|  | /* | 
|  | * Copyright 2019 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic push | 
|  | #pragma clang diagnostic ignored "-Wextra" | 
|  |  | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  | //#define LOG_NDEBUG 0 | 
|  | #include "VSyncPredictor.h" | 
|  | #include <android-base/logging.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <cutils/compiler.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <utils/Log.h> | 
|  | #include <utils/Trace.h> | 
|  | #include <algorithm> | 
|  | #include <chrono> | 
|  | #include <sstream> | 
|  | #include "RefreshRateConfigs.h" | 
|  |  | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "VSyncPredictor" | 
|  |  | 
|  | namespace android::scheduler { | 
|  | using base::StringAppendF; | 
|  |  | 
|  | static auto constexpr kMaxPercent = 100u; | 
|  |  | 
|  | VSyncPredictor::~VSyncPredictor() = default; | 
|  |  | 
|  | VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize, | 
|  | size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent) | 
|  | : mTraceOn(property_get_bool("debug.sf.vsp_trace", true)), | 
|  | kHistorySize(historySize), | 
|  | kMinimumSamplesForPrediction(minimumSamplesForPrediction), | 
|  | kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)), | 
|  | mIdealPeriod(idealPeriod) { | 
|  | resetModel(); | 
|  | } | 
|  |  | 
|  | inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const { | 
|  | if (CC_UNLIKELY(mTraceOn)) { | 
|  | ATRACE_INT64(name, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | inline size_t VSyncPredictor::next(size_t i) const { | 
|  | return (i + 1) % mTimestamps.size(); | 
|  | } | 
|  |  | 
|  | bool VSyncPredictor::validate(nsecs_t timestamp) const { | 
|  | if (mLastTimestampIndex < 0 || mTimestamps.empty()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto const aValidTimestamp = mTimestamps[mLastTimestampIndex]; | 
|  | auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod; | 
|  | if (percent >= kOutlierTolerancePercent && | 
|  | percent <= (kMaxPercent - kOutlierTolerancePercent)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(), | 
|  | [timestamp](nsecs_t a, nsecs_t b) { | 
|  | return std::abs(timestamp - a) < std::abs(timestamp - b); | 
|  | }); | 
|  | const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod; | 
|  | if (distancePercent < kOutlierTolerancePercent) { | 
|  | // duplicate timestamp | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | nsecs_t VSyncPredictor::currentPeriod() const { | 
|  | std::lock_guard lock(mMutex); | 
|  | return mRateMap.find(mIdealPeriod)->second.slope; | 
|  | } | 
|  |  | 
|  | bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) { | 
|  | std::lock_guard lock(mMutex); | 
|  |  | 
|  | if (!validate(timestamp)) { | 
|  | // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored, | 
|  | // don't insert this ts into mTimestamps ringbuffer. If we are still | 
|  | // in the learning phase we should just clear all timestamps and start | 
|  | // over. | 
|  | if (mTimestamps.size() < kMinimumSamplesForPrediction) { | 
|  | // Add the timestamp to mTimestamps before clearing it so we could | 
|  | // update mKnownTimestamp based on the new timestamp. | 
|  | mTimestamps.push_back(timestamp); | 
|  | clearTimestamps(); | 
|  | } else if (!mTimestamps.empty()) { | 
|  | mKnownTimestamp = | 
|  | std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end())); | 
|  | } else { | 
|  | mKnownTimestamp = timestamp; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (mTimestamps.size() != kHistorySize) { | 
|  | mTimestamps.push_back(timestamp); | 
|  | mLastTimestampIndex = next(mLastTimestampIndex); | 
|  | } else { | 
|  | mLastTimestampIndex = next(mLastTimestampIndex); | 
|  | mTimestamps[mLastTimestampIndex] = timestamp; | 
|  | } | 
|  |  | 
|  | if (mTimestamps.size() < kMinimumSamplesForPrediction) { | 
|  | mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is a 'simple linear regression' calculation of Y over X, with Y being the | 
|  | // vsync timestamps, and X being the ordinal of vsync count. | 
|  | // The calculated slope is the vsync period. | 
|  | // Formula for reference: | 
|  | // Sigma_i: means sum over all timestamps. | 
|  | // mean(variable): statistical mean of variable. | 
|  | // X: snapped ordinal of the timestamp | 
|  | // Y: vsync timestamp | 
|  | // | 
|  | //         Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) ) | 
|  | // slope = ------------------------------------------- | 
|  | //         Sigma_i ( X_i - mean(X) ) ^ 2 | 
|  | // | 
|  | // intercept = mean(Y) - slope * mean(X) | 
|  | // | 
|  | std::vector<nsecs_t> vsyncTS(mTimestamps.size()); | 
|  | std::vector<nsecs_t> ordinals(mTimestamps.size()); | 
|  |  | 
|  | // normalizing to the oldest timestamp cuts down on error in calculating the intercept. | 
|  | auto const oldest_ts = *std::min_element(mTimestamps.begin(), mTimestamps.end()); | 
|  | auto it = mRateMap.find(mIdealPeriod); | 
|  | auto const currentPeriod = it->second.slope; | 
|  | // TODO (b/144707443): its important that there's some precision in the mean of the ordinals | 
|  | //                     for the intercept calculation, so scale the ordinals by 1000 to continue | 
|  | //                     fixed point calculation. Explore expanding | 
|  | //                     scheduler::utils::calculate_mean to have a fixed point fractional part. | 
|  | static constexpr int64_t kScalingFactor = 1000; | 
|  |  | 
|  | for (auto i = 0u; i < mTimestamps.size(); i++) { | 
|  | traceInt64If("VSP-ts", mTimestamps[i]); | 
|  |  | 
|  | vsyncTS[i] = mTimestamps[i] - oldest_ts; | 
|  | ordinals[i] = ((vsyncTS[i] + (currentPeriod / 2)) / currentPeriod) * kScalingFactor; | 
|  | } | 
|  |  | 
|  | auto meanTS = scheduler::calculate_mean(vsyncTS); | 
|  | auto meanOrdinal = scheduler::calculate_mean(ordinals); | 
|  | for (size_t i = 0; i < vsyncTS.size(); i++) { | 
|  | vsyncTS[i] -= meanTS; | 
|  | ordinals[i] -= meanOrdinal; | 
|  | } | 
|  |  | 
|  | auto top = 0ll; | 
|  | auto bottom = 0ll; | 
|  | for (size_t i = 0; i < vsyncTS.size(); i++) { | 
|  | top += vsyncTS[i] * ordinals[i]; | 
|  | bottom += ordinals[i] * ordinals[i]; | 
|  | } | 
|  |  | 
|  | if (CC_UNLIKELY(bottom == 0)) { | 
|  | it->second = {mIdealPeriod, 0}; | 
|  | clearTimestamps(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom; | 
|  | nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); | 
|  |  | 
|  | auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod; | 
|  | if (percent >= kOutlierTolerancePercent) { | 
|  | it->second = {mIdealPeriod, 0}; | 
|  | clearTimestamps(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | traceInt64If("VSP-period", anticipatedPeriod); | 
|  | traceInt64If("VSP-intercept", intercept); | 
|  |  | 
|  | it->second = {anticipatedPeriod, intercept}; | 
|  |  | 
|  | ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp, | 
|  | anticipatedPeriod, intercept); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const { | 
|  | auto const [slope, intercept] = getVSyncPredictionModelLocked(); | 
|  |  | 
|  | if (mTimestamps.empty()) { | 
|  | traceInt64If("VSP-mode", 1); | 
|  | auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; | 
|  | auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1; | 
|  | return knownTimestamp + numPeriodsOut * mIdealPeriod; | 
|  | } | 
|  |  | 
|  | auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end()); | 
|  |  | 
|  | // See b/145667109, the ordinal calculation must take into account the intercept. | 
|  | auto const zeroPoint = oldest + intercept; | 
|  | auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope; | 
|  | auto const prediction = (ordinalRequest * slope) + intercept + oldest; | 
|  |  | 
|  | traceInt64If("VSP-mode", 0); | 
|  | traceInt64If("VSP-timePoint", timePoint); | 
|  | traceInt64If("VSP-prediction", prediction); | 
|  |  | 
|  | auto const printer = [&, slope = slope, intercept = intercept] { | 
|  | std::stringstream str; | 
|  | str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+" | 
|  | << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept | 
|  | << "oldestTS: " << oldest << " ordinal: " << ordinalRequest; | 
|  | return str.str(); | 
|  | }; | 
|  |  | 
|  | ALOGV("%s", printer().c_str()); | 
|  | LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s", | 
|  | printer().c_str()); | 
|  |  | 
|  | return prediction; | 
|  | } | 
|  |  | 
|  | nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const { | 
|  | std::lock_guard lock(mMutex); | 
|  | return nextAnticipatedVSyncTimeFromLocked(timePoint); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns whether a given vsync timestamp is in phase with a frame rate. | 
|  | * If the frame rate is not a divider of the refresh rate, it is always considered in phase. | 
|  | * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6): | 
|  | * isVSyncInPhase(16.6, 30) = true | 
|  | * isVSyncInPhase(33.3, 30) = false | 
|  | * isVSyncInPhase(50.0, 30) = true | 
|  | */ | 
|  | bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const { | 
|  | struct VsyncError { | 
|  | nsecs_t vsyncTimestamp; | 
|  | float error; | 
|  |  | 
|  | bool operator<(const VsyncError& other) const { return error < other.error; } | 
|  | }; | 
|  |  | 
|  | std::lock_guard lock(mMutex); | 
|  | const auto divider = | 
|  | RefreshRateConfigs::getFrameRateDivider(Fps::fromPeriodNsecs(mIdealPeriod), frameRate); | 
|  | if (divider <= 1 || timePoint == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const nsecs_t period = mRateMap[mIdealPeriod].slope; | 
|  | const nsecs_t justBeforeTimePoint = timePoint - period / 2; | 
|  | const nsecs_t dividedPeriod = mIdealPeriod / divider; | 
|  |  | 
|  | // If this is the first time we have asked about this divider with the | 
|  | // current vsync period, it is considered in phase and we store the closest | 
|  | // vsync timestamp | 
|  | const auto knownTimestampIter = mRateDividerKnownTimestampMap.find(dividedPeriod); | 
|  | if (knownTimestampIter == mRateDividerKnownTimestampMap.end()) { | 
|  | const auto vsync = nextAnticipatedVSyncTimeFromLocked(justBeforeTimePoint); | 
|  | mRateDividerKnownTimestampMap[dividedPeriod] = vsync; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Find the next N vsync timestamp where N is the divider. | 
|  | // One of these vsyncs will be in phase. We return the one which is | 
|  | // the most aligned with the last known in phase vsync | 
|  | std::vector<VsyncError> vsyncs(static_cast<size_t>(divider)); | 
|  | const nsecs_t knownVsync = knownTimestampIter->second; | 
|  | nsecs_t point = justBeforeTimePoint; | 
|  | for (size_t i = 0; i < divider; i++) { | 
|  | const nsecs_t vsync = nextAnticipatedVSyncTimeFromLocked(point); | 
|  | const auto numPeriods = static_cast<float>(vsync - knownVsync) / (period * divider); | 
|  | const auto error = std::abs(std::round(numPeriods) - numPeriods); | 
|  | vsyncs[i] = {vsync, error}; | 
|  | point = vsync + 1; | 
|  | } | 
|  |  | 
|  | const auto minVsyncError = std::min_element(vsyncs.begin(), vsyncs.end()); | 
|  | mRateDividerKnownTimestampMap[dividedPeriod] = minVsyncError->vsyncTimestamp; | 
|  | return std::abs(minVsyncError->vsyncTimestamp - timePoint) < period / 2; | 
|  | } | 
|  |  | 
|  | VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const { | 
|  | std::lock_guard lock(mMutex); | 
|  | const auto model = VSyncPredictor::getVSyncPredictionModelLocked(); | 
|  | return {model.slope, model.intercept}; | 
|  | } | 
|  |  | 
|  | VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const { | 
|  | return mRateMap.find(mIdealPeriod)->second; | 
|  | } | 
|  |  | 
|  | void VSyncPredictor::setPeriod(nsecs_t period) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | std::lock_guard lock(mMutex); | 
|  | static constexpr size_t kSizeLimit = 30; | 
|  | if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) { | 
|  | mRateMap.erase(mRateMap.begin()); | 
|  | } | 
|  |  | 
|  | mIdealPeriod = period; | 
|  | if (mRateMap.find(period) == mRateMap.end()) { | 
|  | mRateMap[mIdealPeriod] = {period, 0}; | 
|  | } | 
|  |  | 
|  | clearTimestamps(); | 
|  | } | 
|  |  | 
|  | void VSyncPredictor::clearTimestamps() { | 
|  | if (!mTimestamps.empty()) { | 
|  | auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end()); | 
|  | if (mKnownTimestamp) { | 
|  | mKnownTimestamp = std::max(*mKnownTimestamp, maxRb); | 
|  | } else { | 
|  | mKnownTimestamp = maxRb; | 
|  | } | 
|  |  | 
|  | mTimestamps.clear(); | 
|  | mLastTimestampIndex = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VSyncPredictor::needsMoreSamples() const { | 
|  | std::lock_guard lock(mMutex); | 
|  | return mTimestamps.size() < kMinimumSamplesForPrediction; | 
|  | } | 
|  |  | 
|  | void VSyncPredictor::resetModel() { | 
|  | std::lock_guard lock(mMutex); | 
|  | mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; | 
|  | clearTimestamps(); | 
|  | } | 
|  |  | 
|  | void VSyncPredictor::dump(std::string& result) const { | 
|  | std::lock_guard lock(mMutex); | 
|  | StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f); | 
|  | StringAppendF(&result, "\tRefresh Rate Map:\n"); | 
|  | for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) { | 
|  | StringAppendF(&result, | 
|  | "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n", | 
|  | idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f, | 
|  | periodInterceptTuple.intercept); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace android::scheduler | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic pop // ignored "-Wextra" |