|  | /* | 
|  | * Copyright 2018 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "Scheduler" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "Scheduler.h" | 
|  |  | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> | 
|  | #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> | 
|  | #include <configstore/Utils.h> | 
|  | #include <ftl/fake_guard.h> | 
|  | #include <gui/WindowInfo.h> | 
|  | #include <system/window.h> | 
|  | #include <ui/DisplayStatInfo.h> | 
|  | #include <utils/Timers.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <FrameTimeline/FrameTimeline.h> | 
|  | #include <algorithm> | 
|  | #include <cinttypes> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "../Layer.h" | 
|  | #include "DispSyncSource.h" | 
|  | #include "EventThread.h" | 
|  | #include "FrameRateOverrideMappings.h" | 
|  | #include "InjectVSyncSource.h" | 
|  | #include "OneShotTimer.h" | 
|  | #include "SurfaceFlingerProperties.h" | 
|  | #include "VSyncPredictor.h" | 
|  | #include "VSyncReactor.h" | 
|  |  | 
|  | #define RETURN_IF_INVALID_HANDLE(handle, ...)                        \ | 
|  | do {                                                             \ | 
|  | if (mConnections.count(handle) == 0) {                       \ | 
|  | ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ | 
|  | return __VA_ARGS__;                                      \ | 
|  | }                                                            \ | 
|  | } while (false) | 
|  |  | 
|  | namespace android::scheduler { | 
|  |  | 
|  | Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features) | 
|  | : impl::MessageQueue(compositor), mFeatures(features), mSchedulerCallback(callback) {} | 
|  |  | 
|  | Scheduler::~Scheduler() { | 
|  | // Stop timers and wait for their threads to exit. | 
|  | mDisplayPowerTimer.reset(); | 
|  | mTouchTimer.reset(); | 
|  |  | 
|  | // Stop idle timer and clear callbacks, as the RefreshRateConfigs may outlive the Scheduler. | 
|  | setRefreshRateConfigs(nullptr); | 
|  | } | 
|  |  | 
|  | void Scheduler::startTimers() { | 
|  | using namespace sysprop; | 
|  | using namespace std::string_literals; | 
|  |  | 
|  | if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { | 
|  | // Touch events are coming to SF every 100ms, so the timer needs to be higher than that | 
|  | mTouchTimer.emplace( | 
|  | "TouchTimer", std::chrono::milliseconds(millis), | 
|  | [this] { touchTimerCallback(TimerState::Reset); }, | 
|  | [this] { touchTimerCallback(TimerState::Expired); }); | 
|  | mTouchTimer->start(); | 
|  | } | 
|  |  | 
|  | if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { | 
|  | mDisplayPowerTimer.emplace( | 
|  | "DisplayPowerTimer", std::chrono::milliseconds(millis), | 
|  | [this] { displayPowerTimerCallback(TimerState::Reset); }, | 
|  | [this] { displayPowerTimerCallback(TimerState::Expired); }); | 
|  | mDisplayPowerTimer->start(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setRefreshRateConfigs(std::shared_ptr<RefreshRateConfigs> configs) { | 
|  | // The current RefreshRateConfigs instance may outlive this call, so unbind its idle timer. | 
|  | { | 
|  | // mRefreshRateConfigsLock is not locked here to avoid the deadlock | 
|  | // as the callback can attempt to acquire the lock before stopIdleTimer can finish | 
|  | // the execution. It's safe to FakeGuard as main thread is the only thread that | 
|  | // writes to the mRefreshRateConfigs. | 
|  | ftl::FakeGuard guard(mRefreshRateConfigsLock); | 
|  | if (mRefreshRateConfigs) { | 
|  | mRefreshRateConfigs->stopIdleTimer(); | 
|  | mRefreshRateConfigs->clearIdleTimerCallbacks(); | 
|  | } | 
|  | } | 
|  | { | 
|  | // Clear state that depends on the current instance. | 
|  | std::scoped_lock lock(mPolicyLock); | 
|  | mPolicy = {}; | 
|  | } | 
|  |  | 
|  | std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  | mRefreshRateConfigs = std::move(configs); | 
|  | if (!mRefreshRateConfigs) return; | 
|  |  | 
|  | mRefreshRateConfigs->setIdleTimerCallbacks( | 
|  | {.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); }, | 
|  | .onExpired = [this] { idleTimerCallback(TimerState::Expired); }}, | 
|  | .kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); }, | 
|  | .onExpired = [this] { kernelIdleTimerCallback(TimerState::Expired); }}}); | 
|  |  | 
|  | mRefreshRateConfigs->startIdleTimer(); | 
|  | } | 
|  |  | 
|  | void Scheduler::run() { | 
|  | while (true) { | 
|  | waitMessage(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::createVsyncSchedule(FeatureFlags features) { | 
|  | mVsyncSchedule.emplace(features); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource( | 
|  | const char* name, std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration, bool traceVsync) { | 
|  | return std::make_unique<scheduler::DispSyncSource>(mVsyncSchedule->getDispatch(), | 
|  | mVsyncSchedule->getTracker(), workDuration, | 
|  | readyDuration, traceVsync, name); | 
|  | } | 
|  |  | 
|  | std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const { | 
|  | const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
|  | const bool supportsFrameRateOverrideByContent = | 
|  | refreshRateConfigs->supportsFrameRateOverrideByContent(); | 
|  | return mFrameRateOverrideMappings | 
|  | .getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent); | 
|  | } | 
|  |  | 
|  | bool Scheduler::isVsyncValid(nsecs_t expectedVsyncTimestamp, uid_t uid) const { | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return mVsyncSchedule->getTracker().isVSyncInPhase(expectedVsyncTimestamp, *frameRate); | 
|  | } | 
|  |  | 
|  | impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const { | 
|  | std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  |  | 
|  | return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) { | 
|  | return !isVsyncValid(expectedVsyncTimestamp, uid); | 
|  | }; | 
|  | } | 
|  |  | 
|  | impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const { | 
|  | return [this](uid_t uid) { | 
|  | const Fps refreshRate = holdRefreshRateConfigs()->getActiveMode()->getFps(); | 
|  | const auto currentPeriod = | 
|  | mVsyncSchedule->getTracker().currentPeriod() ?: refreshRate.getPeriodNsecs(); | 
|  |  | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return currentPeriod; | 
|  | } | 
|  |  | 
|  | const auto divisor = RefreshRateConfigs::getFrameRateDivisor(refreshRate, *frameRate); | 
|  | if (divisor <= 1) { | 
|  | return currentPeriod; | 
|  | } | 
|  | return currentPeriod * divisor; | 
|  | }; | 
|  | } | 
|  |  | 
|  | ConnectionHandle Scheduler::createConnection( | 
|  | const char* connectionName, frametimeline::TokenManager* tokenManager, | 
|  | std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration, | 
|  | impl::EventThread::InterceptVSyncsCallback interceptCallback) { | 
|  | auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration); | 
|  | auto throttleVsync = makeThrottleVsyncCallback(); | 
|  | auto getVsyncPeriod = makeGetVsyncPeriodFunction(); | 
|  | auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager, | 
|  | std::move(interceptCallback), | 
|  | std::move(throttleVsync), | 
|  | std::move(getVsyncPeriod)); | 
|  | return createConnection(std::move(eventThread)); | 
|  | } | 
|  |  | 
|  | ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { | 
|  | const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; | 
|  | ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); | 
|  |  | 
|  | auto connection = createConnectionInternal(eventThread.get()); | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::createConnectionInternal( | 
|  | EventThread* eventThread, ISurfaceComposer::EventRegistrationFlags eventRegistration) { | 
|  | return eventThread->createEventConnection([&] { resync(); }, eventRegistration); | 
|  | } | 
|  |  | 
|  | sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( | 
|  | ConnectionHandle handle, ISurfaceComposer::EventRegistrationFlags eventRegistration) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration); | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return mConnections[handle].connection; | 
|  | } | 
|  |  | 
|  | void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | bool connected) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  |  | 
|  | thread->onHotplugReceived(displayId, connected); | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenAcquired(ConnectionHandle handle) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onScreenAcquired(); | 
|  | mScreenAcquired = true; | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenReleased(ConnectionHandle handle) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onScreenReleased(); | 
|  | mScreenAcquired = false; | 
|  | } | 
|  |  | 
|  | void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { | 
|  | const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
|  | const bool supportsFrameRateOverrideByContent = | 
|  | refreshRateConfigs->supportsFrameRateOverrideByContent(); | 
|  |  | 
|  | std::vector<FrameRateOverride> overrides = | 
|  | mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent); | 
|  |  | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); | 
|  | } | 
|  |  | 
|  | void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | // Cache the last reported modes for primary display. | 
|  | mPolicy.cachedModeChangedParams = {handle, mode}; | 
|  |  | 
|  | // Invalidate content based refresh rate selection so it could be calculated | 
|  | // again for the new refresh rate. | 
|  | mPolicy.contentRequirements.clear(); | 
|  | } | 
|  | onNonPrimaryDisplayModeChanged(handle, mode); | 
|  | } | 
|  |  | 
|  | void Scheduler::dispatchCachedReportedMode() { | 
|  | // Check optional fields first. | 
|  | if (!mPolicy.mode) { | 
|  | ALOGW("No mode ID found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  | if (!mPolicy.cachedModeChangedParams) { | 
|  | ALOGW("No mode changed params found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the mode is not the current mode, this means that a | 
|  | // mode change is in progress. In that case we shouldn't dispatch an event | 
|  | // as it will be dispatched when the current mode changes. | 
|  | if (std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  | mRefreshRateConfigs->getActiveMode() != mPolicy.mode) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there is no change from cached mode, there is no need to dispatch an event | 
|  | if (mPolicy.mode == mPolicy.cachedModeChangedParams->mode) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mPolicy.cachedModeChangedParams->mode = mPolicy.mode; | 
|  | onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle, | 
|  | mPolicy.cachedModeChangedParams->mode); | 
|  | } | 
|  |  | 
|  | void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onModeChanged(mode); | 
|  | } | 
|  |  | 
|  | size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, 0); | 
|  | return mConnections[handle].thread->getEventThreadConnectionCount(); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(ConnectionHandle handle, std::string& result) const { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections.at(handle).thread.get(); | 
|  | } | 
|  | thread->dump(result); | 
|  | } | 
|  |  | 
|  | void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->setDuration(workDuration, readyDuration); | 
|  | } | 
|  |  | 
|  | DisplayStatInfo Scheduler::getDisplayStatInfo(nsecs_t now) { | 
|  | const auto vsyncTime = mVsyncSchedule->getTracker().nextAnticipatedVSyncTimeFrom(now); | 
|  | const auto vsyncPeriod = mVsyncSchedule->getTracker().currentPeriod(); | 
|  | return DisplayStatInfo{.vsyncTime = vsyncTime, .vsyncPeriod = vsyncPeriod}; | 
|  | } | 
|  |  | 
|  | ConnectionHandle Scheduler::enableVSyncInjection(bool enable) { | 
|  | if (mInjectVSyncs == enable) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling"); | 
|  |  | 
|  | if (!mInjectorConnectionHandle) { | 
|  | auto vsyncSource = std::make_unique<InjectVSyncSource>(); | 
|  | mVSyncInjector = vsyncSource.get(); | 
|  |  | 
|  | auto eventThread = | 
|  | std::make_unique<impl::EventThread>(std::move(vsyncSource), | 
|  | /*tokenManager=*/nullptr, | 
|  | impl::EventThread::InterceptVSyncsCallback(), | 
|  | impl::EventThread::ThrottleVsyncCallback(), | 
|  | impl::EventThread::GetVsyncPeriodFunction()); | 
|  |  | 
|  | // EventThread does not dispatch VSYNC unless the display is connected and powered on. | 
|  | eventThread->onHotplugReceived(PhysicalDisplayId::fromPort(0), true); | 
|  | eventThread->onScreenAcquired(); | 
|  |  | 
|  | mInjectorConnectionHandle = createConnection(std::move(eventThread)); | 
|  | } | 
|  |  | 
|  | mInjectVSyncs = enable; | 
|  | return mInjectorConnectionHandle; | 
|  | } | 
|  |  | 
|  | bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) { | 
|  | if (!mInjectVSyncs || !mVSyncInjector) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Scheduler::enableHardwareVsync() { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { | 
|  | mVsyncSchedule->getTracker().resetModel(); | 
|  | mSchedulerCallback.setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::disableHardwareVsync(bool makeUnavailable) { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | mSchedulerCallback.setVsyncEnabled(false); | 
|  | mPrimaryHWVsyncEnabled = false; | 
|  | } | 
|  | if (makeUnavailable) { | 
|  | mHWVsyncAvailable = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resyncToHardwareVsync(bool makeAvailable, Fps refreshRate) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (makeAvailable) { | 
|  | mHWVsyncAvailable = makeAvailable; | 
|  | } else if (!mHWVsyncAvailable) { | 
|  | // Hardware vsync is not currently available, so abort the resync | 
|  | // attempt for now | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | setVsyncPeriod(refreshRate.getPeriodNsecs()); | 
|  | } | 
|  |  | 
|  | void Scheduler::resync() { | 
|  | static constexpr nsecs_t kIgnoreDelay = ms2ns(750); | 
|  |  | 
|  | const nsecs_t now = systemTime(); | 
|  | const nsecs_t last = mLastResyncTime.exchange(now); | 
|  |  | 
|  | if (now - last > kIgnoreDelay) { | 
|  | const auto refreshRate = [&] { | 
|  | std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  | return mRefreshRateConfigs->getActiveMode()->getFps(); | 
|  | }(); | 
|  | resyncToHardwareVsync(false, refreshRate); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setVsyncPeriod(nsecs_t period) { | 
|  | if (period <= 0) return; | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | mVsyncSchedule->getController().startPeriodTransition(period); | 
|  |  | 
|  | if (!mPrimaryHWVsyncEnabled) { | 
|  | mVsyncSchedule->getTracker().resetModel(); | 
|  | mSchedulerCallback.setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod, | 
|  | bool* periodFlushed) { | 
|  | bool needsHwVsync = false; | 
|  | *periodFlushed = false; | 
|  | { // Scope for the lock | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | needsHwVsync = | 
|  | mVsyncSchedule->getController().addHwVsyncTimestamp(timestamp, hwcVsyncPeriod, | 
|  | periodFlushed); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (needsHwVsync) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addPresentFence(std::shared_ptr<FenceTime> fence) { | 
|  | if (mVsyncSchedule->getController().addPresentFence(std::move(fence))) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::registerLayer(Layer* layer) { | 
|  | using WindowType = gui::WindowInfo::Type; | 
|  |  | 
|  | scheduler::LayerHistory::LayerVoteType voteType; | 
|  |  | 
|  | if (!mFeatures.test(Feature::kContentDetection) || | 
|  | layer->getWindowType() == WindowType::STATUS_BAR) { | 
|  | voteType = scheduler::LayerHistory::LayerVoteType::NoVote; | 
|  | } else if (layer->getWindowType() == WindowType::WALLPAPER) { | 
|  | // Running Wallpaper at Min is considered as part of content detection. | 
|  | voteType = scheduler::LayerHistory::LayerVoteType::Min; | 
|  | } else { | 
|  | voteType = scheduler::LayerHistory::LayerVoteType::Heuristic; | 
|  | } | 
|  |  | 
|  | // If the content detection feature is off, we still keep the layer history, | 
|  | // since we use it for other features (like Frame Rate API), so layers | 
|  | // still need to be registered. | 
|  | mLayerHistory.registerLayer(layer, voteType); | 
|  | } | 
|  |  | 
|  | void Scheduler::deregisterLayer(Layer* layer) { | 
|  | mLayerHistory.deregisterLayer(layer); | 
|  | } | 
|  |  | 
|  | void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, | 
|  | LayerHistory::LayerUpdateType updateType) { | 
|  | { | 
|  | std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  | if (!mRefreshRateConfigs->canSwitch()) return; | 
|  | } | 
|  |  | 
|  | mLayerHistory.record(layer, presentTime, systemTime(), updateType); | 
|  | } | 
|  |  | 
|  | void Scheduler::setModeChangePending(bool pending) { | 
|  | mLayerHistory.setModeChangePending(pending); | 
|  | } | 
|  |  | 
|  | void Scheduler::chooseRefreshRateForContent() { | 
|  | const auto configs = holdRefreshRateConfigs(); | 
|  | if (!configs->canSwitch()) return; | 
|  |  | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | LayerHistory::Summary summary = mLayerHistory.summarize(*configs, systemTime()); | 
|  | applyPolicy(&Policy::contentRequirements, std::move(summary)); | 
|  | } | 
|  |  | 
|  | void Scheduler::resetIdleTimer() { | 
|  | std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  | mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ false); | 
|  | } | 
|  |  | 
|  | void Scheduler::onTouchHint() { | 
|  | if (mTouchTimer) { | 
|  | mTouchTimer->reset(); | 
|  |  | 
|  | std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  | mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ true); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setDisplayPowerMode(hal::PowerMode powerMode) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | mPolicy.displayPowerMode = powerMode; | 
|  | } | 
|  | mVsyncSchedule->getController().setDisplayPowerMode(powerMode); | 
|  |  | 
|  | if (mDisplayPowerTimer) { | 
|  | mDisplayPowerTimer->reset(); | 
|  | } | 
|  |  | 
|  | // Display Power event will boost the refresh rate to performance. | 
|  | // Clear Layer History to get fresh FPS detection | 
|  | mLayerHistory.clear(); | 
|  | } | 
|  |  | 
|  | void Scheduler::kernelIdleTimerCallback(TimerState state) { | 
|  | ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); | 
|  |  | 
|  | // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate | 
|  | // magic number | 
|  | const Fps refreshRate = [&] { | 
|  | std::scoped_lock lock(mRefreshRateConfigsLock); | 
|  | return mRefreshRateConfigs->getActiveMode()->getFps(); | 
|  | }(); | 
|  |  | 
|  | constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz; | 
|  | using namespace fps_approx_ops; | 
|  |  | 
|  | if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // If we're not in performance mode then the kernel timer shouldn't do | 
|  | // anything, as the refresh rate during DPU power collapse will be the | 
|  | // same. | 
|  | resyncToHardwareVsync(true /* makeAvailable */, refreshRate); | 
|  | } else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // Disable HW VSYNC if the timer expired, as we don't need it enabled if | 
|  | // we're not pushing frames, and if we're in PERFORMANCE mode then we'll | 
|  | // need to update the VsyncController model anyway. | 
|  | disableHardwareVsync(false /* makeUnavailable */); | 
|  | } | 
|  |  | 
|  | mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); | 
|  | } | 
|  |  | 
|  | void Scheduler::idleTimerCallback(TimerState state) { | 
|  | applyPolicy(&Policy::idleTimer, state); | 
|  | ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::touchTimerCallback(TimerState state) { | 
|  | const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; | 
|  | // Touch event will boost the refresh rate to performance. | 
|  | // Clear layer history to get fresh FPS detection. | 
|  | // NOTE: Instead of checking all the layers, we should be checking the layer | 
|  | // that is currently on top. b/142507166 will give us this capability. | 
|  | if (applyPolicy(&Policy::touch, touch).touch) { | 
|  | mLayerHistory.clear(); | 
|  | } | 
|  | ATRACE_INT("TouchState", static_cast<int>(touch)); | 
|  | } | 
|  |  | 
|  | void Scheduler::displayPowerTimerCallback(TimerState state) { | 
|  | applyPolicy(&Policy::displayPowerTimer, state); | 
|  | ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(std::string& result) const { | 
|  | using base::StringAppendF; | 
|  |  | 
|  | StringAppendF(&result, "+  Touch timer: %s\n", | 
|  | mTouchTimer ? mTouchTimer->dump().c_str() : "off"); | 
|  | StringAppendF(&result, "+  Content detection: %s %s\n\n", | 
|  | mFeatures.test(Feature::kContentDetection) ? "on" : "off", | 
|  | mLayerHistory.dump().c_str()); | 
|  |  | 
|  | mFrameRateOverrideMappings.dump(result); | 
|  |  | 
|  | { | 
|  | std::lock_guard lock(mHWVsyncLock); | 
|  | StringAppendF(&result, | 
|  | "mScreenAcquired=%d mPrimaryHWVsyncEnabled=%d mHWVsyncAvailable=%d\n", | 
|  | mScreenAcquired.load(), mPrimaryHWVsyncEnabled, mHWVsyncAvailable); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::dumpVsync(std::string& out) const { | 
|  | mVsyncSchedule->dump(out); | 
|  | } | 
|  |  | 
|  | bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) { | 
|  | const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
|  |  | 
|  | // we always update mFrameRateOverridesByContent here | 
|  | // supportsFrameRateOverridesByContent will be checked | 
|  | // when getting FrameRateOverrides from mFrameRateOverrideMappings | 
|  | if (!consideredSignals.idle) { | 
|  | const auto frameRateOverrides = | 
|  | refreshRateConfigs->getFrameRateOverrides(mPolicy.contentRequirements, | 
|  | displayRefreshRate, consideredSignals); | 
|  | return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename S, typename T> | 
|  | auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals { | 
|  | DisplayModePtr newMode; | 
|  | GlobalSignals consideredSignals; | 
|  |  | 
|  | bool refreshRateChanged = false; | 
|  | bool frameRateOverridesChanged; | 
|  |  | 
|  | const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  |  | 
|  | auto& currentState = mPolicy.*statePtr; | 
|  | if (currentState == newState) return {}; | 
|  | currentState = std::forward<T>(newState); | 
|  |  | 
|  | std::tie(newMode, consideredSignals) = chooseDisplayMode(); | 
|  | frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newMode->getFps()); | 
|  |  | 
|  | if (mPolicy.mode == newMode) { | 
|  | // We don't need to change the display mode, but we might need to send an event | 
|  | // about a mode change, since it was suppressed if previously considered idle. | 
|  | if (!consideredSignals.idle) { | 
|  | dispatchCachedReportedMode(); | 
|  | } | 
|  | } else { | 
|  | mPolicy.mode = newMode; | 
|  | refreshRateChanged = true; | 
|  | } | 
|  | } | 
|  | if (refreshRateChanged) { | 
|  | mSchedulerCallback.requestDisplayMode(std::move(newMode), | 
|  | consideredSignals.idle ? DisplayModeEvent::None | 
|  | : DisplayModeEvent::Changed); | 
|  | } | 
|  | if (frameRateOverridesChanged) { | 
|  | mSchedulerCallback.triggerOnFrameRateOverridesChanged(); | 
|  | } | 
|  | return consideredSignals; | 
|  | } | 
|  |  | 
|  | auto Scheduler::chooseDisplayMode() -> std::pair<DisplayModePtr, GlobalSignals> { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | const auto configs = holdRefreshRateConfigs(); | 
|  |  | 
|  | // If Display Power is not in normal operation we want to be in performance mode. When coming | 
|  | // back to normal mode, a grace period is given with DisplayPowerTimer. | 
|  | if (mDisplayPowerTimer && | 
|  | (mPolicy.displayPowerMode != hal::PowerMode::ON || | 
|  | mPolicy.displayPowerTimer == TimerState::Reset)) { | 
|  | constexpr GlobalSignals kNoSignals; | 
|  | return {configs->getMaxRefreshRateByPolicy(), kNoSignals}; | 
|  | } | 
|  |  | 
|  | const GlobalSignals signals{.touch = mTouchTimer && mPolicy.touch == TouchState::Active, | 
|  | .idle = mPolicy.idleTimer == TimerState::Expired}; | 
|  |  | 
|  | return configs->getBestRefreshRate(mPolicy.contentRequirements, signals); | 
|  | } | 
|  |  | 
|  | DisplayModePtr Scheduler::getPreferredDisplayMode() { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | // Make sure the stored mode is up to date. | 
|  | if (mPolicy.mode) { | 
|  | mPolicy.mode = chooseDisplayMode().first; | 
|  | } | 
|  | return mPolicy.mode; | 
|  | } | 
|  |  | 
|  | void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); | 
|  |  | 
|  | const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); | 
|  | if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { | 
|  | mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Scheduler::onPostComposition(nsecs_t presentTime) { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { | 
|  | if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) { | 
|  | // We need to composite again as refreshTimeNanos is still in the future. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mLastVsyncPeriodChangeTimeline->refreshRequired = false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) { | 
|  | mLayerHistory.setDisplayArea(displayArea); | 
|  | } | 
|  |  | 
|  | void Scheduler::setGameModeRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
|  | if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride); | 
|  | } | 
|  |  | 
|  | void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
|  | if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride); | 
|  | } | 
|  |  | 
|  | std::chrono::steady_clock::time_point Scheduler::getPreviousVsyncFrom( | 
|  | nsecs_t expectedPresentTime) const { | 
|  | const auto presentTime = std::chrono::nanoseconds(expectedPresentTime); | 
|  | const auto vsyncPeriod = std::chrono::nanoseconds(mVsyncSchedule->getTracker().currentPeriod()); | 
|  | return std::chrono::steady_clock::time_point(presentTime - vsyncPeriod); | 
|  | } | 
|  |  | 
|  | } // namespace android::scheduler |