blob: 64fa44b152c1be63f4e6ccbbb74564cca2c1bcd2 [file] [log] [blame]
Nick Deakinf6bca5a2022-11-04 10:43:43 -04001/*
2 * Copyright 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <cmath>
Harish Mahendrakar555a06b2022-12-14 09:37:27 -080018#include <vector>
Nick Deakinf6bca5a2022-11-04 10:43:43 -040019#include <jpegrecoverymap/recoverymapmath.h>
20
21namespace android::recoverymap {
22
Harish Mahendrakar555a06b2022-12-14 09:37:27 -080023#define CLIP3(x, min, max) ((x) < (min)) ? (min) : ((x) > (max)) ? (max) : (x)
24
25constexpr size_t kPqOETFPrecision = 10;
26constexpr size_t kPqOETFNumEntries = 1 << kPqOETFPrecision;
27
28static const std::vector<float> kPqOETF = [] {
29 std::vector<float> result;
30 float increment = 1.0 / kPqOETFNumEntries;
31 float value = 0.0f;
32 for (int idx = 0; idx < kPqOETFNumEntries; idx++, value += increment) {
33 result.push_back(pqOetf(value));
34 }
35 return result;
36}();
37
38constexpr size_t kPqInvOETFPrecision = 10;
39constexpr size_t kPqInvOETFNumEntries = 1 << kPqInvOETFPrecision;
40
41static const std::vector<float> kPqInvOETF = [] {
42 std::vector<float> result;
43 float increment = 1.0 / kPqInvOETFNumEntries;
44 float value = 0.0f;
45 for (int idx = 0; idx < kPqInvOETFNumEntries; idx++, value += increment) {
46 result.push_back(pqInvOetf(value));
47 }
48 return result;
49}();
50
51constexpr size_t kHlgOETFPrecision = 10;
52constexpr size_t kHlgOETFNumEntries = 1 << kHlgOETFPrecision;
53
54static const std::vector<float> kHlgOETF = [] {
55 std::vector<float> result;
56 float increment = 1.0 / kHlgOETFNumEntries;
57 float value = 0.0f;
58 for (int idx = 0; idx < kHlgOETFNumEntries; idx++, value += increment) {
59 result.push_back(hlgOetf(value));
60 }
61 return result;
62}();
63
64constexpr size_t kHlgInvOETFPrecision = 10;
65constexpr size_t kHlgInvOETFNumEntries = 1 << kHlgInvOETFPrecision;
66
67static const std::vector<float> kHlgInvOETF = [] {
68 std::vector<float> result;
69 float increment = 1.0 / kHlgInvOETFNumEntries;
70 float value = 0.0f;
71 for (int idx = 0; idx < kHlgInvOETFNumEntries; idx++, value += increment) {
72 result.push_back(hlgInvOetf(value));
73 }
74 return result;
75}();
76
77constexpr size_t kSRGBInvOETFPrecision = 10;
78constexpr size_t kSRGBInvOETFNumEntries = 1 << kSRGBInvOETFPrecision;
79static const std::vector<float> kSRGBInvOETF = [] {
80 std::vector<float> result;
81 float increment = 1.0 / kSRGBInvOETFNumEntries;
82 float value = 0.0f;
83 for (int idx = 0; idx < kSRGBInvOETFNumEntries; idx++, value += increment) {
84 result.push_back(srgbInvOetf(value));
85 }
86 return result;
87}();
Ram Mohanfe723d62022-12-15 00:59:11 +053088
89// Use Shepard's method for inverse distance weighting. For more information:
90// en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
91
92float ShepardsIDW::euclideanDistance(float x1, float x2, float y1, float y2) {
93 return sqrt(((y2 - y1) * (y2 - y1)) + (x2 - x1) * (x2 - x1));
94}
95
96void ShepardsIDW::fillShepardsIDW(float *weights, int incR, int incB) {
97 for (int y = 0; y < mMapScaleFactor; y++) {
98 for (int x = 0; x < mMapScaleFactor; x++) {
99 float pos_x = ((float)x) / mMapScaleFactor;
100 float pos_y = ((float)y) / mMapScaleFactor;
101 int curr_x = floor(pos_x);
102 int curr_y = floor(pos_y);
103 int next_x = curr_x + incR;
104 int next_y = curr_y + incB;
105 float e1_distance = euclideanDistance(pos_x, curr_x, pos_y, curr_y);
106 int index = y * mMapScaleFactor * 4 + x * 4;
107 if (e1_distance == 0) {
108 weights[index++] = 1.f;
109 weights[index++] = 0.f;
110 weights[index++] = 0.f;
111 weights[index++] = 0.f;
112 } else {
113 float e1_weight = 1.f / e1_distance;
114
115 float e2_distance = euclideanDistance(pos_x, curr_x, pos_y, next_y);
116 float e2_weight = 1.f / e2_distance;
117
118 float e3_distance = euclideanDistance(pos_x, next_x, pos_y, curr_y);
119 float e3_weight = 1.f / e3_distance;
120
121 float e4_distance = euclideanDistance(pos_x, next_x, pos_y, next_y);
122 float e4_weight = 1.f / e4_distance;
123
124 float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
125
126 weights[index++] = e1_weight / total_weight;
127 weights[index++] = e2_weight / total_weight;
128 weights[index++] = e3_weight / total_weight;
129 weights[index++] = e4_weight / total_weight;
130 }
131 }
132 }
133}
134
Nick Deakin594a4ca2022-11-16 20:57:42 -0500135////////////////////////////////////////////////////////////////////////////////
136// sRGB transformations
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400137
Harish Mahendrakar1107ff32022-12-07 17:24:35 -0800138static const float kMaxPixelFloat = 1.0f;
139static float clampPixelFloat(float value) {
140 return (value < 0.0f) ? 0.0f : (value > kMaxPixelFloat) ? kMaxPixelFloat : value;
141}
142
Nick Deakin65f492a2022-11-29 22:47:40 -0500143// See IEC 61966-2-1, Equation F.7.
144static const float kSrgbR = 0.2126f, kSrgbG = 0.7152f, kSrgbB = 0.0722f;
Nick Deakin594a4ca2022-11-16 20:57:42 -0500145
146float srgbLuminance(Color e) {
147 return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b;
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400148}
149
Nick Deakin65f492a2022-11-29 22:47:40 -0500150// See ECMA TR/98, Section 7.
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400151static const float kSrgbRCr = 1.402f, kSrgbGCb = 0.34414f, kSrgbGCr = 0.71414f, kSrgbBCb = 1.772f;
152
Nick Deakin594a4ca2022-11-16 20:57:42 -0500153Color srgbYuvToRgb(Color e_gamma) {
Harish Mahendrakar1107ff32022-12-07 17:24:35 -0800154 return {{{ clampPixelFloat(e_gamma.y + kSrgbRCr * e_gamma.v),
155 clampPixelFloat(e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v),
156 clampPixelFloat(e_gamma.y + kSrgbBCb * e_gamma.u) }}};
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400157}
158
Nick Deakin65f492a2022-11-29 22:47:40 -0500159// See ECMA TR/98, Section 7.
160static const float kSrgbYR = 0.299f, kSrgbYG = 0.587f, kSrgbYB = 0.114f;
Nick Deakin594a4ca2022-11-16 20:57:42 -0500161static const float kSrgbUR = -0.1687f, kSrgbUG = -0.3313f, kSrgbUB = 0.5f;
162static const float kSrgbVR = 0.5f, kSrgbVG = -0.4187f, kSrgbVB = -0.0813f;
163
164Color srgbRgbToYuv(Color e_gamma) {
Nick Deakin65f492a2022-11-29 22:47:40 -0500165 return {{{ kSrgbYR * e_gamma.r + kSrgbYG * e_gamma.g + kSrgbYB * e_gamma.b,
Nick Deakin594a4ca2022-11-16 20:57:42 -0500166 kSrgbUR * e_gamma.r + kSrgbUG * e_gamma.g + kSrgbUB * e_gamma.b,
167 kSrgbVR * e_gamma.r + kSrgbVG * e_gamma.g + kSrgbVB * e_gamma.b }}};
168}
169
Nick Deakin65f492a2022-11-29 22:47:40 -0500170// See IEC 61966-2-1, Equations F.5 and F.6.
Nick Deakin594a4ca2022-11-16 20:57:42 -0500171float srgbInvOetf(float e_gamma) {
172 if (e_gamma <= 0.04045f) {
173 return e_gamma / 12.92f;
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400174 } else {
Nick Deakin594a4ca2022-11-16 20:57:42 -0500175 return pow((e_gamma + 0.055f) / 1.055f, 2.4);
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400176 }
177}
178
Nick Deakin594a4ca2022-11-16 20:57:42 -0500179Color srgbInvOetf(Color e_gamma) {
180 return {{{ srgbInvOetf(e_gamma.r),
181 srgbInvOetf(e_gamma.g),
182 srgbInvOetf(e_gamma.b) }}};
183}
184
Harish Mahendrakar555a06b2022-12-14 09:37:27 -0800185// See IEC 61966-2-1, Equations F.5 and F.6.
186float srgbInvOetfLUT(float e_gamma) {
187 uint32_t value = static_cast<uint32_t>(e_gamma * kSRGBInvOETFNumEntries);
188 //TODO() : Remove once conversion modules have appropriate clamping in place
189 value = CLIP3(value, 0, kSRGBInvOETFNumEntries - 1);
190 return kSRGBInvOETF[value];
191}
192
193Color srgbInvOetfLUT(Color e_gamma) {
194 return {{{ srgbInvOetfLUT(e_gamma.r),
195 srgbInvOetfLUT(e_gamma.g),
196 srgbInvOetfLUT(e_gamma.b) }}};
197}
Nick Deakin594a4ca2022-11-16 20:57:42 -0500198
199////////////////////////////////////////////////////////////////////////////////
200// Display-P3 transformations
201
Nick Deakin65f492a2022-11-29 22:47:40 -0500202// See SMPTE EG 432-1, Table 7-2.
203static const float kP3R = 0.20949f, kP3G = 0.72160f, kP3B = 0.06891f;
Nick Deakin6bd90432022-11-20 16:26:37 -0500204
205float p3Luminance(Color e) {
206 return kP3R * e.r + kP3G * e.g + kP3B * e.b;
207}
Nick Deakin594a4ca2022-11-16 20:57:42 -0500208
209
210////////////////////////////////////////////////////////////////////////////////
211// BT.2100 transformations - according to ITU-R BT.2100-2
212
Nick Deakin65f492a2022-11-29 22:47:40 -0500213// See ITU-R BT.2100-2, Table 5, HLG Reference OOTF
Nick Deakin594a4ca2022-11-16 20:57:42 -0500214static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f;
215
216float bt2100Luminance(Color e) {
217 return kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b;
218}
219
Nick Deakin65f492a2022-11-29 22:47:40 -0500220// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
Nick Deakin594a4ca2022-11-16 20:57:42 -0500221static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f;
222
223Color bt2100RgbToYuv(Color e_gamma) {
224 float y_gamma = bt2100Luminance(e_gamma);
225 return {{{ y_gamma,
226 (e_gamma.b - y_gamma) / kBt2100Cb,
227 (e_gamma.r - y_gamma) / kBt2100Cr }}};
228}
229
Nick Deakin65f492a2022-11-29 22:47:40 -0500230// Derived by inversing bt2100RgbToYuv. The derivation for R and B are pretty
231// straight forward; we just invert the formulas for U and V above. But deriving
232// the formula for G is a bit more complicated:
Nick Deakin594a4ca2022-11-16 20:57:42 -0500233//
234// Start with equation for luminance:
235// Y = kBt2100R * R + kBt2100G * G + kBt2100B * B
236// Solve for G:
237// G = (Y - kBt2100R * R - kBt2100B * B) / kBt2100B
238// Substitute equations for R and B in terms YUV:
239// G = (Y - kBt2100R * (Y + kBt2100Cr * V) - kBt2100B * (Y + kBt2100Cb * U)) / kBt2100B
240// Simplify:
241// G = Y * ((1 - kBt2100R - kBt2100B) / kBt2100G)
242// + U * (kBt2100B * kBt2100Cb / kBt2100G)
243// + V * (kBt2100R * kBt2100Cr / kBt2100G)
244//
245// We then get the following coeficients for calculating G from YUV:
246//
247// Coef for Y = (1 - kBt2100R - kBt2100B) / kBt2100G = 1
248// Coef for U = kBt2100B * kBt2100Cb / kBt2100G = kBt2100GCb = ~0.1645
249// Coef for V = kBt2100R * kBt2100Cr / kBt2100G = kBt2100GCr = ~0.5713
250
251static const float kBt2100GCb = kBt2100B * kBt2100Cb / kBt2100G;
252static const float kBt2100GCr = kBt2100R * kBt2100Cr / kBt2100G;
253
254Color bt2100YuvToRgb(Color e_gamma) {
Harish Mahendrakar1107ff32022-12-07 17:24:35 -0800255 return {{{ clampPixelFloat(e_gamma.y + kBt2100Cr * e_gamma.v),
256 clampPixelFloat(e_gamma.y - kBt2100GCb * e_gamma.u - kBt2100GCr * e_gamma.v),
257 clampPixelFloat(e_gamma.y + kBt2100Cb * e_gamma.u) }}};
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400258}
259
Nick Deakin65f492a2022-11-29 22:47:40 -0500260// See ITU-R BT.2100-2, Table 5, HLG Reference OETF.
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400261static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073;
262
Nick Deakin65f492a2022-11-29 22:47:40 -0500263float hlgOetf(float e) {
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400264 if (e <= 1.0f/12.0f) {
265 return sqrt(3.0f * e);
266 } else {
267 return kHlgA * log(12.0f * e - kHlgB) + kHlgC;
268 }
269}
270
271Color hlgOetf(Color e) {
272 return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}};
273}
274
Harish Mahendrakar555a06b2022-12-14 09:37:27 -0800275float hlgOetfLUT(float e) {
276 uint32_t value = static_cast<uint32_t>(e * kHlgOETFNumEntries);
277 //TODO() : Remove once conversion modules have appropriate clamping in place
278 value = CLIP3(value, 0, kHlgOETFNumEntries - 1);
279
280 return kHlgOETF[value];
281}
282
283Color hlgOetfLUT(Color e) {
284 return {{{ hlgOetfLUT(e.r), hlgOetfLUT(e.g), hlgOetfLUT(e.b) }}};
285}
286
Nick Deakin65f492a2022-11-29 22:47:40 -0500287// See ITU-R BT.2100-2, Table 5, HLG Reference EOTF.
288float hlgInvOetf(float e_gamma) {
Nick Deakin594a4ca2022-11-16 20:57:42 -0500289 if (e_gamma <= 0.5f) {
290 return pow(e_gamma, 2.0f) / 3.0f;
291 } else {
292 return (exp((e_gamma - kHlgC) / kHlgA) + kHlgB) / 12.0f;
293 }
294}
295
296Color hlgInvOetf(Color e_gamma) {
297 return {{{ hlgInvOetf(e_gamma.r),
298 hlgInvOetf(e_gamma.g),
299 hlgInvOetf(e_gamma.b) }}};
300}
301
Harish Mahendrakar555a06b2022-12-14 09:37:27 -0800302float hlgInvOetfLUT(float e_gamma) {
303 uint32_t value = static_cast<uint32_t>(e_gamma * kHlgInvOETFNumEntries);
304 //TODO() : Remove once conversion modules have appropriate clamping in place
305 value = CLIP3(value, 0, kHlgInvOETFNumEntries - 1);
306
307 return kHlgInvOETF[value];
308}
309
310Color hlgInvOetfLUT(Color e_gamma) {
311 return {{{ hlgInvOetfLUT(e_gamma.r),
312 hlgInvOetfLUT(e_gamma.g),
313 hlgInvOetfLUT(e_gamma.b) }}};
314}
315
Nick Deakin65f492a2022-11-29 22:47:40 -0500316// See ITU-R BT.2100-2, Table 4, Reference PQ OETF.
Nick Deakin6bd90432022-11-20 16:26:37 -0500317static const float kPqM1 = 2610.0f / 16384.0f, kPqM2 = 2523.0f / 4096.0f * 128.0f;
318static const float kPqC1 = 3424.0f / 4096.0f, kPqC2 = 2413.0f / 4096.0f * 32.0f,
319 kPqC3 = 2392.0f / 4096.0f * 32.0f;
320
Nick Deakin65f492a2022-11-29 22:47:40 -0500321float pqOetf(float e) {
322 if (e <= 0.0f) return 0.0f;
323 return pow((kPqC1 + kPqC2 * pow(e, kPqM1)) / (1 + kPqC3 * pow(e, kPqM1)),
Nick Deakin6bd90432022-11-20 16:26:37 -0500324 kPqM2);
325}
326
327Color pqOetf(Color e) {
328 return {{{ pqOetf(e.r), pqOetf(e.g), pqOetf(e.b) }}};
329}
330
Harish Mahendrakar555a06b2022-12-14 09:37:27 -0800331float pqOetfLUT(float e) {
332 uint32_t value = static_cast<uint32_t>(e * kPqOETFNumEntries);
333 //TODO() : Remove once conversion modules have appropriate clamping in place
334 value = CLIP3(value, 0, kPqOETFNumEntries - 1);
335
336 return kPqOETF[value];
337}
338
339Color pqOetfLUT(Color e) {
340 return {{{ pqOetfLUT(e.r), pqOetfLUT(e.g), pqOetfLUT(e.b) }}};
341}
342
Nick Deakin65f492a2022-11-29 22:47:40 -0500343// Derived from the inverse of the Reference PQ OETF.
344static const float kPqInvA = 128.0f, kPqInvB = 107.0f, kPqInvC = 2413.0f, kPqInvD = 2392.0f,
345 kPqInvE = 6.2773946361f, kPqInvF = 0.0126833f;
346
347float pqInvOetf(float e_gamma) {
348 // This equation blows up if e_gamma is 0.0, and checking on <= 0.0 doesn't
349 // always catch 0.0. So, check on 0.0001, since anything this small will
350 // effectively be crushed to zero anyways.
351 if (e_gamma <= 0.0001f) return 0.0f;
352 return pow((kPqInvA * pow(e_gamma, kPqInvF) - kPqInvB)
353 / (kPqInvC - kPqInvD * pow(e_gamma, kPqInvF)),
354 kPqInvE);
Nick Deakin6bd90432022-11-20 16:26:37 -0500355}
356
357Color pqInvOetf(Color e_gamma) {
358 return {{{ pqInvOetf(e_gamma.r),
359 pqInvOetf(e_gamma.g),
360 pqInvOetf(e_gamma.b) }}};
361}
362
Harish Mahendrakar555a06b2022-12-14 09:37:27 -0800363float pqInvOetfLUT(float e_gamma) {
364 uint32_t value = static_cast<uint32_t>(e_gamma * kPqInvOETFNumEntries);
365 //TODO() : Remove once conversion modules have appropriate clamping in place
366 value = CLIP3(value, 0, kPqInvOETFNumEntries - 1);
367
368 return kPqInvOETF[value];
369}
370
371Color pqInvOetfLUT(Color e_gamma) {
372 return {{{ pqInvOetfLUT(e_gamma.r),
373 pqInvOetfLUT(e_gamma.g),
374 pqInvOetfLUT(e_gamma.b) }}};
375}
376
Nick Deakin594a4ca2022-11-16 20:57:42 -0500377
378////////////////////////////////////////////////////////////////////////////////
379// Color conversions
380
Nick Deakin6bd90432022-11-20 16:26:37 -0500381Color bt709ToP3(Color e) {
382 return {{{ 0.82254f * e.r + 0.17755f * e.g + 0.00006f * e.b,
383 0.03312f * e.r + 0.96684f * e.g + -0.00001f * e.b,
384 0.01706f * e.r + 0.07240f * e.g + 0.91049f * e.b }}};
385}
386
387Color bt709ToBt2100(Color e) {
388 return {{{ 0.62740f * e.r + 0.32930f * e.g + 0.04332f * e.b,
389 0.06904f * e.r + 0.91958f * e.g + 0.01138f * e.b,
390 0.01636f * e.r + 0.08799f * e.g + 0.89555f * e.b }}};
391}
392
393Color p3ToBt709(Color e) {
394 return {{{ 1.22482f * e.r + -0.22490f * e.g + -0.00007f * e.b,
395 -0.04196f * e.r + 1.04199f * e.g + 0.00001f * e.b,
396 -0.01961f * e.r + -0.07865f * e.g + 1.09831f * e.b }}};
397}
398
399Color p3ToBt2100(Color e) {
400 return {{{ 0.75378f * e.r + 0.19862f * e.g + 0.04754f * e.b,
401 0.04576f * e.r + 0.94177f * e.g + 0.01250f * e.b,
402 -0.00121f * e.r + 0.01757f * e.g + 0.98359f * e.b }}};
403}
404
405Color bt2100ToBt709(Color e) {
406 return {{{ 1.66045f * e.r + -0.58764f * e.g + -0.07286f * e.b,
407 -0.12445f * e.r + 1.13282f * e.g + -0.00837f * e.b,
408 -0.01811f * e.r + -0.10057f * e.g + 1.11878f * e.b }}};
409}
410
411Color bt2100ToP3(Color e) {
412 return {{{ 1.34369f * e.r + -0.28223f * e.g + -0.06135f * e.b,
413 -0.06533f * e.r + 1.07580f * e.g + -0.01051f * e.b,
414 0.00283f * e.r + -0.01957f * e.g + 1.01679f * e.b
415 }}};
416}
417
418// TODO: confirm we always want to convert like this before calculating
419// luminance.
420ColorTransformFn getHdrConversionFn(jpegr_color_gamut sdr_gamut, jpegr_color_gamut hdr_gamut) {
Nick Deakin65f492a2022-11-29 22:47:40 -0500421 switch (sdr_gamut) {
Nick Deakin6bd90432022-11-20 16:26:37 -0500422 case JPEGR_COLORGAMUT_BT709:
423 switch (hdr_gamut) {
424 case JPEGR_COLORGAMUT_BT709:
425 return identityConversion;
426 case JPEGR_COLORGAMUT_P3:
427 return p3ToBt709;
428 case JPEGR_COLORGAMUT_BT2100:
429 return bt2100ToBt709;
430 case JPEGR_COLORGAMUT_UNSPECIFIED:
431 return nullptr;
432 }
433 break;
434 case JPEGR_COLORGAMUT_P3:
435 switch (hdr_gamut) {
436 case JPEGR_COLORGAMUT_BT709:
437 return bt709ToP3;
438 case JPEGR_COLORGAMUT_P3:
439 return identityConversion;
440 case JPEGR_COLORGAMUT_BT2100:
441 return bt2100ToP3;
442 case JPEGR_COLORGAMUT_UNSPECIFIED:
443 return nullptr;
444 }
445 break;
446 case JPEGR_COLORGAMUT_BT2100:
447 switch (hdr_gamut) {
448 case JPEGR_COLORGAMUT_BT709:
449 return bt709ToBt2100;
450 case JPEGR_COLORGAMUT_P3:
451 return p3ToBt2100;
452 case JPEGR_COLORGAMUT_BT2100:
453 return identityConversion;
454 case JPEGR_COLORGAMUT_UNSPECIFIED:
455 return nullptr;
456 }
457 break;
458 case JPEGR_COLORGAMUT_UNSPECIFIED:
459 return nullptr;
460 }
461}
462
Nick Deakin594a4ca2022-11-16 20:57:42 -0500463
464////////////////////////////////////////////////////////////////////////////////
465// Recovery map calculations
466
Nick Deakin5c20b9e2022-11-15 17:39:24 -0500467uint8_t encodeRecovery(float y_sdr, float y_hdr, float hdr_ratio) {
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400468 float gain = 1.0f;
469 if (y_sdr > 0.0f) {
470 gain = y_hdr / y_sdr;
471 }
472
Nick Deakin65f492a2022-11-29 22:47:40 -0500473 if (gain < (1.0f / hdr_ratio)) gain = 1.0f / hdr_ratio;
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400474 if (gain > hdr_ratio) gain = hdr_ratio;
475
476 return static_cast<uint8_t>(log2(gain) / log2(hdr_ratio) * 127.5f + 127.5f);
477}
478
Nick Deakin5c20b9e2022-11-15 17:39:24 -0500479Color applyRecovery(Color e, float recovery, float hdr_ratio) {
Harish Mahendrakara5ddcc22022-12-13 12:45:23 -0800480 float recoveryFactor = pow(hdr_ratio, recovery);
481 return e * recoveryFactor;
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400482}
483
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400484Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) {
485 size_t pixel_count = image->width * image->height;
486
487 size_t pixel_y_idx = x + y * image->width;
488 size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2);
489
490 uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y_idx];
491 uint8_t u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx];
492 uint8_t v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx];
493
494 // 128 bias for UV given we are using jpeglib; see:
495 // https://github.com/kornelski/libjpeg/blob/master/structure.doc
496 return {{{ static_cast<float>(y_uint) / 255.0f,
497 (static_cast<float>(u_uint) - 128.0f) / 255.0f,
498 (static_cast<float>(v_uint) - 128.0f) / 255.0f }}};
499}
500
Nick Deakin594a4ca2022-11-16 20:57:42 -0500501Color getP010Pixel(jr_uncompressed_ptr image, size_t x, size_t y) {
502 size_t pixel_count = image->width * image->height;
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400503
Nick Deakin594a4ca2022-11-16 20:57:42 -0500504 size_t pixel_y_idx = x + y * image->width;
505 size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2);
506
Nick Deakin86207ba2022-11-21 16:07:36 -0500507 uint16_t y_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_y_idx]
508 >> 6;
509 uint16_t u_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_count + pixel_uv_idx * 2]
510 >> 6;
511 uint16_t v_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_count + pixel_uv_idx * 2 + 1]
512 >> 6;
Nick Deakin594a4ca2022-11-16 20:57:42 -0500513
514 // Conversions include taking narrow-range into account.
Nick Deakin38125332022-12-12 15:48:24 -0500515 return {{{ (static_cast<float>(y_uint) - 64.0f) / 876.0f,
516 (static_cast<float>(u_uint) - 64.0f) / 896.0f - 0.5f,
517 (static_cast<float>(v_uint) - 64.0f) / 896.0f - 0.5f }}};
Nick Deakin594a4ca2022-11-16 20:57:42 -0500518}
519
520typedef Color (*getPixelFn)(jr_uncompressed_ptr, size_t, size_t);
521
522static Color samplePixels(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y,
523 getPixelFn get_pixel_fn) {
524 Color e = {{{ 0.0f, 0.0f, 0.0f }}};
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400525 for (size_t dy = 0; dy < map_scale_factor; ++dy) {
526 for (size_t dx = 0; dx < map_scale_factor; ++dx) {
Nick Deakin594a4ca2022-11-16 20:57:42 -0500527 e += get_pixel_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy);
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400528 }
529 }
530
531 return e / static_cast<float>(map_scale_factor * map_scale_factor);
532}
533
Nick Deakin594a4ca2022-11-16 20:57:42 -0500534Color sampleYuv420(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
535 return samplePixels(image, map_scale_factor, x, y, getYuv420Pixel);
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400536}
537
Nick Deakin594a4ca2022-11-16 20:57:42 -0500538Color sampleP010(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
539 return samplePixels(image, map_scale_factor, x, y, getP010Pixel);
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400540}
Nick Deakin5c20b9e2022-11-15 17:39:24 -0500541
Nick Deakin65f492a2022-11-29 22:47:40 -0500542// TODO: do we need something more clever for filtering either the map or images
543// to generate the map?
544
545static size_t clamp(const size_t& val, const size_t& low, const size_t& high) {
546 return val < low ? low : (high < val ? high : val);
547}
548
549static float mapUintToFloat(uint8_t map_uint) {
550 return (static_cast<float>(map_uint) - 127.5f) / 127.5f;
551}
552
553static float pythDistance(float x_diff, float y_diff) {
554 return sqrt(pow(x_diff, 2.0f) + pow(y_diff, 2.0f));
555}
556
Ram Mohanfe723d62022-12-15 00:59:11 +0530557// TODO: If map_scale_factor is guaranteed to be an integer, then remove the following.
Nick Deakin65f492a2022-11-29 22:47:40 -0500558float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y) {
559 float x_map = static_cast<float>(x) / static_cast<float>(map_scale_factor);
560 float y_map = static_cast<float>(y) / static_cast<float>(map_scale_factor);
561
562 size_t x_lower = static_cast<size_t>(floor(x_map));
563 size_t x_upper = x_lower + 1;
564 size_t y_lower = static_cast<size_t>(floor(y_map));
565 size_t y_upper = y_lower + 1;
566
567 x_lower = clamp(x_lower, 0, map->width - 1);
568 x_upper = clamp(x_upper, 0, map->width - 1);
569 y_lower = clamp(y_lower, 0, map->height - 1);
570 y_upper = clamp(y_upper, 0, map->height - 1);
571
572 // Use Shepard's method for inverse distance weighting. For more information:
573 // en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
574
575 float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]);
576 float e1_dist = pythDistance(x_map - static_cast<float>(x_lower),
577 y_map - static_cast<float>(y_lower));
578 if (e1_dist == 0.0f) return e1;
579
580 float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]);
581 float e2_dist = pythDistance(x_map - static_cast<float>(x_lower),
582 y_map - static_cast<float>(y_upper));
583 if (e2_dist == 0.0f) return e2;
584
585 float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]);
586 float e3_dist = pythDistance(x_map - static_cast<float>(x_upper),
587 y_map - static_cast<float>(y_lower));
588 if (e3_dist == 0.0f) return e3;
589
590 float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]);
591 float e4_dist = pythDistance(x_map - static_cast<float>(x_upper),
592 y_map - static_cast<float>(y_upper));
593 if (e4_dist == 0.0f) return e2;
594
595 float e1_weight = 1.0f / e1_dist;
596 float e2_weight = 1.0f / e2_dist;
597 float e3_weight = 1.0f / e3_dist;
598 float e4_weight = 1.0f / e4_dist;
599 float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
600
601 return e1 * (e1_weight / total_weight)
602 + e2 * (e2_weight / total_weight)
603 + e3 * (e3_weight / total_weight)
604 + e4 * (e4_weight / total_weight);
605}
606
Ram Mohanfe723d62022-12-15 00:59:11 +0530607float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y,
608 ShepardsIDW& weightTables) {
609 // TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
610 // following by computing log2(map_scale_factor) once and then using >> log2(map_scale_factor)
611 int x_lower = x / map_scale_factor;
612 int x_upper = x_lower + 1;
613 int y_lower = y / map_scale_factor;
614 int y_upper = y_lower + 1;
615
616 x_lower = std::min(x_lower, map->width - 1);
617 x_upper = std::min(x_upper, map->width - 1);
618 y_lower = std::min(y_lower, map->height - 1);
619 y_upper = std::min(y_upper, map->height - 1);
620
621 float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]);
622 float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]);
623 float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]);
624 float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]);
625
626 // TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
627 // following by using & (map_scale_factor - 1)
628 int offset_x = x % map_scale_factor;
629 int offset_y = y % map_scale_factor;
630
631 float* weights = weightTables.mWeights;
632 if (x_lower == x_upper && y_lower == y_upper) weights = weightTables.mWeightsC;
633 else if (x_lower == x_upper) weights = weightTables.mWeightsNR;
634 else if (y_lower == y_upper) weights = weightTables.mWeightsNB;
635 weights += offset_y * map_scale_factor * 4 + offset_x * 4;
636
637 return e1 * weights[0] + e2 * weights[1] + e3 * weights[2] + e4 * weights[3];
638}
639
Nick Deakin6bd90432022-11-20 16:26:37 -0500640uint32_t colorToRgba1010102(Color e_gamma) {
641 return (0x3ff & static_cast<uint32_t>(e_gamma.r * 1023.0f))
642 | ((0x3ff & static_cast<uint32_t>(e_gamma.g * 1023.0f)) << 10)
643 | ((0x3ff & static_cast<uint32_t>(e_gamma.b * 1023.0f)) << 20)
644 | (0x3 << 30); // Set alpha to 1.0
645}
646
Nick Deakinf6bca5a2022-11-04 10:43:43 -0400647} // namespace android::recoverymap