| Mathias Agopian | b7f9a24 | 2017-03-08 22:29:31 -0800 | [diff] [blame] | 1 | /* | 
 | 2 |  ** Copyright 2011, The Android Open Source Project | 
 | 3 |  ** | 
 | 4 |  ** Licensed under the Apache License, Version 2.0 (the "License"); | 
 | 5 |  ** you may not use this file except in compliance with the License. | 
 | 6 |  ** You may obtain a copy of the License at | 
 | 7 |  ** | 
 | 8 |  **     http://www.apache.org/licenses/LICENSE-2.0 | 
 | 9 |  ** | 
 | 10 |  ** Unless required by applicable law or agreed to in writing, software | 
 | 11 |  ** distributed under the License is distributed on an "AS IS" BASIS, | 
 | 12 |  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | 13 |  ** See the License for the specific language governing permissions and | 
 | 14 |  ** limitations under the License. | 
 | 15 |  */ | 
 | 16 |  | 
 | 17 | #include <fcntl.h> | 
 | 18 | #include <stdio.h> | 
 | 19 |  | 
 | 20 | #include <memory> | 
 | 21 |  | 
 | 22 | #include <gtest/gtest.h> | 
 | 23 |  | 
 | 24 | #include "BlobCache.h" | 
 | 25 |  | 
 | 26 | namespace android { | 
 | 27 |  | 
 | 28 | template<typename T> using sp = std::shared_ptr<T>; | 
 | 29 |  | 
 | 30 | class BlobCacheTest : public ::testing::Test { | 
 | 31 | protected: | 
 | 32 |  | 
 | 33 |     enum { | 
 | 34 |         OK = 0, | 
 | 35 |         BAD_VALUE = -EINVAL | 
 | 36 |     }; | 
 | 37 |  | 
 | 38 |     enum { | 
 | 39 |         MAX_KEY_SIZE = 6, | 
 | 40 |         MAX_VALUE_SIZE = 8, | 
 | 41 |         MAX_TOTAL_SIZE = 13, | 
 | 42 |     }; | 
 | 43 |  | 
 | 44 |     virtual void SetUp() { | 
 | 45 |         mBC.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE)); | 
 | 46 |     } | 
 | 47 |  | 
 | 48 |     virtual void TearDown() { | 
 | 49 |         mBC.reset(); | 
 | 50 |     } | 
 | 51 |  | 
 | 52 |     std::unique_ptr<BlobCache> mBC; | 
 | 53 | }; | 
 | 54 |  | 
 | 55 | TEST_F(BlobCacheTest, CacheSingleValueSucceeds) { | 
 | 56 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 57 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 58 |     ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); | 
 | 59 |     ASSERT_EQ('e', buf[0]); | 
 | 60 |     ASSERT_EQ('f', buf[1]); | 
 | 61 |     ASSERT_EQ('g', buf[2]); | 
 | 62 |     ASSERT_EQ('h', buf[3]); | 
 | 63 | } | 
 | 64 |  | 
 | 65 | TEST_F(BlobCacheTest, CacheTwoValuesSucceeds) { | 
 | 66 |     unsigned char buf[2] = { 0xee, 0xee }; | 
 | 67 |     mBC->set("ab", 2, "cd", 2); | 
 | 68 |     mBC->set("ef", 2, "gh", 2); | 
 | 69 |     ASSERT_EQ(size_t(2), mBC->get("ab", 2, buf, 2)); | 
 | 70 |     ASSERT_EQ('c', buf[0]); | 
 | 71 |     ASSERT_EQ('d', buf[1]); | 
 | 72 |     ASSERT_EQ(size_t(2), mBC->get("ef", 2, buf, 2)); | 
 | 73 |     ASSERT_EQ('g', buf[0]); | 
 | 74 |     ASSERT_EQ('h', buf[1]); | 
 | 75 | } | 
 | 76 |  | 
 | 77 | TEST_F(BlobCacheTest, GetOnlyWritesInsideBounds) { | 
 | 78 |     unsigned char buf[6] = { 0xee, 0xee, 0xee, 0xee, 0xee, 0xee }; | 
 | 79 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 80 |     ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf+1, 4)); | 
 | 81 |     ASSERT_EQ(0xee, buf[0]); | 
 | 82 |     ASSERT_EQ('e', buf[1]); | 
 | 83 |     ASSERT_EQ('f', buf[2]); | 
 | 84 |     ASSERT_EQ('g', buf[3]); | 
 | 85 |     ASSERT_EQ('h', buf[4]); | 
 | 86 |     ASSERT_EQ(0xee, buf[5]); | 
 | 87 | } | 
 | 88 |  | 
 | 89 | TEST_F(BlobCacheTest, GetOnlyWritesIfBufferIsLargeEnough) { | 
 | 90 |     unsigned char buf[3] = { 0xee, 0xee, 0xee }; | 
 | 91 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 92 |     ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 3)); | 
 | 93 |     ASSERT_EQ(0xee, buf[0]); | 
 | 94 |     ASSERT_EQ(0xee, buf[1]); | 
 | 95 |     ASSERT_EQ(0xee, buf[2]); | 
 | 96 | } | 
 | 97 |  | 
 | 98 | TEST_F(BlobCacheTest, GetDoesntAccessNullBuffer) { | 
 | 99 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 100 |     ASSERT_EQ(size_t(4), mBC->get("abcd", 4, NULL, 0)); | 
 | 101 | } | 
 | 102 |  | 
 | 103 | TEST_F(BlobCacheTest, MultipleSetsCacheLatestValue) { | 
 | 104 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 105 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 106 |     mBC->set("abcd", 4, "ijkl", 4); | 
 | 107 |     ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); | 
 | 108 |     ASSERT_EQ('i', buf[0]); | 
 | 109 |     ASSERT_EQ('j', buf[1]); | 
 | 110 |     ASSERT_EQ('k', buf[2]); | 
 | 111 |     ASSERT_EQ('l', buf[3]); | 
 | 112 | } | 
 | 113 |  | 
 | 114 | TEST_F(BlobCacheTest, SecondSetKeepsFirstValueIfTooLarge) { | 
 | 115 |     unsigned char buf[MAX_VALUE_SIZE+1] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 116 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 117 |     mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1); | 
 | 118 |     ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); | 
 | 119 |     ASSERT_EQ('e', buf[0]); | 
 | 120 |     ASSERT_EQ('f', buf[1]); | 
 | 121 |     ASSERT_EQ('g', buf[2]); | 
 | 122 |     ASSERT_EQ('h', buf[3]); | 
 | 123 | } | 
 | 124 |  | 
 | 125 | TEST_F(BlobCacheTest, DoesntCacheIfKeyIsTooBig) { | 
 | 126 |     char key[MAX_KEY_SIZE+1]; | 
 | 127 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 128 |     for (int i = 0; i < MAX_KEY_SIZE+1; i++) { | 
 | 129 |         key[i] = 'a'; | 
 | 130 |     } | 
 | 131 |     mBC->set(key, MAX_KEY_SIZE+1, "bbbb", 4); | 
 | 132 |     ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE+1, buf, 4)); | 
 | 133 |     ASSERT_EQ(0xee, buf[0]); | 
 | 134 |     ASSERT_EQ(0xee, buf[1]); | 
 | 135 |     ASSERT_EQ(0xee, buf[2]); | 
 | 136 |     ASSERT_EQ(0xee, buf[3]); | 
 | 137 | } | 
 | 138 |  | 
 | 139 | TEST_F(BlobCacheTest, DoesntCacheIfValueIsTooBig) { | 
 | 140 |     char buf[MAX_VALUE_SIZE+1]; | 
 | 141 |     for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { | 
 | 142 |         buf[i] = 'b'; | 
 | 143 |     } | 
 | 144 |     mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1); | 
 | 145 |     for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { | 
 | 146 |         buf[i] = 0xee; | 
 | 147 |     } | 
 | 148 |     ASSERT_EQ(size_t(0), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE+1)); | 
 | 149 |     for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { | 
 | 150 |         SCOPED_TRACE(i); | 
 | 151 |         ASSERT_EQ(0xee, buf[i]); | 
 | 152 |     } | 
 | 153 | } | 
 | 154 |  | 
 | 155 | TEST_F(BlobCacheTest, DoesntCacheIfKeyValuePairIsTooBig) { | 
 | 156 |     // Check a testing assumptions | 
 | 157 |     ASSERT_TRUE(MAX_TOTAL_SIZE < MAX_KEY_SIZE + MAX_VALUE_SIZE); | 
 | 158 |     ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); | 
 | 159 |  | 
 | 160 |     enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE + 1 }; | 
 | 161 |  | 
 | 162 |     char key[MAX_KEY_SIZE]; | 
 | 163 |     char buf[bufSize]; | 
 | 164 |     for (int i = 0; i < MAX_KEY_SIZE; i++) { | 
 | 165 |         key[i] = 'a'; | 
 | 166 |     } | 
 | 167 |     for (int i = 0; i < bufSize; i++) { | 
 | 168 |         buf[i] = 'b'; | 
 | 169 |     } | 
 | 170 |  | 
 | 171 |     mBC->set(key, MAX_KEY_SIZE, buf, MAX_VALUE_SIZE); | 
 | 172 |     ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); | 
 | 173 | } | 
 | 174 |  | 
 | 175 | TEST_F(BlobCacheTest, CacheMaxKeySizeSucceeds) { | 
 | 176 |     char key[MAX_KEY_SIZE]; | 
 | 177 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 178 |     for (int i = 0; i < MAX_KEY_SIZE; i++) { | 
 | 179 |         key[i] = 'a'; | 
 | 180 |     } | 
 | 181 |     mBC->set(key, MAX_KEY_SIZE, "wxyz", 4); | 
 | 182 |     ASSERT_EQ(size_t(4), mBC->get(key, MAX_KEY_SIZE, buf, 4)); | 
 | 183 |     ASSERT_EQ('w', buf[0]); | 
 | 184 |     ASSERT_EQ('x', buf[1]); | 
 | 185 |     ASSERT_EQ('y', buf[2]); | 
 | 186 |     ASSERT_EQ('z', buf[3]); | 
 | 187 | } | 
 | 188 |  | 
 | 189 | TEST_F(BlobCacheTest, CacheMaxValueSizeSucceeds) { | 
 | 190 |     char buf[MAX_VALUE_SIZE]; | 
 | 191 |     for (int i = 0; i < MAX_VALUE_SIZE; i++) { | 
 | 192 |         buf[i] = 'b'; | 
 | 193 |     } | 
 | 194 |     mBC->set("abcd", 4, buf, MAX_VALUE_SIZE); | 
 | 195 |     for (int i = 0; i < MAX_VALUE_SIZE; i++) { | 
 | 196 |         buf[i] = 0xee; | 
 | 197 |     } | 
 | 198 |     ASSERT_EQ(size_t(MAX_VALUE_SIZE), mBC->get("abcd", 4, buf, | 
 | 199 |             MAX_VALUE_SIZE)); | 
 | 200 |     for (int i = 0; i < MAX_VALUE_SIZE; i++) { | 
 | 201 |         SCOPED_TRACE(i); | 
 | 202 |         ASSERT_EQ('b', buf[i]); | 
 | 203 |     } | 
 | 204 | } | 
 | 205 |  | 
 | 206 | TEST_F(BlobCacheTest, CacheMaxKeyValuePairSizeSucceeds) { | 
 | 207 |     // Check a testing assumption | 
 | 208 |     ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); | 
 | 209 |  | 
 | 210 |     enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE }; | 
 | 211 |  | 
 | 212 |     char key[MAX_KEY_SIZE]; | 
 | 213 |     char buf[bufSize]; | 
 | 214 |     for (int i = 0; i < MAX_KEY_SIZE; i++) { | 
 | 215 |         key[i] = 'a'; | 
 | 216 |     } | 
 | 217 |     for (int i = 0; i < bufSize; i++) { | 
 | 218 |         buf[i] = 'b'; | 
 | 219 |     } | 
 | 220 |  | 
 | 221 |     mBC->set(key, MAX_KEY_SIZE, buf, bufSize); | 
 | 222 |     ASSERT_EQ(size_t(bufSize), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); | 
 | 223 | } | 
 | 224 |  | 
 | 225 | TEST_F(BlobCacheTest, CacheMinKeyAndValueSizeSucceeds) { | 
 | 226 |     unsigned char buf[1] = { 0xee }; | 
 | 227 |     mBC->set("x", 1, "y", 1); | 
 | 228 |     ASSERT_EQ(size_t(1), mBC->get("x", 1, buf, 1)); | 
 | 229 |     ASSERT_EQ('y', buf[0]); | 
 | 230 | } | 
 | 231 |  | 
 | 232 | TEST_F(BlobCacheTest, CacheSizeDoesntExceedTotalLimit) { | 
 | 233 |     for (int i = 0; i < 256; i++) { | 
 | 234 |         uint8_t k = i; | 
 | 235 |         mBC->set(&k, 1, "x", 1); | 
 | 236 |     } | 
 | 237 |     int numCached = 0; | 
 | 238 |     for (int i = 0; i < 256; i++) { | 
 | 239 |         uint8_t k = i; | 
 | 240 |         if (mBC->get(&k, 1, NULL, 0) == 1) { | 
 | 241 |             numCached++; | 
 | 242 |         } | 
 | 243 |     } | 
 | 244 |     ASSERT_GE(MAX_TOTAL_SIZE / 2, numCached); | 
 | 245 | } | 
 | 246 |  | 
 | 247 | TEST_F(BlobCacheTest, ExceedingTotalLimitHalvesCacheSize) { | 
 | 248 |     // Fill up the entire cache with 1 char key/value pairs. | 
 | 249 |     const int maxEntries = MAX_TOTAL_SIZE / 2; | 
 | 250 |     for (int i = 0; i < maxEntries; i++) { | 
 | 251 |         uint8_t k = i; | 
 | 252 |         mBC->set(&k, 1, "x", 1); | 
 | 253 |     } | 
 | 254 |     // Insert one more entry, causing a cache overflow. | 
 | 255 |     { | 
 | 256 |         uint8_t k = maxEntries; | 
 | 257 |         mBC->set(&k, 1, "x", 1); | 
 | 258 |     } | 
 | 259 |     // Count the number of entries in the cache. | 
 | 260 |     int numCached = 0; | 
 | 261 |     for (int i = 0; i < maxEntries+1; i++) { | 
 | 262 |         uint8_t k = i; | 
 | 263 |         if (mBC->get(&k, 1, NULL, 0) == 1) { | 
 | 264 |             numCached++; | 
 | 265 |         } | 
 | 266 |     } | 
 | 267 |     ASSERT_EQ(maxEntries/2 + 1, numCached); | 
 | 268 | } | 
 | 269 |  | 
 | 270 | class BlobCacheFlattenTest : public BlobCacheTest { | 
 | 271 | protected: | 
 | 272 |     virtual void SetUp() { | 
 | 273 |         BlobCacheTest::SetUp(); | 
 | 274 |         mBC2.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE)); | 
 | 275 |     } | 
 | 276 |  | 
 | 277 |     virtual void TearDown() { | 
 | 278 |         mBC2.reset(); | 
 | 279 |         BlobCacheTest::TearDown(); | 
 | 280 |     } | 
 | 281 |  | 
 | 282 |     void roundTrip() { | 
 | 283 |         size_t size = mBC->getFlattenedSize(); | 
 | 284 |         uint8_t* flat = new uint8_t[size]; | 
 | 285 |         ASSERT_EQ(OK, mBC->flatten(flat, size)); | 
 | 286 |         ASSERT_EQ(OK, mBC2->unflatten(flat, size)); | 
 | 287 |         delete[] flat; | 
 | 288 |     } | 
 | 289 |  | 
 | 290 |     sp<BlobCache> mBC2; | 
 | 291 | }; | 
 | 292 |  | 
 | 293 | TEST_F(BlobCacheFlattenTest, FlattenOneValue) { | 
 | 294 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 295 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 296 |     roundTrip(); | 
 | 297 |     ASSERT_EQ(size_t(4), mBC2->get("abcd", 4, buf, 4)); | 
 | 298 |     ASSERT_EQ('e', buf[0]); | 
 | 299 |     ASSERT_EQ('f', buf[1]); | 
 | 300 |     ASSERT_EQ('g', buf[2]); | 
 | 301 |     ASSERT_EQ('h', buf[3]); | 
 | 302 | } | 
 | 303 |  | 
 | 304 | TEST_F(BlobCacheFlattenTest, FlattenFullCache) { | 
 | 305 |     // Fill up the entire cache with 1 char key/value pairs. | 
 | 306 |     const int maxEntries = MAX_TOTAL_SIZE / 2; | 
 | 307 |     for (int i = 0; i < maxEntries; i++) { | 
 | 308 |         uint8_t k = i; | 
 | 309 |         mBC->set(&k, 1, &k, 1); | 
 | 310 |     } | 
 | 311 |  | 
 | 312 |     roundTrip(); | 
 | 313 |  | 
 | 314 |     // Verify the deserialized cache | 
 | 315 |     for (int i = 0; i < maxEntries; i++) { | 
 | 316 |         uint8_t k = i; | 
 | 317 |         uint8_t v = 0xee; | 
 | 318 |         ASSERT_EQ(size_t(1), mBC2->get(&k, 1, &v, 1)); | 
 | 319 |         ASSERT_EQ(k, v); | 
 | 320 |     } | 
 | 321 | } | 
 | 322 |  | 
 | 323 | TEST_F(BlobCacheFlattenTest, FlattenDoesntChangeCache) { | 
 | 324 |     // Fill up the entire cache with 1 char key/value pairs. | 
 | 325 |     const int maxEntries = MAX_TOTAL_SIZE / 2; | 
 | 326 |     for (int i = 0; i < maxEntries; i++) { | 
 | 327 |         uint8_t k = i; | 
 | 328 |         mBC->set(&k, 1, &k, 1); | 
 | 329 |     } | 
 | 330 |  | 
 | 331 |     size_t size = mBC->getFlattenedSize(); | 
 | 332 |     uint8_t* flat = new uint8_t[size]; | 
 | 333 |     ASSERT_EQ(OK, mBC->flatten(flat, size)); | 
 | 334 |     delete[] flat; | 
 | 335 |  | 
 | 336 |     // Verify the cache that we just serialized | 
 | 337 |     for (int i = 0; i < maxEntries; i++) { | 
 | 338 |         uint8_t k = i; | 
 | 339 |         uint8_t v = 0xee; | 
 | 340 |         ASSERT_EQ(size_t(1), mBC->get(&k, 1, &v, 1)); | 
 | 341 |         ASSERT_EQ(k, v); | 
 | 342 |     } | 
 | 343 | } | 
 | 344 |  | 
 | 345 | TEST_F(BlobCacheFlattenTest, FlattenCatchesBufferTooSmall) { | 
 | 346 |     // Fill up the entire cache with 1 char key/value pairs. | 
 | 347 |     const int maxEntries = MAX_TOTAL_SIZE / 2; | 
 | 348 |     for (int i = 0; i < maxEntries; i++) { | 
 | 349 |         uint8_t k = i; | 
 | 350 |         mBC->set(&k, 1, &k, 1); | 
 | 351 |     } | 
 | 352 |  | 
 | 353 |     size_t size = mBC->getFlattenedSize() - 1; | 
 | 354 |     uint8_t* flat = new uint8_t[size]; | 
 | 355 |     // ASSERT_EQ(BAD_VALUE, mBC->flatten(flat, size)); | 
 | 356 |     // TODO: The above fails. I expect this is so because getFlattenedSize() | 
 | 357 |     // overstimates the size by using PROPERTY_VALUE_MAX. | 
 | 358 |     delete[] flat; | 
 | 359 | } | 
 | 360 |  | 
 | 361 | TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadMagic) { | 
 | 362 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 363 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 364 |  | 
 | 365 |     size_t size = mBC->getFlattenedSize(); | 
 | 366 |     uint8_t* flat = new uint8_t[size]; | 
 | 367 |     ASSERT_EQ(OK, mBC->flatten(flat, size)); | 
 | 368 |     flat[1] = ~flat[1]; | 
 | 369 |  | 
 | 370 |     // Bad magic should cause an error. | 
 | 371 |     ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size)); | 
 | 372 |     delete[] flat; | 
 | 373 |  | 
 | 374 |     // The error should cause the unflatten to result in an empty cache | 
 | 375 |     ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); | 
 | 376 | } | 
 | 377 |  | 
 | 378 | TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheVersion) { | 
 | 379 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 380 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 381 |  | 
 | 382 |     size_t size = mBC->getFlattenedSize(); | 
 | 383 |     uint8_t* flat = new uint8_t[size]; | 
 | 384 |     ASSERT_EQ(OK, mBC->flatten(flat, size)); | 
 | 385 |     flat[5] = ~flat[5]; | 
 | 386 |  | 
 | 387 |     // Version mismatches shouldn't cause errors, but should not use the | 
 | 388 |     // serialized entries | 
 | 389 |     ASSERT_EQ(OK, mBC2->unflatten(flat, size)); | 
 | 390 |     delete[] flat; | 
 | 391 |  | 
 | 392 |     // The version mismatch should cause the unflatten to result in an empty | 
 | 393 |     // cache | 
 | 394 |     ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); | 
 | 395 | } | 
 | 396 |  | 
 | 397 | TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheDeviceVersion) { | 
 | 398 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 399 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 400 |  | 
 | 401 |     size_t size = mBC->getFlattenedSize(); | 
 | 402 |     uint8_t* flat = new uint8_t[size]; | 
 | 403 |     ASSERT_EQ(OK, mBC->flatten(flat, size)); | 
 | 404 |     flat[10] = ~flat[10]; | 
 | 405 |  | 
 | 406 |     // Version mismatches shouldn't cause errors, but should not use the | 
 | 407 |     // serialized entries | 
 | 408 |     ASSERT_EQ(OK, mBC2->unflatten(flat, size)); | 
 | 409 |     delete[] flat; | 
 | 410 |  | 
 | 411 |     // The version mismatch should cause the unflatten to result in an empty | 
 | 412 |     // cache | 
 | 413 |     ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); | 
 | 414 | } | 
 | 415 |  | 
 | 416 | TEST_F(BlobCacheFlattenTest, UnflattenCatchesBufferTooSmall) { | 
 | 417 |     unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; | 
 | 418 |     mBC->set("abcd", 4, "efgh", 4); | 
 | 419 |  | 
 | 420 |     size_t size = mBC->getFlattenedSize(); | 
 | 421 |     uint8_t* flat = new uint8_t[size]; | 
 | 422 |     ASSERT_EQ(OK, mBC->flatten(flat, size)); | 
 | 423 |  | 
 | 424 |     // A buffer truncation shouldt cause an error | 
 | 425 |     // ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size-1)); | 
 | 426 |     // TODO: The above appears to fail because getFlattenedSize() is | 
 | 427 |     // conservative. | 
 | 428 |     delete[] flat; | 
 | 429 |  | 
 | 430 |     // The error should cause the unflatten to result in an empty cache | 
 | 431 |     ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); | 
 | 432 | } | 
 | 433 |  | 
 | 434 | } // namespace android |