEstimator->degree = degree; | 
|  | 604 | outEstimator->confidence = xdet * ydet; | 
|  | 605 | #if DEBUG_STRATEGY | 
|  | 606 | ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", | 
|  | 607 | int(outEstimator->degree), | 
|  | 608 | vectorToString(outEstimator->xCoeff, n).string(), | 
|  | 609 | vectorToString(outEstimator->yCoeff, n).string(), | 
|  | 610 | outEstimator->confidence); | 
|  | 611 | #endif | 
|  | 612 | return true; | 
|  | 613 | } | 
|  | 614 | } | 
|  | 615 |  | 
|  | 616 | // No velocity data available for this pointer, but we do have its current position. | 
|  | 617 | outEstimator->xCoeff[0] = x[0]; | 
|  | 618 | outEstimator->yCoeff[0] = y[0]; | 
|  | 619 | outEstimator->time = newestMovement.eventTime; | 
|  | 620 | outEstimator->degree = 0; | 
|  | 621 | outEstimator->confidence = 1; | 
|  | 622 | return true; | 
|  | 623 | } | 
|  | 624 |  | 
|  | 625 | float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const { | 
|  | 626 | switch (mWeighting) { | 
|  | 627 | case WEIGHTING_DELTA: { | 
|  | 628 | // Weight points based on how much time elapsed between them and the next | 
|  | 629 | // point so that points that "cover" a shorter time span are weighed less. | 
|  | 630 | //   delta  0ms: 0.5 | 
|  | 631 | //   delta 10ms: 1.0 | 
|  | 632 | if (index == mIndex) { | 
|  | 633 | return 1.0f; | 
|  | 634 | } | 
|  | 635 | uint32_t nextIndex = (index + 1) % HISTORY_SIZE; | 
|  | 636 | float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime) | 
|  | 637 | * 0.000001f; | 
|  | 638 | if (deltaMillis < 0) { | 
|  | 639 | return 0.5f; | 
|  | 640 | } | 
|  | 641 | if (deltaMillis < 10) { | 
|  | 642 | return 0.5f + deltaMillis * 0.05; | 
|  | 643 | } | 
|  | 644 | return 1.0f; | 
|  | 645 | } | 
|  | 646 |  | 
|  | 647 | case WEIGHTING_CENTRAL: { | 
|  | 648 | // Weight points based on their age, weighing very recent and very old points less. | 
|  | 649 | //   age  0ms: 0.5 | 
|  | 650 | //   age 10ms: 1.0 | 
|  | 651 | //   age 50ms: 1.0 | 
|  | 652 | //   age 60ms: 0.5 | 
|  | 653 | float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) | 
|  | 654 | * 0.000001f; | 
|  | 655 | if (ageMillis < 0) { | 
|  | 656 | return 0.5f; | 
|  | 657 | } | 
|  | 658 | if (ageMillis < 10) { | 
|  | 659 | return 0.5f + ageMillis * 0.05; | 
|  | 660 | } | 
|  | 661 | if (ageMillis < 50) { | 
|  | 662 | return 1.0f; | 
|  | 663 | } | 
|  | 664 | if (ageMillis < 60) { | 
|  | 665 | return 0.5f + (60 - ageMillis) * 0.05; | 
|  | 666 | } | 
|  | 667 | return 0.5f; | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | case WEIGHTING_RECENT: { | 
|  | 671 | // Weight points based on their age, weighing older points less. | 
|  | 672 | //   age   0ms: 1.0 | 
|  | 673 | //   age  50ms: 1.0 | 
|  | 674 | //   age 100ms: 0.5 | 
|  | 675 | float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) | 
|  | 676 | * 0.000001f; | 
|  | 677 | if (ageMillis < 50) { | 
|  | 678 | return 1.0f; | 
|  | 679 | } | 
|  | 680 | if (ageMillis < 100) { | 
|  | 681 | return 0.5f + (100 - ageMillis) * 0.01f; | 
|  | 682 | } | 
|  | 683 | return 0.5f; | 
|  | 684 | } | 
|  | 685 |  | 
|  | 686 | case WEIGHTING_NONE: | 
|  | 687 | default: | 
|  | 688 | return 1.0f; | 
|  | 689 | } | 
|  | 690 | } | 
|  | 691 |  | 
|  | 692 |  | 
|  | 693 | // --- IntegratingVelocityTrackerStrategy --- | 
|  | 694 |  | 
|  | 695 | IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) : | 
|  | 696 | mDegree(degree) { | 
|  | 697 | } | 
|  | 698 |  | 
|  | 699 | IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() { | 
|  | 700 | } | 
|  | 701 |  | 
|  | 702 | void IntegratingVelocityTrackerStrategy::clear() { | 
|  | 703 | mPointerIdBits.clear(); | 
|  | 704 | } | 
|  | 705 |  | 
|  | 706 | void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { | 
|  | 707 | mPointerIdBits.value &= ~idBits.value; | 
|  | 708 | } | 
|  | 709 |  | 
|  | 710 | void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, | 
|  | 711 | const VelocityTracker::Position* positions) { | 
|  | 712 | uint32_t index = 0; | 
|  | 713 | for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) { | 
|  | 714 | uint32_t id = iterIdBits.clearFirstMarkedBit(); | 
|  | 715 | State& state = mPointerState[id]; | 
|  | 716 | const VelocityTracker::Position& position = positions[index++]; | 
|  | 717 | if (mPointerIdBits.hasBit(id)) { | 
|  | 718 | updateState(state, eventTime, position.x, position.y); | 
|  | 719 | } else { | 
|  | 720 | initState(state, eventTime, position.x, position.y); | 
|  | 721 | } | 
|  | 722 | } | 
|  | 723 |  | 
|  | 724 | mPointerIdBits = idBits; | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id, | 
|  | 728 | VelocityTracker::Estimator* outEstimator) const { | 
|  | 729 | outEstimator->clear(); | 
|  | 730 |  | 
|  | 731 | if (mPointerIdBits.hasBit(id)) { | 
|  | 732 | const State& state = mPointerState[id]; | 
|  | 733 | populateEstimator(state, outEstimator); | 
|  | 734 | return true; | 
|  | 735 | } | 
|  | 736 |  | 
|  | 737 | return false; | 
|  | 738 | } | 
|  | 739 |  | 
|  | 740 | void IntegratingVelocityTrackerStrategy::initState(State& state, | 
|  | 741 | nsecs_t eventTime, float xpos, float ypos) const { | 
|  | 742 | state.updateTime = eventTime; | 
|  | 743 | state.degree = 0; | 
|  | 744 |  | 
|  | 745 | state.xpos = xpos; | 
|  | 746 | state.xvel = 0; | 
|  | 747 | state.xaccel = 0; | 
|  | 748 | state.ypos = ypos; | 
|  | 749 | state.yvel = 0; | 
|  | 750 | state.yaccel = 0; | 
|  | 751 | } | 
|  | 752 |  | 
|  | 753 | void IntegratingVelocityTrackerStrategy::updateState(State& state, | 
|  | 754 | nsecs_t eventTime, float xpos, float ypos) const { | 
|  | 755 | const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS; | 
|  | 756 | const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds | 
|  | 757 |  | 
|  | 758 | if (eventTime <= state.updateTime + MIN_TIME_DELTA) { | 
|  | 759 | return; | 
|  | 760 | } | 
|  | 761 |  | 
|  | 762 | float dt = (eventTime - state.updateTime) * 0.000000001f; | 
|  | 763 | state.updateTime = eventTime; | 
|  | 764 |  | 
|  | 765 | float xvel = (xpos - state.xpos) / dt; | 
|  | 766 | float yvel = (ypos - state.ypos) / dt; | 
|  | 767 | if (state.degree == 0) { | 
|  | 768 | state.xvel = xvel; | 
|  | 769 | state.yvel = yvel; | 
|  | 770 | state.degree = 1; | 
|  | 771 | } else { | 
|  | 772 | float alpha = dt / (FILTER_TIME_CONSTANT + dt); | 
|  | 773 | if (mDegree == 1) { | 
|  | 774 | state.xvel += (xvel - state.xvel) * alpha; | 
|  | 775 | state.yvel += (yvel - state.yvel) * alpha; | 
|  | 776 | } else { | 
|  | 777 | float xaccel = (xvel - state.xvel) / dt; | 
|  | 778 | float yaccel = (yvel - state.yvel) / dt; | 
|  | 779 | if (state.degree == 1) { | 
|  | 780 | state.xaccel = xaccel; | 
|  | 781 | state.yaccel = yaccel; | 
|  | 782 | state.degree = 2; | 
|  | 783 | } else { | 
|  | 784 | state.xaccel += (xaccel - state.xaccel) * alpha; | 
|  | 785 | state.yaccel += (yaccel - state.yaccel) * alpha; | 
|  | 786 | } | 
|  | 787 | state.xvel += (state.xaccel * dt) * alpha; | 
|  | 788 | state.yvel += (state.yaccel * dt) * alpha; | 
|  | 789 | } | 
|  | 790 | } | 
|  | 791 | state.xpos = xpos; | 
|  | 792 | state.ypos = ypos; | 
|  | 793 | } | 
|  | 794 |  | 
|  | 795 | void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state, | 
|  | 796 | VelocityTracker::Estimator* outEstimator) const { | 
|  | 797 | outEstimator->time = state.updateTime; | 
|  | 798 | outEstimator->confidence = 1.0f; | 
|  | 799 | outEstimator->degree = state.degree; | 
|  | 800 | outEstimator->xCoeff[0] = state.xpos; | 
|  | 801 | outEstimator->xCoeff[1] = state.xvel; | 
|  | 802 | outEstimator->xCoeff[2] = state.xaccel / 2; | 
|  | 803 | outEstimator->yCoeff[0] = state.ypos; | 
|  | 804 | outEstimator->yCoeff[1] = state.yvel; | 
|  | 805 | outEstimator->yCoeff[2] = state.yaccel / 2; | 
|  | 806 | } | 
|  | 807 |  | 
|  | 808 |  | 
|  | 809 | // --- LegacyVelocityTrackerStrategy --- | 
|  | 810 |  | 
|  | 811 | const nsecs_t LegacyVelocityTrackerStrategy::HORIZON; | 
|  | 812 | const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE; | 
|  | 813 | const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION; | 
|  | 814 |  | 
|  | 815 | LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() { | 
|  | 816 | clear(); | 
|  | 817 | } | 
|  | 818 |  | 
|  | 819 | LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() { | 
|  | 820 | } | 
|  | 821 |  | 
|  | 822 | void LegacyVelocityTrackerStrategy::clear() { | 
|  | 823 | mIndex = 0; | 
|  | 824 | mMovements[0].idBits.clear(); | 
|  | 825 | } | 
|  | 826 |  | 
|  | 827 | void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { | 
|  | 828 | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); | 
|  | 829 | mMovements[mIndex].idBits = remainingIdBits; | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, | 
|  | 833 | const VelocityTracker::Position* positions) { | 
|  | 834 | if (++mIndex == HISTORY_SIZE) { | 
|  | 835 | mIndex = 0; | 
|  | 836 | } | 
|  | 837 |  | 
|  | 838 | Movement& movement = mMovements[mIndex]; | 
|  | 839 | movement.eventTime = eventTime; | 
|  | 840 | movement.idBits = idBits; | 
|  | 841 | uint32_t count = idBits.count(); | 
|  | 842 | for (uint32_t i = 0; i < count; i++) { | 
|  | 843 | movement.positions[i] = positions[i]; | 
|  | 844 | } | 
|  | 845 | } | 
|  | 846 |  | 
|  | 847 | bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id, | 
|  | 848 | VelocityTracker::Estimator* outEstimator) const { | 
|  | 849 | outEstimator->clear(); | 
|  | 850 |  | 
|  | 851 | const Movement& newestMovement = mMovements[mIndex]; | 
|  | 852 | if (!newestMovement.idBits.hasBit(id)) { | 
|  | 853 | return false; // no data | 
|  | 854 | } | 
|  | 855 |  | 
|  | 856 | // Find the oldest sample that contains the pointer and that is not older than HORIZON. | 
|  | 857 | nsecs_t minTime = newestMovement.eventTime - HORIZON; | 
|  | 858 | uint32_t oldestIndex = mIndex; | 
|  | 859 | uint32_t numTouches = 1; | 
|  | 860 | do { | 
|  | 861 | uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1; | 
|  | 862 | const Movement& nextOldestMovement = mMovements[nextOldestIndex]; | 
|  | 863 | if (!nextOldestMovement.idBits.hasBit(id) | 
|  | 864 | || nextOldestMovement.eventTime < minTime) { | 
|  | 865 | break; | 
|  | 866 | } | 
|  | 867 | oldestIndex = nextOldestIndex; | 
|  | 868 | } while (++numTouches < HISTORY_SIZE); | 
|  | 869 |  | 
|  | 870 | // Calculate an exponentially weighted moving average of the velocity estimate | 
|  | 871 | // at different points in time measured relative to the oldest sample. | 
|  | 872 | // This is essentially an IIR filter.  Newer samples are weighted more heavily | 
|  | 873 | // than older samples.  Samples at equal time points are weighted more or less | 
|  | 874 | // equally. | 
|  | 875 | // | 
|  | 876 | // One tricky problem is that the sample data may be poorly conditioned. | 
|  | 877 | // Sometimes samples arrive very close together in time which can cause us to | 
|  | 878 | // overestimate the velocity at that time point.  Most samples might be measured | 
|  | 879 | // 16ms apart but some consecutive samples could be only 0.5sm apart because | 
|  | 880 | // the hardware or driver reports them irregularly or in bursts. | 
|  | 881 | float accumVx = 0; | 
|  | 882 | float accumVy = 0; | 
|  | 883 | uint32_t index = oldestIndex; | 
|  | 884 | uint32_t samplesUsed = 0; | 
|  | 885 | const Movement& oldestMovement = mMovements[oldestIndex]; | 
|  | 886 | const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id); | 
|  | 887 | nsecs_t lastDuration = 0; | 
|  | 888 |  | 
|  | 889 | while (numTouches-- > 1) { | 
|  | 890 | if (++index == HISTORY_SIZE) { | 
|  | 891 | index = 0; | 
|  | 892 | } | 
|  | 893 | const Movement& movement = mMovements[index]; | 
|  | 894 | nsecs_t duration = movement.eventTime - oldestMovement.eventTime; | 
|  | 895 |  | 
|  | 896 | // If the duration between samples is small, we may significantly overestimate | 
|  | 897 | // the velocity.  Consequently, we impose a minimum duration constraint on the | 
|  | 898 | // samples that we include in the calculation. | 
|  | 899 | if (duration >= MIN_DURATION) { | 
|  | 900 | const VelocityTracker::Position& position = movement.getPosition(id); | 
|  | 901 | float scale = 1000000000.0f / duration; // one over time delta in seconds | 
|  | 902 | float vx = (position.x - oldestPosition.x) * scale; | 
|  | 903 | float vy = (position.y - oldestPosition.y) * scale; | 
|  | 904 | accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration); | 
|  | 905 | accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration); | 
|  | 906 | lastDuration = duration; | 
|  | 907 | samplesUsed += 1; | 
|  | 908 | } | 
|  | 909 | } | 
|  | 910 |  | 
|  | 911 | // Report velocity. | 
|  | 912 | const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id); | 
|  | 913 | outEstimator->time = newestMovement.eventTime; | 
|  | 914 | outEstimator->confidence = 1; | 
|  | 915 | outEstimator->xCoeff[0] = newestPosition.x; | 
|  | 916 | outEstimator->yCoeff[0] = newestPosition.y; | 
|  | 917 | if (samplesUsed) { | 
|  | 918 | outEstimator->xCoeff[1] = accumVx; | 
|  | 919 | outEstimator->yCoeff[1] = accumVy; | 
|  | 920 | outEstimator->degree = 1; | 
|  | 921 | } else { | 
|  | 922 | outEstimator->degree = 0; | 
|  | 923 | } | 
|  | 924 | return true; | 
|  | 925 | } | 
|  | 926 |  | 
|  | 927 | } // namespace android |