blob: 3b99a58838d95cce561038309826804c23c7d7e6 [file] [log] [blame]
Kevin DuBois1678e2c2019-08-22 12:26:24 -07001/*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18//#define LOG_NDEBUG 0
19#include "VSyncPredictor.h"
20#include <android-base/logging.h>
21#include <cutils/compiler.h>
22#include <utils/Log.h>
23#include <utils/Trace.h>
24#include <algorithm>
25#include <chrono>
Kevin DuBois127a2d92019-12-04 13:52:52 -080026#include <sstream>
Kevin DuBois1678e2c2019-08-22 12:26:24 -070027#include "SchedulerUtils.h"
28
29namespace android::scheduler {
30static auto constexpr kNeedsSamplesTag = "SamplesRequested";
31static auto constexpr kMaxPercent = 100u;
32
33VSyncPredictor::~VSyncPredictor() = default;
34
35VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize,
36 size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent)
37 : kHistorySize(historySize),
38 kMinimumSamplesForPrediction(minimumSamplesForPrediction),
39 kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
40 mIdealPeriod(idealPeriod) {
41 mRateMap[mIdealPeriod] = {idealPeriod, 0};
42}
43
44inline size_t VSyncPredictor::next(int i) const {
45 return (i + 1) % timestamps.size();
46}
47
48bool VSyncPredictor::validate(nsecs_t timestamp) const {
49 if (lastTimestampIndex < 0 || timestamps.empty()) {
50 return true;
51 }
52
53 auto const aValidTimestamp = timestamps[lastTimestampIndex];
54 auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod;
55 return percent < kOutlierTolerancePercent || percent > (kMaxPercent - kOutlierTolerancePercent);
56}
57
Kevin DuBois2fd3cea2019-11-14 08:52:45 -080058nsecs_t VSyncPredictor::currentPeriod() const {
59 std::lock_guard<std::mutex> lk(mMutex);
60 return std::get<0>(mRateMap.find(mIdealPeriod)->second);
61}
62
Kevin DuBois1678e2c2019-08-22 12:26:24 -070063void VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
64 std::lock_guard<std::mutex> lk(mMutex);
65
66 if (!validate(timestamp)) {
67 ALOGW("timestamp was too far off the last known timestamp");
68 return;
69 }
70
71 if (timestamps.size() != kHistorySize) {
72 timestamps.push_back(timestamp);
73 lastTimestampIndex = next(lastTimestampIndex);
74 } else {
75 lastTimestampIndex = next(lastTimestampIndex);
76 timestamps[lastTimestampIndex] = timestamp;
77 }
78
79 if (timestamps.size() < kMinimumSamplesForPrediction) {
80 mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
81 return;
82 }
83
84 // This is a 'simple linear regression' calculation of Y over X, with Y being the
85 // vsync timestamps, and X being the ordinal of vsync count.
86 // The calculated slope is the vsync period.
87 // Formula for reference:
88 // Sigma_i: means sum over all timestamps.
89 // mean(variable): statistical mean of variable.
90 // X: snapped ordinal of the timestamp
91 // Y: vsync timestamp
92 //
93 // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
94 // slope = -------------------------------------------
95 // Sigma_i ( X_i - mean(X) ) ^ 2
96 //
97 // intercept = mean(Y) - slope * mean(X)
98 //
99 std::vector<nsecs_t> vsyncTS(timestamps.size());
100 std::vector<nsecs_t> ordinals(timestamps.size());
101
102 // normalizing to the oldest timestamp cuts down on error in calculating the intercept.
103 auto const oldest_ts = *std::min_element(timestamps.begin(), timestamps.end());
104 auto it = mRateMap.find(mIdealPeriod);
105 auto const currentPeriod = std::get<0>(it->second);
106 // TODO (b/144707443): its important that there's some precision in the mean of the ordinals
107 // for the intercept calculation, so scale the ordinals by 10 to continue
108 // fixed point calculation. Explore expanding
109 // scheduler::utils::calculate_mean to have a fixed point fractional part.
110 static constexpr int kScalingFactor = 10;
111
112 for (auto i = 0u; i < timestamps.size(); i++) {
113 vsyncTS[i] = timestamps[i] - oldest_ts;
114 ordinals[i] = ((vsyncTS[i] + (currentPeriod / 2)) / currentPeriod) * kScalingFactor;
115 }
116
117 auto meanTS = scheduler::calculate_mean(vsyncTS);
118 auto meanOrdinal = scheduler::calculate_mean(ordinals);
119 for (auto i = 0; i < vsyncTS.size(); i++) {
120 vsyncTS[i] -= meanTS;
121 ordinals[i] -= meanOrdinal;
122 }
123
124 auto top = 0ll;
125 auto bottom = 0ll;
126 for (auto i = 0; i < vsyncTS.size(); i++) {
127 top += vsyncTS[i] * ordinals[i];
128 bottom += ordinals[i] * ordinals[i];
129 }
130
131 if (CC_UNLIKELY(bottom == 0)) {
132 it->second = {mIdealPeriod, 0};
133 return;
134 }
135
136 nsecs_t const anticipatedPeriod = top / bottom * kScalingFactor;
137 nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
138
139 it->second = {anticipatedPeriod, intercept};
140
141 ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp,
142 anticipatedPeriod, intercept);
143}
144
145nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const {
146 std::lock_guard<std::mutex> lk(mMutex);
147
148 auto const [slope, intercept] = getVSyncPredictionModel(lk);
149
150 if (timestamps.empty()) {
151 auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
152 auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1;
153 return knownTimestamp + numPeriodsOut * mIdealPeriod;
154 }
155
156 auto const oldest = *std::min_element(timestamps.begin(), timestamps.end());
Kevin DuBois127a2d92019-12-04 13:52:52 -0800157
158 // See b/145667109, the ordinal calculation must take into account the intercept.
159 auto const zeroPoint = oldest + intercept;
160 auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
Kevin DuBois1678e2c2019-08-22 12:26:24 -0700161 auto const prediction = (ordinalRequest * slope) + intercept + oldest;
162
Kevin DuBois127a2d92019-12-04 13:52:52 -0800163 auto const printer = [&, slope = slope, intercept = intercept] {
164 std::stringstream str;
165 str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
166 << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
167 << "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
168 return str.str();
169 };
170
171 ALOGV("%s", printer().c_str());
172 LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
173 printer().c_str());
174
Kevin DuBois1678e2c2019-08-22 12:26:24 -0700175 return prediction;
176}
177
178std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel() const {
179 std::lock_guard<std::mutex> lk(mMutex);
180 return VSyncPredictor::getVSyncPredictionModel(lk);
181}
182
183std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel(
184 std::lock_guard<std::mutex> const&) const {
185 return mRateMap.find(mIdealPeriod)->second;
186}
187
188void VSyncPredictor::setPeriod(nsecs_t period) {
189 ATRACE_CALL();
190
191 std::lock_guard<std::mutex> lk(mMutex);
192 static constexpr size_t kSizeLimit = 30;
193 if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
194 mRateMap.erase(mRateMap.begin());
195 }
196
197 mIdealPeriod = period;
198 if (mRateMap.find(period) == mRateMap.end()) {
199 mRateMap[mIdealPeriod] = {period, 0};
200 }
201
202 if (!timestamps.empty()) {
203 mKnownTimestamp = *std::max_element(timestamps.begin(), timestamps.end());
204 timestamps.clear();
205 lastTimestampIndex = 0;
206 }
207}
208
209bool VSyncPredictor::needsMoreSamples(nsecs_t now) const {
210 using namespace std::literals::chrono_literals;
211 std::lock_guard<std::mutex> lk(mMutex);
212 bool needsMoreSamples = true;
213 if (timestamps.size() >= kMinimumSamplesForPrediction) {
214 nsecs_t constexpr aLongTime =
215 std::chrono::duration_cast<std::chrono::nanoseconds>(500ms).count();
216 if (!(lastTimestampIndex < 0 || timestamps.empty())) {
217 auto const lastTimestamp = timestamps[lastTimestampIndex];
218 needsMoreSamples = !((lastTimestamp + aLongTime) > now);
219 }
220 }
221
222 ATRACE_INT(kNeedsSamplesTag, needsMoreSamples);
223 return needsMoreSamples;
224}
225
226} // namespace android::scheduler