| /* |
| * Copyright 2024 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #pragma once |
| |
| #include <android-base/expected.h> |
| #include <ftl/optional.h> |
| #include <ftl/unit.h> |
| |
| #include <utility> |
| |
| // Given an expression `expr` that evaluates to an ftl::Expected<T, E> result (R for short), FTL_TRY |
| // unwraps T out of R, or bails out of the enclosing function F if R has an error E. The return type |
| // of F must be R, since FTL_TRY propagates R in the error case. As a special case, ftl::Unit may be |
| // used as the error E to allow FTL_TRY expressions when F returns `void`. |
| // |
| // The non-standard syntax requires `-Wno-gnu-statement-expression-from-macro-expansion` to compile. |
| // The UnitToVoid conversion allows the macro to be used for early exit from a function that returns |
| // `void`. |
| // |
| // Example usage: |
| // |
| // using StringExp = ftl::Expected<std::string, std::errc>; |
| // |
| // StringExp repeat(StringExp exp) { |
| // const std::string str = FTL_TRY(exp); |
| // return StringExp(str + str); |
| // } |
| // |
| // assert(StringExp("haha"s) == repeat(StringExp("ha"s))); |
| // assert(repeat(ftl::Unexpected(std::errc::bad_message)).has_error([](std::errc e) { |
| // return e == std::errc::bad_message; |
| // })); |
| // |
| // |
| // FTL_TRY may be used in void-returning functions by using ftl::Unit as the error type: |
| // |
| // void uppercase(char& c, ftl::Optional<char> opt) { |
| // c = std::toupper(FTL_TRY(std::move(opt).ok_or(ftl::Unit()))); |
| // } |
| // |
| // char c = '?'; |
| // uppercase(c, std::nullopt); |
| // assert(c == '?'); |
| // |
| // uppercase(c, 'a'); |
| // assert(c == 'A'); |
| // |
| #define FTL_TRY(expr) \ |
| ({ \ |
| auto exp_ = (expr); \ |
| if (!exp_.has_value()) { \ |
| using E = decltype(exp_)::error_type; \ |
| return android::ftl::details::UnitToVoid<E>::from(std::move(exp_)); \ |
| } \ |
| exp_.value(); \ |
| }) |
| |
| // Given an expression `expr` that evaluates to an ftl::Expected<T, E> result (R for short), |
| // FTL_EXPECT unwraps T out of R, or bails out of the enclosing function F if R has an error E. |
| // While FTL_TRY bails out with R, FTL_EXPECT bails out with E, which is useful when F does not |
| // need to propagate R because T is not relevant to the caller. |
| // |
| // Example usage: |
| // |
| // using StringExp = ftl::Expected<std::string, std::errc>; |
| // |
| // std::errc repeat(StringExp exp, std::string& out) { |
| // const std::string str = FTL_EXPECT(exp); |
| // out = str + str; |
| // return std::errc::operation_in_progress; |
| // } |
| // |
| // std::string str; |
| // assert(std::errc::operation_in_progress == repeat(StringExp("ha"s), str)); |
| // assert("haha"s == str); |
| // assert(std::errc::bad_message == repeat(ftl::Unexpected(std::errc::bad_message), str)); |
| // assert("haha"s == str); |
| // |
| #define FTL_EXPECT(expr) \ |
| ({ \ |
| auto exp_ = (expr); \ |
| if (!exp_.has_value()) { \ |
| return std::move(exp_.error()); \ |
| } \ |
| exp_.value(); \ |
| }) |
| |
| namespace android::ftl { |
| |
| // Superset of base::expected<T, E> with monadic operations. |
| // |
| // TODO: Extend std::expected<T, E> in C++23. |
| // |
| template <typename T, typename E> |
| struct Expected final : base::expected<T, E> { |
| using Base = base::expected<T, E>; |
| using Base::expected; |
| |
| using Base::error; |
| using Base::has_value; |
| using Base::value; |
| |
| template <typename P> |
| constexpr bool has_error(P predicate) const { |
| return !has_value() && predicate(error()); |
| } |
| |
| constexpr Optional<T> value_opt() const& { |
| return has_value() ? Optional(value()) : std::nullopt; |
| } |
| |
| constexpr Optional<T> value_opt() && { |
| return has_value() ? Optional(std::move(value())) : std::nullopt; |
| } |
| |
| // Delete new for this class. Its base doesn't have a virtual destructor, and |
| // if it got deleted via base class pointer, it would cause undefined |
| // behavior. There's not a good reason to allocate this object on the heap |
| // anyway. |
| static void* operator new(size_t) = delete; |
| static void* operator new[](size_t) = delete; |
| }; |
| |
| template <typename E> |
| constexpr auto Unexpected(E&& error) { |
| return base::unexpected(std::forward<E>(error)); |
| } |
| |
| } // namespace android::ftl |