blob: 51fadf8ec114484117c6b23bf168937ed759db17 [file] [log] [blame]
/**
* Copyright 2024 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "LegacyResampler"
#include <algorithm>
#include <chrono>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <ftl/enum.h>
#include <input/Resampler.h>
#include <utils/Timers.h>
using std::chrono::nanoseconds;
namespace android {
namespace {
const bool IS_DEBUGGABLE_BUILD =
#if defined(__ANDROID__)
android::base::GetBoolProperty("ro.debuggable", false);
#else
true;
#endif
bool debugResampling() {
if (!IS_DEBUGGABLE_BUILD) {
static const bool DEBUG_TRANSPORT_RESAMPLING =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling",
ANDROID_LOG_INFO);
return DEBUG_TRANSPORT_RESAMPLING;
}
return __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling", ANDROID_LOG_INFO);
}
constexpr std::chrono::milliseconds RESAMPLE_LATENCY{5};
constexpr std::chrono::milliseconds RESAMPLE_MIN_DELTA{2};
constexpr std::chrono::milliseconds RESAMPLE_MAX_DELTA{20};
constexpr std::chrono::milliseconds RESAMPLE_MAX_PREDICTION{8};
bool canResampleTool(ToolType toolType) {
return toolType == ToolType::FINGER || toolType == ToolType::MOUSE ||
toolType == ToolType::STYLUS || toolType == ToolType::UNKNOWN;
}
inline float lerp(float a, float b, float alpha) {
return a + alpha * (b - a);
}
PointerCoords calculateResampledCoords(const PointerCoords& a, const PointerCoords& b,
float alpha) {
// We use the value of alpha to initialize resampledCoords with the latest sample information.
PointerCoords resampledCoords = (alpha < 1.0f) ? a : b;
resampledCoords.isResampled = true;
resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_X, lerp(a.getX(), b.getX(), alpha));
resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, lerp(a.getY(), b.getY(), alpha));
return resampledCoords;
}
} // namespace
void LegacyResampler::updateLatestSamples(const MotionEvent& motionEvent) {
const size_t numSamples = motionEvent.getHistorySize() + 1;
const size_t latestIndex = numSamples - 1;
const size_t secondToLatestIndex = (latestIndex > 0) ? (latestIndex - 1) : 0;
for (size_t sampleIndex = secondToLatestIndex; sampleIndex < numSamples; ++sampleIndex) {
std::vector<Pointer> pointers;
const size_t numPointers = motionEvent.getPointerCount();
for (size_t pointerIndex = 0; pointerIndex < numPointers; ++pointerIndex) {
// getSamplePointerCoords is the vector representation of a getHistorySize by
// getPointerCount matrix.
const PointerCoords& pointerCoords =
motionEvent.getSamplePointerCoords()[sampleIndex * numPointers + pointerIndex];
pointers.push_back(
Pointer{*motionEvent.getPointerProperties(pointerIndex), pointerCoords});
}
mLatestSamples.pushBack(
Sample{nanoseconds{motionEvent.getHistoricalEventTime(sampleIndex)}, pointers});
}
}
LegacyResampler::Sample LegacyResampler::messageToSample(const InputMessage& message) {
std::vector<Pointer> pointers;
for (uint32_t i = 0; i < message.body.motion.pointerCount; ++i) {
pointers.push_back(Pointer{message.body.motion.pointers[i].properties,
message.body.motion.pointers[i].coords});
}
return Sample{nanoseconds{message.body.motion.eventTime}, pointers};
}
bool LegacyResampler::pointerPropertiesResampleable(const Sample& target, const Sample& auxiliary) {
if (target.pointers.size() > auxiliary.pointers.size()) {
LOG_IF(INFO, debugResampling())
<< "Not resampled. Auxiliary sample has fewer pointers than target sample.";
return false;
}
for (size_t i = 0; i < target.pointers.size(); ++i) {
if (target.pointers[i].properties.id != auxiliary.pointers[i].properties.id) {
LOG_IF(INFO, debugResampling()) << "Not resampled. Pointer ID mismatch.";
return false;
}
if (target.pointers[i].properties.toolType != auxiliary.pointers[i].properties.toolType) {
LOG_IF(INFO, debugResampling()) << "Not resampled. Pointer ToolType mismatch.";
return false;
}
if (!canResampleTool(target.pointers[i].properties.toolType)) {
LOG_IF(INFO, debugResampling())
<< "Not resampled. Cannot resample "
<< ftl::enum_string(target.pointers[i].properties.toolType) << " ToolType.";
return false;
}
}
return true;
}
bool LegacyResampler::canInterpolate(const InputMessage& message) const {
LOG_IF(FATAL, mLatestSamples.empty())
<< "Not resampled. mLatestSamples must not be empty to interpolate.";
const Sample& pastSample = *(mLatestSamples.end() - 1);
const Sample& futureSample = messageToSample(message);
if (!pointerPropertiesResampleable(pastSample, futureSample)) {
return false;
}
const nanoseconds delta = futureSample.eventTime - pastSample.eventTime;
if (delta < RESAMPLE_MIN_DELTA) {
LOG_IF(INFO, debugResampling()) << "Not resampled. Delta is too small: " << delta << "ns.";
return false;
}
return true;
}
std::optional<LegacyResampler::Sample> LegacyResampler::attemptInterpolation(
nanoseconds resampleTime, const InputMessage& futureSample) const {
if (!canInterpolate(futureSample)) {
return std::nullopt;
}
LOG_IF(FATAL, mLatestSamples.empty())
<< "Not resampled. mLatestSamples must not be empty to interpolate.";
const Sample& pastSample = *(mLatestSamples.end() - 1);
const nanoseconds delta =
nanoseconds{futureSample.body.motion.eventTime} - pastSample.eventTime;
const float alpha =
std::chrono::duration<float, std::milli>(resampleTime - pastSample.eventTime) / delta;
std::vector<Pointer> resampledPointers;
for (size_t i = 0; i < pastSample.pointers.size(); ++i) {
const PointerCoords& resampledCoords =
calculateResampledCoords(pastSample.pointers[i].coords,
futureSample.body.motion.pointers[i].coords, alpha);
resampledPointers.push_back(Pointer{pastSample.pointers[i].properties, resampledCoords});
}
return Sample{resampleTime, resampledPointers};
}
bool LegacyResampler::canExtrapolate() const {
if (mLatestSamples.size() < 2) {
LOG_IF(INFO, debugResampling()) << "Not resampled. Not enough data.";
return false;
}
const Sample& pastSample = *(mLatestSamples.end() - 2);
const Sample& presentSample = *(mLatestSamples.end() - 1);
if (!pointerPropertiesResampleable(presentSample, pastSample)) {
return false;
}
const nanoseconds delta = presentSample.eventTime - pastSample.eventTime;
if (delta < RESAMPLE_MIN_DELTA) {
LOG_IF(INFO, debugResampling()) << "Not resampled. Delta is too small: " << delta << "ns.";
return false;
} else if (delta > RESAMPLE_MAX_DELTA) {
LOG_IF(INFO, debugResampling()) << "Not resampled. Delta is too large: " << delta << "ns.";
return false;
}
return true;
}
std::optional<LegacyResampler::Sample> LegacyResampler::attemptExtrapolation(
nanoseconds resampleTime) const {
if (!canExtrapolate()) {
return std::nullopt;
}
LOG_IF(FATAL, mLatestSamples.size() < 2)
<< "Not resampled. mLatestSamples must have at least two samples to extrapolate.";
const Sample& pastSample = *(mLatestSamples.end() - 2);
const Sample& presentSample = *(mLatestSamples.end() - 1);
const nanoseconds delta = presentSample.eventTime - pastSample.eventTime;
// The farthest future time to which we can extrapolate. If the given resampleTime exceeds this,
// we use this value as the resample time target.
const nanoseconds farthestPrediction =
presentSample.eventTime + std::min<nanoseconds>(delta / 2, RESAMPLE_MAX_PREDICTION);
const nanoseconds newResampleTime =
(resampleTime > farthestPrediction) ? (farthestPrediction) : (resampleTime);
LOG_IF(INFO, debugResampling() && newResampleTime == farthestPrediction)
<< "Resample time is too far in the future. Adjusting prediction from "
<< (resampleTime - presentSample.eventTime) << " to "
<< (farthestPrediction - presentSample.eventTime) << "ns.";
const float alpha =
std::chrono::duration<float, std::milli>(newResampleTime - pastSample.eventTime) /
delta;
std::vector<Pointer> resampledPointers;
for (size_t i = 0; i < presentSample.pointers.size(); ++i) {
const PointerCoords& resampledCoords =
calculateResampledCoords(pastSample.pointers[i].coords,
presentSample.pointers[i].coords, alpha);
resampledPointers.push_back(Pointer{presentSample.pointers[i].properties, resampledCoords});
}
return Sample{newResampleTime, resampledPointers};
}
inline void LegacyResampler::addSampleToMotionEvent(const Sample& sample,
MotionEvent& motionEvent) {
motionEvent.addSample(sample.eventTime.count(), sample.asPointerCoords().data(),
motionEvent.getId());
}
nanoseconds LegacyResampler::getResampleLatency() const {
return RESAMPLE_LATENCY;
}
void LegacyResampler::resampleMotionEvent(nanoseconds frameTime, MotionEvent& motionEvent,
const InputMessage* futureSample) {
if (mPreviousDeviceId && *mPreviousDeviceId != motionEvent.getDeviceId()) {
mLatestSamples.clear();
}
mPreviousDeviceId = motionEvent.getDeviceId();
const nanoseconds resampleTime = frameTime - RESAMPLE_LATENCY;
updateLatestSamples(motionEvent);
const std::optional<Sample> sample = (futureSample != nullptr)
? (attemptInterpolation(resampleTime, *futureSample))
: (attemptExtrapolation(resampleTime));
if (sample.has_value()) {
addSampleToMotionEvent(*sample, motionEvent);
}
}
} // namespace android