| /* |
| * Copyright 2024 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #pragma once |
| |
| /* |
| * Native input transport. |
| * |
| * The InputConsumer is used by the application to receive events from the input dispatcher. |
| */ |
| |
| #include "InputTransport.h" |
| |
| namespace android { |
| |
| /* |
| * Consumes input events from an input channel. |
| */ |
| class InputConsumer { |
| public: |
| /* Create a consumer associated with an input channel. */ |
| explicit InputConsumer(const std::shared_ptr<InputChannel>& channel); |
| /* Create a consumer associated with an input channel, override resampling system property */ |
| explicit InputConsumer(const std::shared_ptr<InputChannel>& channel, |
| bool enableTouchResampling); |
| |
| /* Destroys the consumer and releases its input channel. */ |
| ~InputConsumer(); |
| |
| /* Gets the underlying input channel. */ |
| inline std::shared_ptr<InputChannel> getChannel() { return mChannel; } |
| |
| /* Consumes an input event from the input channel and copies its contents into |
| * an InputEvent object created using the specified factory. |
| * |
| * Tries to combine a series of move events into larger batches whenever possible. |
| * |
| * If consumeBatches is false, then defers consuming pending batched events if it |
| * is possible for additional samples to be added to them later. Call hasPendingBatch() |
| * to determine whether a pending batch is available to be consumed. |
| * |
| * If consumeBatches is true, then events are still batched but they are consumed |
| * immediately as soon as the input channel is exhausted. |
| * |
| * The frameTime parameter specifies the time when the current display frame started |
| * rendering in the CLOCK_MONOTONIC time base, or -1 if unknown. |
| * |
| * The returned sequence number is never 0 unless the operation failed. |
| * |
| * Returns OK on success. |
| * Returns WOULD_BLOCK if there is no event present. |
| * Returns DEAD_OBJECT if the channel's peer has been closed. |
| * Returns NO_MEMORY if the event could not be created. |
| * Other errors probably indicate that the channel is broken. |
| */ |
| status_t consume(InputEventFactoryInterface* factory, bool consumeBatches, nsecs_t frameTime, |
| uint32_t* outSeq, InputEvent** outEvent); |
| |
| /* Sends a finished signal to the publisher to inform it that the message |
| * with the specified sequence number has finished being process and whether |
| * the message was handled by the consumer. |
| * |
| * Returns OK on success. |
| * Returns BAD_VALUE if seq is 0. |
| * Other errors probably indicate that the channel is broken. |
| */ |
| status_t sendFinishedSignal(uint32_t seq, bool handled); |
| |
| status_t sendTimeline(int32_t inputEventId, |
| std::array<nsecs_t, GraphicsTimeline::SIZE> timeline); |
| |
| /* Returns true if there is a pending batch. |
| * |
| * Should be called after calling consume() with consumeBatches == false to determine |
| * whether consume() should be called again later on with consumeBatches == true. |
| */ |
| bool hasPendingBatch() const; |
| |
| /* Returns the source of first pending batch if exist. |
| * |
| * Should be called after calling consume() with consumeBatches == false to determine |
| * whether consume() should be called again later on with consumeBatches == true. |
| */ |
| int32_t getPendingBatchSource() const; |
| |
| /* Returns true when there is *likely* a pending batch or a pending event in the channel. |
| * |
| * This is only a performance hint and may return false negative results. Clients should not |
| * rely on availability of the message based on the return value. |
| */ |
| bool probablyHasInput() const; |
| |
| std::string dump() const; |
| |
| private: |
| // True if touch resampling is enabled. |
| const bool mResampleTouch; |
| |
| std::shared_ptr<InputChannel> mChannel; |
| |
| // TODO(b/311142655): delete this temporary tracing after the ANR bug is fixed |
| const std::string mProcessingTraceTag; |
| const std::string mLifetimeTraceTag; |
| const int32_t mLifetimeTraceCookie; |
| |
| // The current input message. |
| InputMessage mMsg; |
| |
| // True if mMsg contains a valid input message that was deferred from the previous |
| // call to consume and that still needs to be handled. |
| bool mMsgDeferred; |
| |
| // Batched motion events per device and source. |
| struct Batch { |
| std::vector<InputMessage> samples; |
| }; |
| std::vector<Batch> mBatches; |
| |
| // Touch state per device and source, only for sources of class pointer. |
| struct History { |
| nsecs_t eventTime; |
| BitSet32 idBits; |
| int32_t idToIndex[MAX_POINTER_ID + 1]; |
| PointerCoords pointers[MAX_POINTERS]; |
| |
| void initializeFrom(const InputMessage& msg) { |
| eventTime = msg.body.motion.eventTime; |
| idBits.clear(); |
| for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) { |
| uint32_t id = msg.body.motion.pointers[i].properties.id; |
| idBits.markBit(id); |
| idToIndex[id] = i; |
| pointers[i].copyFrom(msg.body.motion.pointers[i].coords); |
| } |
| } |
| |
| void initializeFrom(const History& other) { |
| eventTime = other.eventTime; |
| idBits = other.idBits; // temporary copy |
| for (size_t i = 0; i < other.idBits.count(); i++) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| int32_t index = other.idToIndex[id]; |
| idToIndex[id] = index; |
| pointers[index].copyFrom(other.pointers[index]); |
| } |
| idBits = other.idBits; // final copy |
| } |
| |
| const PointerCoords& getPointerById(uint32_t id) const { return pointers[idToIndex[id]]; } |
| |
| bool hasPointerId(uint32_t id) const { return idBits.hasBit(id); } |
| }; |
| struct TouchState { |
| int32_t deviceId; |
| int32_t source; |
| size_t historyCurrent; |
| size_t historySize; |
| History history[2]; |
| History lastResample; |
| |
| void initialize(int32_t incomingDeviceId, int32_t incomingSource) { |
| deviceId = incomingDeviceId; |
| source = incomingSource; |
| historyCurrent = 0; |
| historySize = 0; |
| lastResample.eventTime = 0; |
| lastResample.idBits.clear(); |
| } |
| |
| void addHistory(const InputMessage& msg) { |
| historyCurrent ^= 1; |
| if (historySize < 2) { |
| historySize += 1; |
| } |
| history[historyCurrent].initializeFrom(msg); |
| } |
| |
| const History* getHistory(size_t index) const { |
| return &history[(historyCurrent + index) & 1]; |
| } |
| |
| bool recentCoordinatesAreIdentical(uint32_t id) const { |
| // Return true if the two most recently received "raw" coordinates are identical |
| if (historySize < 2) { |
| return false; |
| } |
| if (!getHistory(0)->hasPointerId(id) || !getHistory(1)->hasPointerId(id)) { |
| return false; |
| } |
| float currentX = getHistory(0)->getPointerById(id).getX(); |
| float currentY = getHistory(0)->getPointerById(id).getY(); |
| float previousX = getHistory(1)->getPointerById(id).getX(); |
| float previousY = getHistory(1)->getPointerById(id).getY(); |
| if (currentX == previousX && currentY == previousY) { |
| return true; |
| } |
| return false; |
| } |
| }; |
| std::vector<TouchState> mTouchStates; |
| |
| // Chain of batched sequence numbers. When multiple input messages are combined into |
| // a batch, we append a record here that associates the last sequence number in the |
| // batch with the previous one. When the finished signal is sent, we traverse the |
| // chain to individually finish all input messages that were part of the batch. |
| struct SeqChain { |
| uint32_t seq; // sequence number of batched input message |
| uint32_t chain; // sequence number of previous batched input message |
| }; |
| std::vector<SeqChain> mSeqChains; |
| |
| // The time at which each event with the sequence number 'seq' was consumed. |
| // This data is provided in 'finishInputEvent' so that the receiving end can measure the latency |
| // This collection is populated when the event is received, and the entries are erased when the |
| // events are finished. It should not grow infinitely because if an event is not ack'd, ANR |
| // will be raised for that connection, and no further events will be posted to that channel. |
| std::unordered_map<uint32_t /*seq*/, nsecs_t /*consumeTime*/> mConsumeTimes; |
| |
| status_t consumeBatch(InputEventFactoryInterface* factory, nsecs_t frameTime, uint32_t* outSeq, |
| InputEvent** outEvent); |
| status_t consumeSamples(InputEventFactoryInterface* factory, Batch& batch, size_t count, |
| uint32_t* outSeq, InputEvent** outEvent); |
| |
| void updateTouchState(InputMessage& msg); |
| void resampleTouchState(nsecs_t frameTime, MotionEvent* event, const InputMessage* next); |
| |
| ssize_t findBatch(int32_t deviceId, int32_t source) const; |
| ssize_t findTouchState(int32_t deviceId, int32_t source) const; |
| |
| nsecs_t getConsumeTime(uint32_t seq) const; |
| void popConsumeTime(uint32_t seq); |
| status_t sendUnchainedFinishedSignal(uint32_t seq, bool handled); |
| |
| static void rewriteMessage(TouchState& state, InputMessage& msg); |
| static bool canAddSample(const Batch& batch, const InputMessage* msg); |
| static ssize_t findSampleNoLaterThan(const Batch& batch, nsecs_t time); |
| |
| static bool isTouchResamplingEnabled(); |
| }; |
| |
| } // namespace android |