blob: c234a756934cff8f2bb1773f98c9d7219273a7e2 [file] [log] [blame] [edit]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <android/gui/DropInputMode.h>
#include <android/gui/ISurfaceComposerClient.h>
#include <com_android_graphics_surfaceflinger_flags.h>
#include <ftl/small_map.h>
#include <gui/BufferQueue.h>
#include <gui/LayerState.h>
#include <gui/WindowInfo.h>
#include <layerproto/LayerProtoHeader.h>
#include <math/vec4.h>
#include <sys/types.h>
#include <ui/BlurRegion.h>
#include <ui/DisplayMap.h>
#include <ui/FloatRect.h>
#include <ui/FrameStats.h>
#include <ui/GraphicBuffer.h>
#include <ui/LayerStack.h>
#include <ui/PixelFormat.h>
#include <ui/Region.h>
#include <ui/StretchEffect.h>
#include <ui/Transform.h>
#include <utils/RefBase.h>
#include <utils/Timers.h>
#include <compositionengine/LayerFE.h>
#include <compositionengine/LayerFECompositionState.h>
#include <scheduler/Fps.h>
#include <scheduler/Seamlessness.h>
#include <cstdint>
#include <functional>
#include <optional>
#include <vector>
#include "Client.h"
#include "DisplayHardware/HWComposer.h"
#include "FrameTracker.h"
#include "LayerFE.h"
#include "LayerVector.h"
#include "Scheduler/LayerInfo.h"
#include "SurfaceFlinger.h"
#include "TransactionCallbackInvoker.h"
using namespace android::surfaceflinger;
namespace android {
class Client;
class Colorizer;
class DisplayDevice;
class GraphicBuffer;
class SurfaceFlinger;
namespace compositionengine {
class OutputLayer;
struct LayerFECompositionState;
}
namespace frametimeline {
class SurfaceFrame;
} // namespace frametimeline
class Layer : public virtual RefBase {
public:
// The following constants represent priority of the window. SF uses this information when
// deciding which window has a priority when deciding about the refresh rate of the screen.
// Priority 0 is considered the highest priority. -1 means that the priority is unset.
static constexpr int32_t PRIORITY_UNSET = -1;
// Windows that are in focus and voted for the preferred mode ID
static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0;
// // Windows that are in focus, but have not requested a specific mode ID.
static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1;
// Windows that are not in focus, but voted for a specific mode ID.
static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2;
using FrameRate = scheduler::LayerInfo::FrameRate;
using FrameRateCompatibility = scheduler::FrameRateCompatibility;
using FrameRateSelectionStrategy = scheduler::LayerInfo::FrameRateSelectionStrategy;
struct State {
int32_t sequence; // changes when visible regions can change
// Crop is expressed in layer space coordinate.
FloatRect crop;
LayerMetadata metadata;
ui::Dataspace dataspace;
uint64_t frameNumber;
uint64_t previousFrameNumber;
// high watermark framenumber to use to check for barriers to protect ourselves
// from out of order transactions
uint64_t barrierFrameNumber;
ui::Transform transform;
uint32_t producerId = 0;
// high watermark producerId to use to check for barriers to protect ourselves
// from out of order transactions
uint32_t barrierProducerId = 0;
uint32_t bufferTransform;
bool transformToDisplayInverse;
Region transparentRegionHint;
std::shared_ptr<renderengine::ExternalTexture> buffer;
sp<Fence> acquireFence;
std::shared_ptr<FenceTime> acquireFenceTime;
sp<NativeHandle> sidebandStream;
mat4 colorTransform;
// The deque of callback handles for this frame. The back of the deque contains the most
// recent callback handle.
std::deque<sp<CallbackHandle>> callbackHandles;
nsecs_t desiredPresentTime = 0;
bool isAutoTimestamp = true;
// The combined frame rate of parents / children of this layer
FrameRate frameRateForLayerTree;
// The vsync info that was used to start the transaction
FrameTimelineInfo frameTimelineInfo;
// When the transaction was posted
nsecs_t postTime;
sp<ITransactionCompletedListener> releaseBufferListener;
// SurfaceFrame that tracks the timeline of Transactions that contain a Buffer. Only one
// such SurfaceFrame exists because only one buffer can be presented on the layer per vsync.
// If multiple buffers are queued, the prior ones will be dropped, along with the
// SurfaceFrame that's tracking them.
std::shared_ptr<frametimeline::SurfaceFrame> bufferSurfaceFrameTX;
// A map of token(frametimelineVsyncId) to the SurfaceFrame that's tracking a transaction
// that contains the token. Only one SurfaceFrame exisits for transactions that share the
// same token, unless they are presented in different vsyncs.
std::unordered_map<int64_t, std::shared_ptr<frametimeline::SurfaceFrame>>
bufferlessSurfaceFramesTX;
// An arbitrary threshold for the number of BufferlessSurfaceFrames in the state. Used to
// trigger a warning if the number of SurfaceFrames crosses the threshold.
static constexpr uint32_t kStateSurfaceFramesThreshold = 25;
Rect bufferCrop;
Rect destinationFrame;
sp<IBinder> releaseBufferEndpoint;
bool autoRefresh = false;
float currentHdrSdrRatio = 1.f;
float desiredHdrSdrRatio = -1.f;
int64_t latchedVsyncId = 0;
bool useVsyncIdForRefreshRateSelection = false;
};
explicit Layer(const surfaceflinger::LayerCreationArgs& args);
virtual ~Layer();
static bool isLayerFocusedBasedOnPriority(int32_t priority);
static void miniDumpHeader(std::string& result);
// This second set of geometry attributes are controlled by
// setGeometryAppliesWithResize, and their default mode is to be
// immediate. If setGeometryAppliesWithResize is specified
// while a resize is pending, then update of these attributes will
// be delayed until the resize completes.
// Buffer space
bool setCrop(const FloatRect& crop);
bool setTransform(uint32_t /*transform*/);
bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/);
bool setBuffer(std::shared_ptr<renderengine::ExternalTexture>& /* buffer */,
const BufferData& /* bufferData */, nsecs_t /* postTime */,
nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/,
const FrameTimelineInfo& /*info*/, gui::GameMode gameMode);
void setDesiredPresentTime(nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/);
bool setDataspace(ui::Dataspace /*dataspace*/);
bool setExtendedRangeBrightness(float currentBufferRatio, float desiredRatio);
bool setDesiredHdrHeadroom(float desiredRatio);
bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/,
const FrameTimelineInfo& /* info*/, nsecs_t /* postTime */,
gui::GameMode gameMode);
bool setTransactionCompletedListeners(const std::vector<sp<CallbackHandle>>& /*handles*/,
bool willPresent);
sp<LayerFE> getCompositionEngineLayerFE(const frontend::LayerHierarchy::TraversalPath&);
// If we have received a new buffer this frame, we will pass its surface
// damage down to hardware composer. Otherwise, we must send a region with
// one empty rect.
Region getVisibleRegion(const DisplayDevice*) const;
void updateLastLatchTime(nsecs_t latchtime);
Rect getCrop(const Layer::State& s) const { return Rect(s.crop); }
// from graphics API
static ui::Dataspace translateDataspace(ui::Dataspace dataspace);
uint64_t mPreviousFrameNumber = 0;
void onCompositionPresented(const DisplayDevice*,
const std::shared_ptr<FenceTime>& /*glDoneFence*/,
const std::shared_ptr<FenceTime>& /*presentFence*/,
const CompositorTiming&, gui::GameMode gameMode);
// If a buffer was replaced this frame, release the former buffer
void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/);
/*
* latchBuffer - called each time the screen is redrawn and returns whether
* the visible regions need to be recomputed (this is a fairly heavy
* operation, so this should be set only if needed). Typically this is used
* to figure out if the content or size of a surface has changed.
*/
bool latchBufferImpl(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/,
bool bgColorOnly);
sp<GraphicBuffer> getBuffer() const;
/**
* Returns active buffer size in the correct orientation. Buffer size is determined by undoing
* any buffer transformations. Returns Rect::INVALID_RECT if the layer has no buffer or the
* layer does not have a display frame and its parent is not bounded.
*/
Rect getBufferSize(const Layer::State&) const;
FrameRate getFrameRateForLayerTree() const;
bool getTransformToDisplayInverse() const;
// Implements RefBase.
void onFirstRef() override;
struct BufferInfo {
nsecs_t mDesiredPresentTime;
std::shared_ptr<FenceTime> mFenceTime;
sp<Fence> mFence;
uint32_t mTransform{0};
ui::Dataspace mDataspace{ui::Dataspace::UNKNOWN};
std::chrono::steady_clock::time_point mTimeSinceDataspaceUpdate =
std::chrono::steady_clock::time_point::min();
Rect mCrop;
PixelFormat mPixelFormat{PIXEL_FORMAT_NONE};
bool mTransformToDisplayInverse{false};
std::shared_ptr<renderengine::ExternalTexture> mBuffer;
uint64_t mFrameNumber;
sp<IBinder> mReleaseBufferEndpoint;
bool mFrameLatencyNeeded{false};
float mDesiredHdrSdrRatio = -1.f;
};
BufferInfo mBufferInfo;
std::shared_ptr<gui::BufferReleaseChannel::ProducerEndpoint> mBufferReleaseChannel;
bool fenceHasSignaled() const;
void onPreComposition(nsecs_t refreshStartTime);
// Tracks mLastClientCompositionFence and gets the callback handle for this layer.
sp<CallbackHandle> findCallbackHandle();
// Adds the future release fence to a list of fences that are used to release the
// last presented buffer. Also keeps track of the layerstack in a list of previous
// layerstacks that have been presented.
void prepareReleaseCallbacks(ftl::Future<FenceResult>, ui::LayerStack layerStack);
void setWasClientComposed(const sp<Fence>& fence) {
mLastClientCompositionFence = fence;
mClearClientCompositionFenceOnLayerDisplayed = false;
}
const char* getDebugName() const;
static bool computeTrustedPresentationState(const FloatRect& bounds,
const FloatRect& sourceBounds,
const Region& coveredRegion,
const FloatRect& screenBounds, float,
const ui::Transform&,
const TrustedPresentationThresholds&);
void updateTrustedPresentationState(const DisplayDevice* display,
const frontend::LayerSnapshot* snapshot, int64_t time_in_ms,
bool leaveState);
inline bool hasTrustedPresentationListener() {
return mTrustedPresentationListener.callbackInterface != nullptr;
}
// Sets the masked bits.
void setTransactionFlags(uint32_t mask);
int32_t getSequence() const { return sequence; }
// For tracing.
// TODO: Replace with raw buffer id from buffer metadata when that becomes available.
// GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces
// creates its tracks by buffer id and has no way of associating a buffer back to the process
// that created it, the current implementation is only sufficient for cases where a buffer is
// only used within a single layer.
uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; }
void writeCompositionStateToProto(perfetto::protos::LayerProto* layerProto,
ui::LayerStack layerStack);
inline const State& getDrawingState() const { return mDrawingState; }
inline State& getDrawingState() { return mDrawingState; }
void miniDump(std::string& result, const frontend::LayerSnapshot&, const DisplayDevice&) const;
void dumpFrameStats(std::string& result) const;
void clearFrameStats();
void logFrameStats();
void getFrameStats(FrameStats* outStats) const;
void onDisconnect();
bool onHandleDestroyed() { return mHandleAlive = false; }
/**
* Returns the cropped buffer size or the layer crop if the layer has no buffer. Return
* INVALID_RECT if the layer has no buffer and no crop.
* A layer with an invalid buffer size and no crop is considered to be boundless. The layer
* bounds are constrained by its parent bounds.
*/
Rect getCroppedBufferSize(const Layer::State& s) const;
void setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, nsecs_t postTime,
gui::GameMode gameMode);
void setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info,
nsecs_t postTime, gui::GameMode gameMode);
void addSurfaceFrameDroppedForBuffer(std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame,
nsecs_t dropTime);
void addSurfaceFramePresentedForBuffer(
std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime,
nsecs_t currentLatchTime);
std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForTransaction(
const FrameTimelineInfo& info, nsecs_t postTime, gui::GameMode gameMode);
std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForBuffer(
const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName,
gui::GameMode gameMode);
void setFrameTimelineVsyncForSkippedFrames(const FrameTimelineInfo& info, nsecs_t postTime,
std::string debugName, gui::GameMode gameMode);
bool setTrustedPresentationInfo(TrustedPresentationThresholds const& thresholds,
TrustedPresentationListener const& listener);
void setBufferReleaseChannel(
const std::shared_ptr<gui::BufferReleaseChannel::ProducerEndpoint>& channel);
// Creates a new handle each time, so we only expect
// this to be called once.
sp<IBinder> getHandle();
const std::string& getName() const { return mName; }
virtual uid_t getOwnerUid() const { return mOwnerUid; }
// Used to check if mUsedVsyncIdForRefreshRateSelection should be expired when it stop updating.
nsecs_t mMaxTimeForUseVsyncId = 0;
// True when DrawState.useVsyncIdForRefreshRateSelection previously set to true during updating
// buffer.
bool mUsedVsyncIdForRefreshRateSelection{false};
// Layer serial number. This gives layers an explicit ordering, so we
// have a stable sort order when their layer stack and Z-order are
// the same.
const int32_t sequence;
// See mPendingBufferTransactions
void decrementPendingBufferCount();
std::atomic<int32_t>* getPendingBufferCounter() { return &mPendingBuffers; }
std::string getPendingBufferCounterName() { return mBlastTransactionName; }
void callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
const sp<GraphicBuffer>& buffer, uint64_t framenumber,
const sp<Fence>& releaseFence);
bool setFrameRateForLayerTree(FrameRate, const scheduler::LayerProps&, nsecs_t now);
void recordLayerHistoryBufferUpdate(const scheduler::LayerProps&, nsecs_t now);
void recordLayerHistoryAnimationTx(const scheduler::LayerProps&, nsecs_t now);
bool hasBuffer() const { return mBufferInfo.mBuffer != nullptr; }
void setTransformHint(std::optional<ui::Transform::RotationFlags> transformHint) {
mTransformHint = transformHint;
}
void commitTransaction();
// Keeps track of the previously presented layer stacks. This is used to get
// the release fences from the correct displays when we release the last buffer
// from the layer.
std::vector<ui::LayerStack> mPreviouslyPresentedLayerStacks;
// Release fences for buffers that have not yet received a release
// callback. A release callback may not be given when capturing
// screenshots asynchronously. There may be no buffer update for the
// layer, but the layer will still be composited on the screen in every
// frame. Kepping track of these fences ensures that they are not dropped
// and can be dispatched to the client at a later time. Older fences are
// dropped when a layer stack receives a new fence.
// TODO(b/300533018): Track fence per multi-instance RenderEngine
ftl::SmallMap<ui::LayerStack, ftl::Future<FenceResult>, ui::kDisplayCapacity>
mAdditionalPreviousReleaseFences;
// Exposed so SurfaceFlinger can assert that it's held
const sp<SurfaceFlinger> mFlinger;
// Check if the damage region is a small dirty.
void setIsSmallDirty(frontend::LayerSnapshot* snapshot);
protected:
// For unit tests
friend class TestableSurfaceFlinger;
friend class FpsReporterTest;
friend class RefreshRateSelectionTest;
friend class SetFrameRateTest;
friend class TransactionFrameTracerTest;
friend class TransactionSurfaceFrameTest;
void gatherBufferInfo();
compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const;
compositionengine::OutputLayer* findOutputLayerForDisplay(
const DisplayDevice*, const frontend::LayerHierarchy::TraversalPath& path) const;
const std::string mName;
const std::string mTransactionName{"TX - " + mName};
// These are only accessed by the main thread.
State mDrawingState;
TrustedPresentationThresholds mTrustedPresentationThresholds;
TrustedPresentationListener mTrustedPresentationListener;
bool mLastComputedTrustedPresentationState = false;
bool mLastReportedTrustedPresentationState = false;
int64_t mEnteredTrustedPresentationStateTime = -1;
uint32_t mTransactionFlags{0};
// Leverages FrameTimeline to generate FrameStats. Since FrameTimeline already has the data,
// statistical history needs to only be tracked by count of frames.
// TODO: Deprecate the '--latency-clear' and get rid of this.
std::atomic<uint16_t> mFrameStatsHistorySize;
// Timestamp history for UIAutomation. Thread safe.
FrameTracker mDeprecatedFrameTracker;
// main thread
sp<NativeHandle> mSidebandStream;
// We encode unset as -1.
std::atomic<uint64_t> mCurrentFrameNumber{0};
// protected by mLock
mutable Mutex mLock;
// This layer can be a cursor on some displays.
bool mPotentialCursor{false};
// Window types from WindowManager.LayoutParams
const gui::WindowInfo::Type mWindowType;
// The owner of the layer. If created from a non system process, it will be the calling uid.
// If created from a system process, the value can be passed in.
uid_t mOwnerUid;
// The owner pid of the layer. If created from a non system process, it will be the calling pid.
// If created from a system process, the value can be passed in.
pid_t mOwnerPid;
int32_t mOwnerAppId;
// Keeps track of the time SF latched the last buffer from this layer.
// Used in buffer stuffing analysis in FrameTimeline.
nsecs_t mLastLatchTime = 0;
sp<Fence> mLastClientCompositionFence;
bool mClearClientCompositionFenceOnLayerDisplayed = false;
private:
// Range of uids allocated for a user.
// This value is taken from android.os.UserHandle#PER_USER_RANGE.
static constexpr int32_t PER_USER_RANGE = 100000;
friend class SlotGenerationTest;
friend class TransactionFrameTracerTest;
friend class TransactionSurfaceFrameTest;
bool getSidebandStreamChanged() const { return mSidebandStreamChanged; }
std::atomic<bool> mSidebandStreamChanged{false};
aidl::android::hardware::graphics::composer3::Composition getCompositionType(
const DisplayDevice&) const;
aidl::android::hardware::graphics::composer3::Composition getCompositionType(
const compositionengine::OutputLayer*) const;
inline void tracePendingBufferCount(int32_t pendingBuffers);
// Latch sideband stream and returns true if the dirty region should be updated.
bool latchSidebandStream(bool& recomputeVisibleRegions);
void updateTexImage(nsecs_t latchTime, bool bgColorOnly = false);
// Crop that applies to the buffer
Rect computeBufferCrop(const State& s);
void callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
const sp<GraphicBuffer>& buffer, uint64_t framenumber,
const sp<Fence>& releaseFence,
uint32_t currentMaxAcquiredBufferCount);
bool hasBufferOrSidebandStream() const {
return ((mSidebandStream != nullptr) || (mBufferInfo.mBuffer != nullptr));
}
bool hasBufferOrSidebandStreamInDrawing() const {
return ((mDrawingState.sidebandStream != nullptr) || (mDrawingState.buffer != nullptr));
}
bool mGetHandleCalled = false;
// The inherited shadow radius after taking into account the layer hierarchy. This is the
// final shadow radius for this layer. If a shadow is specified for a layer, then effective
// shadow radius is the set shadow radius, otherwise its the parent's shadow radius.
float mEffectiveShadowRadius = 0.f;
// Game mode for the layer. Set by WindowManagerShell and recorded by SurfaceFlingerStats.
gui::GameMode mGameMode = gui::GameMode::Unsupported;
bool mIsAtRoot = false;
uint32_t mLayerCreationFlags;
void releasePreviousBuffer();
void resetDrawingStateBufferInfo();
// Transform hint provided to the producer. This must be accessed holding
// the mStateLock.
std::optional<ui::Transform::RotationFlags> mTransformHint = std::nullopt;
ReleaseCallbackId mPreviousReleaseCallbackId = ReleaseCallbackId::INVALID_ID;
sp<IBinder> mPreviousReleaseBufferEndpoint;
bool mReleasePreviousBuffer = false;
// Stores the last set acquire fence signal time used to populate the callback handle's acquire
// time.
std::variant<nsecs_t, sp<Fence>> mCallbackHandleAcquireTimeOrFence = -1;
const std::string mBlastTransactionName{"BufferTX - " + mName};
// This integer is incremented everytime a buffer arrives at the server for this layer,
// and decremented when a buffer is dropped or latched. When changed the integer is exported
// to systrace with SFTRACE_INT and mBlastTransactionName. This way when debugging perf it is
// possible to see when a buffer arrived at the server, and in which frame it latched.
//
// You can understand the trace this way:
// - If the integer increases, a buffer arrived at the server.
// - If the integer decreases in latchBuffer, that buffer was latched
// - If the integer decreases in setBuffer, a buffer was dropped
std::atomic<int32_t> mPendingBuffers{0};
// Contains requested position and matrix updates. This will be applied if the client does
// not specify a destination frame.
ui::Transform mRequestedTransform;
std::vector<std::pair<frontend::LayerHierarchy::TraversalPath, sp<LayerFE>>> mLayerFEs;
bool mHandleAlive = false;
std::optional<std::reference_wrapper<frametimeline::FrameTimeline>> getTimeline() const {
return *mFlinger->mFrameTimeline;
}
};
std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate);
} // namespace android