| Kevin DuBois | 1678e2c | 2019-08-22 12:26:24 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2019 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | 5 | * you may not use this file except in compliance with the License. | 
|  | 6 | * You may obtain a copy of the License at | 
|  | 7 | * | 
|  | 8 | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 9 | * | 
|  | 10 | * Unless required by applicable law or agreed to in writing, software | 
|  | 11 | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 13 | * See the License for the specific language governing permissions and | 
|  | 14 | * limitations under the License. | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  | 18 | //#define LOG_NDEBUG 0 | 
|  | 19 | #include "VSyncPredictor.h" | 
|  | 20 | #include <android-base/logging.h> | 
|  | 21 | #include <cutils/compiler.h> | 
|  | 22 | #include <utils/Log.h> | 
|  | 23 | #include <utils/Trace.h> | 
|  | 24 | #include <algorithm> | 
|  | 25 | #include <chrono> | 
|  | 26 | #include "SchedulerUtils.h" | 
|  | 27 |  | 
|  | 28 | namespace android::scheduler { | 
|  | 29 | static auto constexpr kNeedsSamplesTag = "SamplesRequested"; | 
|  | 30 | static auto constexpr kMaxPercent = 100u; | 
|  | 31 |  | 
|  | 32 | VSyncPredictor::~VSyncPredictor() = default; | 
|  | 33 |  | 
|  | 34 | VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize, | 
|  | 35 | size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent) | 
|  | 36 | : kHistorySize(historySize), | 
|  | 37 | kMinimumSamplesForPrediction(minimumSamplesForPrediction), | 
|  | 38 | kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)), | 
|  | 39 | mIdealPeriod(idealPeriod) { | 
|  | 40 | mRateMap[mIdealPeriod] = {idealPeriod, 0}; | 
|  | 41 | } | 
|  | 42 |  | 
|  | 43 | inline size_t VSyncPredictor::next(int i) const { | 
|  | 44 | return (i + 1) % timestamps.size(); | 
|  | 45 | } | 
|  | 46 |  | 
|  | 47 | bool VSyncPredictor::validate(nsecs_t timestamp) const { | 
|  | 48 | if (lastTimestampIndex < 0 || timestamps.empty()) { | 
|  | 49 | return true; | 
|  | 50 | } | 
|  | 51 |  | 
|  | 52 | auto const aValidTimestamp = timestamps[lastTimestampIndex]; | 
|  | 53 | auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod; | 
|  | 54 | return percent < kOutlierTolerancePercent || percent > (kMaxPercent - kOutlierTolerancePercent); | 
|  | 55 | } | 
|  | 56 |  | 
| Kevin DuBois | 2fd3cea | 2019-11-14 08:52:45 -0800 | [diff] [blame] | 57 | nsecs_t VSyncPredictor::currentPeriod() const { | 
|  | 58 | std::lock_guard<std::mutex> lk(mMutex); | 
|  | 59 | return std::get<0>(mRateMap.find(mIdealPeriod)->second); | 
|  | 60 | } | 
|  | 61 |  | 
| Kevin DuBois | 1678e2c | 2019-08-22 12:26:24 -0700 | [diff] [blame] | 62 | void VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) { | 
|  | 63 | std::lock_guard<std::mutex> lk(mMutex); | 
|  | 64 |  | 
|  | 65 | if (!validate(timestamp)) { | 
|  | 66 | ALOGW("timestamp was too far off the last known timestamp"); | 
|  | 67 | return; | 
|  | 68 | } | 
|  | 69 |  | 
|  | 70 | if (timestamps.size() != kHistorySize) { | 
|  | 71 | timestamps.push_back(timestamp); | 
|  | 72 | lastTimestampIndex = next(lastTimestampIndex); | 
|  | 73 | } else { | 
|  | 74 | lastTimestampIndex = next(lastTimestampIndex); | 
|  | 75 | timestamps[lastTimestampIndex] = timestamp; | 
|  | 76 | } | 
|  | 77 |  | 
|  | 78 | if (timestamps.size() < kMinimumSamplesForPrediction) { | 
|  | 79 | mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; | 
|  | 80 | return; | 
|  | 81 | } | 
|  | 82 |  | 
|  | 83 | // This is a 'simple linear regression' calculation of Y over X, with Y being the | 
|  | 84 | // vsync timestamps, and X being the ordinal of vsync count. | 
|  | 85 | // The calculated slope is the vsync period. | 
|  | 86 | // Formula for reference: | 
|  | 87 | // Sigma_i: means sum over all timestamps. | 
|  | 88 | // mean(variable): statistical mean of variable. | 
|  | 89 | // X: snapped ordinal of the timestamp | 
|  | 90 | // Y: vsync timestamp | 
|  | 91 | // | 
|  | 92 | //         Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) ) | 
|  | 93 | // slope = ------------------------------------------- | 
|  | 94 | //         Sigma_i ( X_i - mean(X) ) ^ 2 | 
|  | 95 | // | 
|  | 96 | // intercept = mean(Y) - slope * mean(X) | 
|  | 97 | // | 
|  | 98 | std::vector<nsecs_t> vsyncTS(timestamps.size()); | 
|  | 99 | std::vector<nsecs_t> ordinals(timestamps.size()); | 
|  | 100 |  | 
|  | 101 | // normalizing to the oldest timestamp cuts down on error in calculating the intercept. | 
|  | 102 | auto const oldest_ts = *std::min_element(timestamps.begin(), timestamps.end()); | 
|  | 103 | auto it = mRateMap.find(mIdealPeriod); | 
|  | 104 | auto const currentPeriod = std::get<0>(it->second); | 
|  | 105 | // TODO (b/144707443): its important that there's some precision in the mean of the ordinals | 
|  | 106 | //                     for the intercept calculation, so scale the ordinals by 10 to continue | 
|  | 107 | //                     fixed point calculation. Explore expanding | 
|  | 108 | //                     scheduler::utils::calculate_mean to have a fixed point fractional part. | 
|  | 109 | static constexpr int kScalingFactor = 10; | 
|  | 110 |  | 
|  | 111 | for (auto i = 0u; i < timestamps.size(); i++) { | 
|  | 112 | vsyncTS[i] = timestamps[i] - oldest_ts; | 
|  | 113 | ordinals[i] = ((vsyncTS[i] + (currentPeriod / 2)) / currentPeriod) * kScalingFactor; | 
|  | 114 | } | 
|  | 115 |  | 
|  | 116 | auto meanTS = scheduler::calculate_mean(vsyncTS); | 
|  | 117 | auto meanOrdinal = scheduler::calculate_mean(ordinals); | 
|  | 118 | for (auto i = 0; i < vsyncTS.size(); i++) { | 
|  | 119 | vsyncTS[i] -= meanTS; | 
|  | 120 | ordinals[i] -= meanOrdinal; | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | auto top = 0ll; | 
|  | 124 | auto bottom = 0ll; | 
|  | 125 | for (auto i = 0; i < vsyncTS.size(); i++) { | 
|  | 126 | top += vsyncTS[i] * ordinals[i]; | 
|  | 127 | bottom += ordinals[i] * ordinals[i]; | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | if (CC_UNLIKELY(bottom == 0)) { | 
|  | 131 | it->second = {mIdealPeriod, 0}; | 
|  | 132 | return; | 
|  | 133 | } | 
|  | 134 |  | 
|  | 135 | nsecs_t const anticipatedPeriod = top / bottom * kScalingFactor; | 
|  | 136 | nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); | 
|  | 137 |  | 
|  | 138 | it->second = {anticipatedPeriod, intercept}; | 
|  | 139 |  | 
|  | 140 | ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp, | 
|  | 141 | anticipatedPeriod, intercept); | 
|  | 142 | } | 
|  | 143 |  | 
|  | 144 | nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const { | 
|  | 145 | std::lock_guard<std::mutex> lk(mMutex); | 
|  | 146 |  | 
|  | 147 | auto const [slope, intercept] = getVSyncPredictionModel(lk); | 
|  | 148 |  | 
|  | 149 | if (timestamps.empty()) { | 
|  | 150 | auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; | 
|  | 151 | auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1; | 
|  | 152 | return knownTimestamp + numPeriodsOut * mIdealPeriod; | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | auto const oldest = *std::min_element(timestamps.begin(), timestamps.end()); | 
|  | 156 | auto const ordinalRequest = (timePoint - oldest + slope) / slope; | 
|  | 157 | auto const prediction = (ordinalRequest * slope) + intercept + oldest; | 
|  | 158 |  | 
|  | 159 | ALOGV("prediction made from: %" PRId64 " prediction: %" PRId64 " (+%" PRId64 ") slope: %" PRId64 | 
|  | 160 | " intercept: %" PRId64, | 
|  | 161 | timePoint, prediction, prediction - timePoint, slope, intercept); | 
|  | 162 | return prediction; | 
|  | 163 | } | 
|  | 164 |  | 
|  | 165 | std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel() const { | 
|  | 166 | std::lock_guard<std::mutex> lk(mMutex); | 
|  | 167 | return VSyncPredictor::getVSyncPredictionModel(lk); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel( | 
|  | 171 | std::lock_guard<std::mutex> const&) const { | 
|  | 172 | return mRateMap.find(mIdealPeriod)->second; | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | void VSyncPredictor::setPeriod(nsecs_t period) { | 
|  | 176 | ATRACE_CALL(); | 
|  | 177 |  | 
|  | 178 | std::lock_guard<std::mutex> lk(mMutex); | 
|  | 179 | static constexpr size_t kSizeLimit = 30; | 
|  | 180 | if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) { | 
|  | 181 | mRateMap.erase(mRateMap.begin()); | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | mIdealPeriod = period; | 
|  | 185 | if (mRateMap.find(period) == mRateMap.end()) { | 
|  | 186 | mRateMap[mIdealPeriod] = {period, 0}; | 
|  | 187 | } | 
|  | 188 |  | 
|  | 189 | if (!timestamps.empty()) { | 
|  | 190 | mKnownTimestamp = *std::max_element(timestamps.begin(), timestamps.end()); | 
|  | 191 | timestamps.clear(); | 
|  | 192 | lastTimestampIndex = 0; | 
|  | 193 | } | 
|  | 194 | } | 
|  | 195 |  | 
|  | 196 | bool VSyncPredictor::needsMoreSamples(nsecs_t now) const { | 
|  | 197 | using namespace std::literals::chrono_literals; | 
|  | 198 | std::lock_guard<std::mutex> lk(mMutex); | 
|  | 199 | bool needsMoreSamples = true; | 
|  | 200 | if (timestamps.size() >= kMinimumSamplesForPrediction) { | 
|  | 201 | nsecs_t constexpr aLongTime = | 
|  | 202 | std::chrono::duration_cast<std::chrono::nanoseconds>(500ms).count(); | 
|  | 203 | if (!(lastTimestampIndex < 0 || timestamps.empty())) { | 
|  | 204 | auto const lastTimestamp = timestamps[lastTimestampIndex]; | 
|  | 205 | needsMoreSamples = !((lastTimestamp + aLongTime) > now); | 
|  | 206 | } | 
|  | 207 | } | 
|  | 208 |  | 
|  | 209 | ATRACE_INT(kNeedsSamplesTag, needsMoreSamples); | 
|  | 210 | return needsMoreSamples; | 
|  | 211 | } | 
|  | 212 |  | 
|  | 213 | } // namespace android::scheduler |