|  | /* | 
|  | * Copyright 2018 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "Scheduler" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "Scheduler.h" | 
|  |  | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> | 
|  | #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> | 
|  | #include <configstore/Utils.h> | 
|  | #include <ftl/concat.h> | 
|  | #include <ftl/enum.h> | 
|  | #include <ftl/fake_guard.h> | 
|  | #include <ftl/small_map.h> | 
|  | #include <gui/TraceUtils.h> | 
|  | #include <gui/WindowInfo.h> | 
|  | #include <system/window.h> | 
|  | #include <ui/DisplayMap.h> | 
|  | #include <utils/Timers.h> | 
|  |  | 
|  | #include <FrameTimeline/FrameTimeline.h> | 
|  | #include <scheduler/interface/ICompositor.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cinttypes> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "../Layer.h" | 
|  | #include "EventThread.h" | 
|  | #include "FrameRateOverrideMappings.h" | 
|  | #include "FrontEnd/LayerHandle.h" | 
|  | #include "OneShotTimer.h" | 
|  | #include "SurfaceFlingerProperties.h" | 
|  | #include "VSyncTracker.h" | 
|  | #include "VsyncController.h" | 
|  | #include "VsyncSchedule.h" | 
|  |  | 
|  | #define RETURN_IF_INVALID_HANDLE(handle, ...)                        \ | 
|  | do {                                                             \ | 
|  | if (mConnections.count(handle) == 0) {                       \ | 
|  | ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ | 
|  | return __VA_ARGS__;                                      \ | 
|  | }                                                            \ | 
|  | } while (false) | 
|  |  | 
|  | namespace android::scheduler { | 
|  |  | 
|  | Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features, | 
|  | sp<VsyncModulator> modulatorPtr) | 
|  | : impl::MessageQueue(compositor), | 
|  | mFeatures(features), | 
|  | mVsyncModulator(std::move(modulatorPtr)), | 
|  | mSchedulerCallback(callback) {} | 
|  |  | 
|  | Scheduler::~Scheduler() { | 
|  | // MessageQueue depends on VsyncSchedule, so first destroy it. | 
|  | // Otherwise, MessageQueue will get destroyed after Scheduler's dtor, | 
|  | // which will cause a use-after-free issue. | 
|  | Impl::destroyVsync(); | 
|  |  | 
|  | // Stop timers and wait for their threads to exit. | 
|  | mDisplayPowerTimer.reset(); | 
|  | mTouchTimer.reset(); | 
|  |  | 
|  | // Stop idle timer and clear callbacks, as the RefreshRateSelector may outlive the Scheduler. | 
|  | demotePacesetterDisplay(); | 
|  | } | 
|  |  | 
|  | void Scheduler::startTimers() { | 
|  | using namespace sysprop; | 
|  | using namespace std::string_literals; | 
|  |  | 
|  | if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { | 
|  | // Touch events are coming to SF every 100ms, so the timer needs to be higher than that | 
|  | mTouchTimer.emplace( | 
|  | "TouchTimer", std::chrono::milliseconds(millis), | 
|  | [this] { touchTimerCallback(TimerState::Reset); }, | 
|  | [this] { touchTimerCallback(TimerState::Expired); }); | 
|  | mTouchTimer->start(); | 
|  | } | 
|  |  | 
|  | if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { | 
|  | mDisplayPowerTimer.emplace( | 
|  | "DisplayPowerTimer", std::chrono::milliseconds(millis), | 
|  | [this] { displayPowerTimerCallback(TimerState::Reset); }, | 
|  | [this] { displayPowerTimerCallback(TimerState::Expired); }); | 
|  | mDisplayPowerTimer->start(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setPacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) { | 
|  | demotePacesetterDisplay(); | 
|  |  | 
|  | promotePacesetterDisplay(pacesetterIdOpt); | 
|  | } | 
|  |  | 
|  | void Scheduler::registerDisplay(PhysicalDisplayId displayId, RefreshRateSelectorPtr selectorPtr) { | 
|  | auto schedulePtr = std::make_shared<VsyncSchedule>(displayId, mFeatures, | 
|  | [this](PhysicalDisplayId id, bool enable) { | 
|  | onHardwareVsyncRequest(id, enable); | 
|  | }); | 
|  |  | 
|  | registerDisplayInternal(displayId, std::move(selectorPtr), std::move(schedulePtr)); | 
|  | } | 
|  |  | 
|  | void Scheduler::registerDisplayInternal(PhysicalDisplayId displayId, | 
|  | RefreshRateSelectorPtr selectorPtr, | 
|  | VsyncSchedulePtr schedulePtr) { | 
|  | demotePacesetterDisplay(); | 
|  |  | 
|  | auto [pacesetterVsyncSchedule, isNew] = [&]() FTL_FAKE_GUARD(kMainThreadContext) { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | const bool isNew = mDisplays | 
|  | .emplace_or_replace(displayId, displayId, std::move(selectorPtr), | 
|  | std::move(schedulePtr), mFeatures) | 
|  | .second; | 
|  |  | 
|  | return std::make_pair(promotePacesetterDisplayLocked(), isNew); | 
|  | }(); | 
|  |  | 
|  | applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule)); | 
|  |  | 
|  | // Disable hardware VSYNC if the registration is new, as opposed to a renewal. | 
|  | if (isNew) { | 
|  | onHardwareVsyncRequest(displayId, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) { | 
|  | demotePacesetterDisplay(); | 
|  |  | 
|  | std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule; | 
|  | { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | mDisplays.erase(displayId); | 
|  |  | 
|  | // Do not allow removing the final display. Code in the scheduler expects | 
|  | // there to be at least one display. (This may be relaxed in the future with | 
|  | // headless virtual display.) | 
|  | LOG_ALWAYS_FATAL_IF(mDisplays.empty(), "Cannot unregister all displays!"); | 
|  |  | 
|  | pacesetterVsyncSchedule = promotePacesetterDisplayLocked(); | 
|  | } | 
|  | applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule)); | 
|  | } | 
|  |  | 
|  | void Scheduler::run() { | 
|  | while (true) { | 
|  | waitMessage(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId, | 
|  | TimePoint expectedVsyncTime) { | 
|  | const FrameTargeter::BeginFrameArgs beginFrameArgs = | 
|  | {.frameBeginTime = SchedulerClock::now(), | 
|  | .vsyncId = vsyncId, | 
|  | // TODO(b/255601557): Calculate per display. | 
|  | .expectedVsyncTime = expectedVsyncTime, | 
|  | .sfWorkDuration = mVsyncModulator->getVsyncConfig().sfWorkDuration}; | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(!mPacesetterDisplayId); | 
|  | const auto pacesetterId = *mPacesetterDisplayId; | 
|  | const auto pacesetterOpt = mDisplays.get(pacesetterId); | 
|  |  | 
|  | FrameTargeter& pacesetterTargeter = *pacesetterOpt->get().targeterPtr; | 
|  | pacesetterTargeter.beginFrame(beginFrameArgs, *pacesetterOpt->get().schedulePtr); | 
|  |  | 
|  | FrameTargets targets; | 
|  | targets.try_emplace(pacesetterId, &pacesetterTargeter.target()); | 
|  |  | 
|  | for (const auto& [id, display] : mDisplays) { | 
|  | if (id == pacesetterId) continue; | 
|  |  | 
|  | const FrameTargeter& targeter = *display.targeterPtr; | 
|  | targets.try_emplace(id, &targeter.target()); | 
|  | } | 
|  |  | 
|  | if (!compositor.commit(pacesetterId, targets)) return; | 
|  |  | 
|  | // TODO(b/256196556): Choose the frontrunner display. | 
|  | FrameTargeters targeters; | 
|  | targeters.try_emplace(pacesetterId, &pacesetterTargeter); | 
|  |  | 
|  | for (auto& [id, display] : mDisplays) { | 
|  | if (id == pacesetterId) continue; | 
|  |  | 
|  | FrameTargeter& targeter = *display.targeterPtr; | 
|  | targeter.beginFrame(beginFrameArgs, *display.schedulePtr); | 
|  |  | 
|  | targeters.try_emplace(id, &targeter); | 
|  | } | 
|  |  | 
|  | const auto resultsPerDisplay = compositor.composite(pacesetterId, targeters); | 
|  | compositor.sample(); | 
|  |  | 
|  | for (const auto& [id, targeter] : targeters) { | 
|  | const auto resultOpt = resultsPerDisplay.get(id); | 
|  | LOG_ALWAYS_FATAL_IF(!resultOpt); | 
|  | targeter->endFrame(*resultOpt); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const { | 
|  | const bool supportsFrameRateOverrideByContent = | 
|  | pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent(); | 
|  | return mFrameRateOverrideMappings | 
|  | .getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent); | 
|  | } | 
|  |  | 
|  | bool Scheduler::isVsyncValid(TimePoint expectedVsyncTime, uid_t uid) const { | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ATRACE_FORMAT("%s uid: %d frameRate: %s", __func__, uid, to_string(*frameRate).c_str()); | 
|  | return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), *frameRate); | 
|  | } | 
|  |  | 
|  | bool Scheduler::isVsyncInPhase(TimePoint expectedVsyncTime, Fps frameRate) const { | 
|  | return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), frameRate); | 
|  | } | 
|  |  | 
|  | impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const { | 
|  | return [this](nsecs_t expectedVsyncTime, uid_t uid) { | 
|  | return !isVsyncValid(TimePoint::fromNs(expectedVsyncTime), uid); | 
|  | }; | 
|  | } | 
|  |  | 
|  | impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const { | 
|  | return [this](uid_t uid) { | 
|  | const auto [refreshRate, period] = [this] { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | const auto pacesetterOpt = pacesetterDisplayLocked(); | 
|  | LOG_ALWAYS_FATAL_IF(!pacesetterOpt); | 
|  | const Display& pacesetter = *pacesetterOpt; | 
|  | return std::make_pair(pacesetter.selectorPtr->getActiveMode().fps, | 
|  | pacesetter.schedulePtr->period()); | 
|  | }(); | 
|  |  | 
|  | const Period currentPeriod = period != Period::zero() ? period : refreshRate.getPeriod(); | 
|  |  | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return currentPeriod.ns(); | 
|  | } | 
|  |  | 
|  | const auto divisor = RefreshRateSelector::getFrameRateDivisor(refreshRate, *frameRate); | 
|  | if (divisor <= 1) { | 
|  | return currentPeriod.ns(); | 
|  | } | 
|  | return currentPeriod.ns() * divisor; | 
|  | }; | 
|  | } | 
|  |  | 
|  | ConnectionHandle Scheduler::createEventThread(Cycle cycle, | 
|  | frametimeline::TokenManager* tokenManager, | 
|  | std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration) { | 
|  | auto eventThread = std::make_unique<impl::EventThread>(cycle == Cycle::Render ? "app" : "appSf", | 
|  | getVsyncSchedule(), tokenManager, | 
|  | makeThrottleVsyncCallback(), | 
|  | makeGetVsyncPeriodFunction(), | 
|  | workDuration, readyDuration); | 
|  |  | 
|  | auto& handle = cycle == Cycle::Render ? mAppConnectionHandle : mSfConnectionHandle; | 
|  | handle = createConnection(std::move(eventThread)); | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { | 
|  | const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; | 
|  | ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); | 
|  |  | 
|  | auto connection = eventThread->createEventConnection([&] { resync(); }); | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( | 
|  | ConnectionHandle handle, EventRegistrationFlags eventRegistration, | 
|  | const sp<IBinder>& layerHandle) { | 
|  | const auto connection = [&]() -> sp<EventThreadConnection> { | 
|  | std::scoped_lock lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  |  | 
|  | return mConnections[handle].thread->createEventConnection([&] { resync(); }, | 
|  | eventRegistration); | 
|  | }(); | 
|  | const auto layerId = static_cast<int32_t>(LayerHandle::getLayerId(layerHandle)); | 
|  |  | 
|  | if (layerId != static_cast<int32_t>(UNASSIGNED_LAYER_ID)) { | 
|  | // TODO(b/290409668): Moving the choreographer attachment to be a transaction that will be | 
|  | // processed on the main thread. | 
|  | mSchedulerCallback.onChoreographerAttached(); | 
|  |  | 
|  | std::scoped_lock lock(mChoreographerLock); | 
|  | const auto [iter, emplaced] = | 
|  | mAttachedChoreographers.emplace(layerId, | 
|  | AttachedChoreographers{Fps(), {connection}}); | 
|  | if (!emplaced) { | 
|  | iter->second.connections.emplace(connection); | 
|  | connection->frameRate = iter->second.frameRate; | 
|  | } | 
|  | } | 
|  | return connection; | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return mConnections[handle].connection; | 
|  | } | 
|  |  | 
|  | void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | bool connected) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  |  | 
|  | thread->onHotplugReceived(displayId, connected); | 
|  | } | 
|  |  | 
|  | void Scheduler::enableSyntheticVsync(bool enable) { | 
|  | // TODO(b/241285945): Remove connection handles. | 
|  | const ConnectionHandle handle = mAppConnectionHandle; | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->enableSyntheticVsync(enable); | 
|  | } | 
|  |  | 
|  | void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { | 
|  | const bool supportsFrameRateOverrideByContent = | 
|  | pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent(); | 
|  |  | 
|  | std::vector<FrameRateOverride> overrides = | 
|  | mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent); | 
|  |  | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); | 
|  | } | 
|  |  | 
|  | void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | // Cache the last reported modes for primary display. | 
|  | mPolicy.cachedModeChangedParams = {handle, mode}; | 
|  |  | 
|  | // Invalidate content based refresh rate selection so it could be calculated | 
|  | // again for the new refresh rate. | 
|  | mPolicy.contentRequirements.clear(); | 
|  | } | 
|  | onNonPrimaryDisplayModeChanged(handle, mode); | 
|  | } | 
|  |  | 
|  | void Scheduler::dispatchCachedReportedMode() { | 
|  | // Check optional fields first. | 
|  | if (!mPolicy.modeOpt) { | 
|  | ALOGW("No mode ID found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  | if (!mPolicy.cachedModeChangedParams) { | 
|  | ALOGW("No mode changed params found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the mode is not the current mode, this means that a | 
|  | // mode change is in progress. In that case we shouldn't dispatch an event | 
|  | // as it will be dispatched when the current mode changes. | 
|  | if (pacesetterSelectorPtr()->getActiveMode() != mPolicy.modeOpt) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there is no change from cached mode, there is no need to dispatch an event | 
|  | if (*mPolicy.modeOpt == mPolicy.cachedModeChangedParams->mode) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mPolicy.cachedModeChangedParams->mode = *mPolicy.modeOpt; | 
|  | onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle, | 
|  | mPolicy.cachedModeChangedParams->mode); | 
|  | } | 
|  |  | 
|  | void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onModeChanged(mode); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(ConnectionHandle handle, std::string& result) const { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections.at(handle).thread.get(); | 
|  | } | 
|  | thread->dump(result); | 
|  | } | 
|  |  | 
|  | void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->setDuration(workDuration, readyDuration); | 
|  | } | 
|  |  | 
|  | void Scheduler::setVsyncConfigSet(const VsyncConfigSet& configs, Period vsyncPeriod) { | 
|  | setVsyncConfig(mVsyncModulator->setVsyncConfigSet(configs), vsyncPeriod); | 
|  | } | 
|  |  | 
|  | void Scheduler::setVsyncConfig(const VsyncConfig& config, Period vsyncPeriod) { | 
|  | setDuration(mAppConnectionHandle, | 
|  | /* workDuration */ config.appWorkDuration, | 
|  | /* readyDuration */ config.sfWorkDuration); | 
|  | setDuration(mSfConnectionHandle, | 
|  | /* workDuration */ vsyncPeriod, | 
|  | /* readyDuration */ config.sfWorkDuration); | 
|  | setDuration(config.sfWorkDuration); | 
|  | } | 
|  |  | 
|  | void Scheduler::enableHardwareVsync(PhysicalDisplayId id) { | 
|  | auto schedule = getVsyncSchedule(id); | 
|  | LOG_ALWAYS_FATAL_IF(!schedule); | 
|  | schedule->enableHardwareVsync(); | 
|  | } | 
|  |  | 
|  | void Scheduler::disableHardwareVsync(PhysicalDisplayId id, bool disallow) { | 
|  | auto schedule = getVsyncSchedule(id); | 
|  | LOG_ALWAYS_FATAL_IF(!schedule); | 
|  | schedule->disableHardwareVsync(disallow); | 
|  | } | 
|  |  | 
|  | void Scheduler::resyncAllToHardwareVsync(bool allowToEnable) { | 
|  | ATRACE_CALL(); | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  |  | 
|  | for (const auto& [id, _] : mDisplays) { | 
|  | resyncToHardwareVsyncLocked(id, allowToEnable); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resyncToHardwareVsyncLocked(PhysicalDisplayId id, bool allowToEnable, | 
|  | std::optional<Fps> refreshRate) { | 
|  | const auto displayOpt = mDisplays.get(id); | 
|  | if (!displayOpt) { | 
|  | ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str()); | 
|  | return; | 
|  | } | 
|  | const Display& display = *displayOpt; | 
|  |  | 
|  | if (display.schedulePtr->isHardwareVsyncAllowed(allowToEnable)) { | 
|  | if (!refreshRate) { | 
|  | refreshRate = display.selectorPtr->getActiveMode().modePtr->getVsyncRate(); | 
|  | } | 
|  | if (refreshRate->isValid()) { | 
|  | constexpr bool kForce = false; | 
|  | display.schedulePtr->startPeriodTransition(refreshRate->getPeriod(), kForce); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::onHardwareVsyncRequest(PhysicalDisplayId id, bool enabled) { | 
|  | static const auto& whence = __func__; | 
|  | ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str()); | 
|  |  | 
|  | // On main thread to serialize reads/writes of pending hardware VSYNC state. | 
|  | static_cast<void>( | 
|  | schedule([=]() FTL_FAKE_GUARD(mDisplayLock) FTL_FAKE_GUARD(kMainThreadContext) { | 
|  | ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str()); | 
|  |  | 
|  | if (const auto displayOpt = mDisplays.get(id)) { | 
|  | auto& display = displayOpt->get(); | 
|  | display.schedulePtr->setPendingHardwareVsyncState(enabled); | 
|  |  | 
|  | if (display.powerMode != hal::PowerMode::OFF) { | 
|  | mSchedulerCallback.requestHardwareVsync(id, enabled); | 
|  | } | 
|  | } | 
|  | })); | 
|  | } | 
|  |  | 
|  | void Scheduler::setRenderRate(PhysicalDisplayId id, Fps renderFrameRate) { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  |  | 
|  | const auto displayOpt = mDisplays.get(id); | 
|  | if (!displayOpt) { | 
|  | ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str()); | 
|  | return; | 
|  | } | 
|  | const Display& display = *displayOpt; | 
|  | const auto mode = display.selectorPtr->getActiveMode(); | 
|  |  | 
|  | using fps_approx_ops::operator!=; | 
|  | LOG_ALWAYS_FATAL_IF(renderFrameRate != mode.fps, | 
|  | "Mismatch in render frame rates. Selector: %s, Scheduler: %s, Display: " | 
|  | "%" PRIu64, | 
|  | to_string(mode.fps).c_str(), to_string(renderFrameRate).c_str(), id.value); | 
|  |  | 
|  | ALOGV("%s %s (%s)", __func__, to_string(mode.fps).c_str(), | 
|  | to_string(mode.modePtr->getVsyncRate()).c_str()); | 
|  |  | 
|  | display.schedulePtr->getTracker().setRenderRate(renderFrameRate); | 
|  | } | 
|  |  | 
|  | void Scheduler::resync() { | 
|  | static constexpr nsecs_t kIgnoreDelay = ms2ns(750); | 
|  |  | 
|  | const nsecs_t now = systemTime(); | 
|  | const nsecs_t last = mLastResyncTime.exchange(now); | 
|  |  | 
|  | if (now - last > kIgnoreDelay) { | 
|  | resyncAllToHardwareVsync(false /* allowToEnable */); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Scheduler::addResyncSample(PhysicalDisplayId id, nsecs_t timestamp, | 
|  | std::optional<nsecs_t> hwcVsyncPeriodIn) { | 
|  | const auto hwcVsyncPeriod = ftl::Optional(hwcVsyncPeriodIn).transform([](nsecs_t nanos) { | 
|  | return Period::fromNs(nanos); | 
|  | }); | 
|  | auto schedule = getVsyncSchedule(id); | 
|  | if (!schedule) { | 
|  | ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str()); | 
|  | return false; | 
|  | } | 
|  | return schedule->addResyncSample(TimePoint::fromNs(timestamp), hwcVsyncPeriod); | 
|  | } | 
|  |  | 
|  | void Scheduler::addPresentFence(PhysicalDisplayId id, std::shared_ptr<FenceTime> fence) { | 
|  | const auto scheduleOpt = | 
|  | (ftl::FakeGuard(mDisplayLock), mDisplays.get(id)).and_then([](const Display& display) { | 
|  | return display.powerMode == hal::PowerMode::OFF | 
|  | ? std::nullopt | 
|  | : std::make_optional(display.schedulePtr); | 
|  | }); | 
|  |  | 
|  | if (!scheduleOpt) return; | 
|  | const auto& schedule = scheduleOpt->get(); | 
|  |  | 
|  | if (const bool needMoreSignals = schedule->getController().addPresentFence(std::move(fence))) { | 
|  | schedule->enableHardwareVsync(); | 
|  | } else { | 
|  | constexpr bool kDisallow = false; | 
|  | schedule->disableHardwareVsync(kDisallow); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::registerLayer(Layer* layer) { | 
|  | // If the content detection feature is off, we still keep the layer history, | 
|  | // since we use it for other features (like Frame Rate API), so layers | 
|  | // still need to be registered. | 
|  | mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection)); | 
|  | } | 
|  |  | 
|  | void Scheduler::deregisterLayer(Layer* layer) { | 
|  | mLayerHistory.deregisterLayer(layer); | 
|  | } | 
|  |  | 
|  | void Scheduler::onLayerDestroyed(Layer* layer) { | 
|  | std::scoped_lock lock(mChoreographerLock); | 
|  | mAttachedChoreographers.erase(layer->getSequence()); | 
|  | } | 
|  |  | 
|  | void Scheduler::recordLayerHistory(int32_t id, const LayerProps& layerProps, nsecs_t presentTime, | 
|  | LayerHistory::LayerUpdateType updateType) { | 
|  | if (pacesetterSelectorPtr()->canSwitch()) { | 
|  | mLayerHistory.record(id, layerProps, presentTime, systemTime(), updateType); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setModeChangePending(bool pending) { | 
|  | mLayerHistory.setModeChangePending(pending); | 
|  | } | 
|  |  | 
|  | void Scheduler::setDefaultFrameRateCompatibility(Layer* layer) { | 
|  | mLayerHistory.setDefaultFrameRateCompatibility(layer, | 
|  | mFeatures.test(Feature::kContentDetection)); | 
|  | } | 
|  |  | 
|  | void Scheduler::chooseRefreshRateForContent( | 
|  | const surfaceflinger::frontend::LayerHierarchy* hierarchy, | 
|  | bool updateAttachedChoreographer) { | 
|  | const auto selectorPtr = pacesetterSelectorPtr(); | 
|  | if (!selectorPtr->canSwitch()) return; | 
|  |  | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | LayerHistory::Summary summary = mLayerHistory.summarize(*selectorPtr, systemTime()); | 
|  | applyPolicy(&Policy::contentRequirements, std::move(summary)); | 
|  |  | 
|  | if (updateAttachedChoreographer) { | 
|  | LOG_ALWAYS_FATAL_IF(!hierarchy); | 
|  |  | 
|  | // update the attached choreographers after we selected the render rate. | 
|  | const ftl::Optional<FrameRateMode> modeOpt = [&] { | 
|  | std::scoped_lock lock(mPolicyLock); | 
|  | return mPolicy.modeOpt; | 
|  | }(); | 
|  |  | 
|  | if (modeOpt) { | 
|  | updateAttachedChoreographers(*hierarchy, modeOpt->fps); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resetIdleTimer() { | 
|  | pacesetterSelectorPtr()->resetIdleTimer(); | 
|  | } | 
|  |  | 
|  | void Scheduler::onTouchHint() { | 
|  | if (mTouchTimer) { | 
|  | mTouchTimer->reset(); | 
|  | pacesetterSelectorPtr()->resetKernelIdleTimer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setDisplayPowerMode(PhysicalDisplayId id, hal::PowerMode powerMode) { | 
|  | const bool isPacesetter = [this, id]() REQUIRES(kMainThreadContext) { | 
|  | ftl::FakeGuard guard(mDisplayLock); | 
|  | return id == mPacesetterDisplayId; | 
|  | }(); | 
|  | if (isPacesetter) { | 
|  | // TODO (b/255657128): This needs to be handled per display. | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | mPolicy.displayPowerMode = powerMode; | 
|  | } | 
|  | { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  |  | 
|  | const auto displayOpt = mDisplays.get(id); | 
|  | LOG_ALWAYS_FATAL_IF(!displayOpt); | 
|  | auto& display = displayOpt->get(); | 
|  |  | 
|  | display.powerMode = powerMode; | 
|  | display.schedulePtr->getController().setDisplayPowerMode(powerMode); | 
|  | } | 
|  | if (!isPacesetter) return; | 
|  |  | 
|  | if (mDisplayPowerTimer) { | 
|  | mDisplayPowerTimer->reset(); | 
|  | } | 
|  |  | 
|  | // Display Power event will boost the refresh rate to performance. | 
|  | // Clear Layer History to get fresh FPS detection | 
|  | mLayerHistory.clear(); | 
|  | } | 
|  |  | 
|  | auto Scheduler::getVsyncSchedule(std::optional<PhysicalDisplayId> idOpt) const | 
|  | -> ConstVsyncSchedulePtr { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | return getVsyncScheduleLocked(idOpt); | 
|  | } | 
|  |  | 
|  | auto Scheduler::getVsyncScheduleLocked(std::optional<PhysicalDisplayId> idOpt) const | 
|  | -> ConstVsyncSchedulePtr { | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  |  | 
|  | if (!idOpt) { | 
|  | LOG_ALWAYS_FATAL_IF(!mPacesetterDisplayId, "Missing a pacesetter!"); | 
|  | idOpt = mPacesetterDisplayId; | 
|  | } | 
|  |  | 
|  | const auto displayOpt = mDisplays.get(*idOpt); | 
|  | if (!displayOpt) { | 
|  | return nullptr; | 
|  | } | 
|  | return displayOpt->get().schedulePtr; | 
|  | } | 
|  |  | 
|  | void Scheduler::kernelIdleTimerCallback(TimerState state) { | 
|  | ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); | 
|  |  | 
|  | // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate | 
|  | // magic number | 
|  | const Fps refreshRate = pacesetterSelectorPtr()->getActiveMode().modePtr->getPeakFps(); | 
|  |  | 
|  | constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz; | 
|  | using namespace fps_approx_ops; | 
|  |  | 
|  | if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // If we're not in performance mode then the kernel timer shouldn't do | 
|  | // anything, as the refresh rate during DPU power collapse will be the | 
|  | // same. | 
|  | resyncAllToHardwareVsync(true /* allowToEnable */); | 
|  | } else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // Disable HW VSYNC if the timer expired, as we don't need it enabled if | 
|  | // we're not pushing frames, and if we're in PERFORMANCE mode then we'll | 
|  | // need to update the VsyncController model anyway. | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  | for (const auto& [_, display] : mDisplays) { | 
|  | constexpr bool kDisallow = false; | 
|  | display.schedulePtr->disableHardwareVsync(kDisallow); | 
|  | } | 
|  | } | 
|  |  | 
|  | mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); | 
|  | } | 
|  |  | 
|  | void Scheduler::idleTimerCallback(TimerState state) { | 
|  | applyPolicy(&Policy::idleTimer, state); | 
|  | ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::touchTimerCallback(TimerState state) { | 
|  | const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; | 
|  | // Touch event will boost the refresh rate to performance. | 
|  | // Clear layer history to get fresh FPS detection. | 
|  | // NOTE: Instead of checking all the layers, we should be checking the layer | 
|  | // that is currently on top. b/142507166 will give us this capability. | 
|  | if (applyPolicy(&Policy::touch, touch).touch) { | 
|  | mLayerHistory.clear(); | 
|  | } | 
|  | ATRACE_INT("TouchState", static_cast<int>(touch)); | 
|  | } | 
|  |  | 
|  | void Scheduler::displayPowerTimerCallback(TimerState state) { | 
|  | applyPolicy(&Policy::displayPowerTimer, state); | 
|  | ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(utils::Dumper& dumper) const { | 
|  | using namespace std::string_view_literals; | 
|  |  | 
|  | { | 
|  | utils::Dumper::Section section(dumper, "Features"sv); | 
|  |  | 
|  | for (Feature feature : ftl::enum_range<Feature>()) { | 
|  | if (const auto flagOpt = ftl::flag_name(feature)) { | 
|  | dumper.dump(flagOpt->substr(1), mFeatures.test(feature)); | 
|  | } | 
|  | } | 
|  | } | 
|  | { | 
|  | utils::Dumper::Section section(dumper, "Policy"sv); | 
|  | { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  | dumper.dump("pacesetterDisplayId"sv, mPacesetterDisplayId); | 
|  | } | 
|  | dumper.dump("layerHistory"sv, mLayerHistory.dump()); | 
|  | dumper.dump("touchTimer"sv, mTouchTimer.transform(&OneShotTimer::interval)); | 
|  | dumper.dump("displayPowerTimer"sv, mDisplayPowerTimer.transform(&OneShotTimer::interval)); | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.dump(dumper); | 
|  | dumper.eol(); | 
|  |  | 
|  | { | 
|  | utils::Dumper::Section section(dumper, "Frame Targeting"sv); | 
|  |  | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  |  | 
|  | for (const auto& [id, display] : mDisplays) { | 
|  | utils::Dumper::Section | 
|  | section(dumper, | 
|  | id == mPacesetterDisplayId | 
|  | ? ftl::Concat("Pacesetter Display ", id.value).c_str() | 
|  | : ftl::Concat("Follower Display ", id.value).c_str()); | 
|  |  | 
|  | display.targeterPtr->dump(dumper); | 
|  | dumper.eol(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::dumpVsync(std::string& out) const { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  | if (mPacesetterDisplayId) { | 
|  | base::StringAppendF(&out, "VsyncSchedule for pacesetter %s:\n", | 
|  | to_string(*mPacesetterDisplayId).c_str()); | 
|  | getVsyncScheduleLocked()->dump(out); | 
|  | } | 
|  | for (auto& [id, display] : mDisplays) { | 
|  | if (id == mPacesetterDisplayId) { | 
|  | continue; | 
|  | } | 
|  | base::StringAppendF(&out, "VsyncSchedule for follower %s:\n", to_string(id).c_str()); | 
|  | display.schedulePtr->dump(out); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) { | 
|  | std::scoped_lock lock(mPolicyLock); | 
|  | return updateFrameRateOverridesLocked(consideredSignals, displayRefreshRate); | 
|  | } | 
|  |  | 
|  | bool Scheduler::updateFrameRateOverridesLocked(GlobalSignals consideredSignals, | 
|  | Fps displayRefreshRate) { | 
|  | if (consideredSignals.idle) return false; | 
|  |  | 
|  | const auto frameRateOverrides = | 
|  | pacesetterSelectorPtr()->getFrameRateOverrides(mPolicy.contentRequirements, | 
|  | displayRefreshRate, consideredSignals); | 
|  |  | 
|  | // Note that RefreshRateSelector::supportsFrameRateOverrideByContent is checked when querying | 
|  | // the FrameRateOverrideMappings rather than here. | 
|  | return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides); | 
|  | } | 
|  |  | 
|  | void Scheduler::promotePacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) { | 
|  | std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule; | 
|  |  | 
|  | { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | pacesetterVsyncSchedule = promotePacesetterDisplayLocked(pacesetterIdOpt); | 
|  | } | 
|  |  | 
|  | applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule)); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<VsyncSchedule> Scheduler::promotePacesetterDisplayLocked( | 
|  | std::optional<PhysicalDisplayId> pacesetterIdOpt) { | 
|  | // TODO(b/241286431): Choose the pacesetter display. | 
|  | mPacesetterDisplayId = pacesetterIdOpt.value_or(mDisplays.begin()->first); | 
|  | ALOGI("Display %s is the pacesetter", to_string(*mPacesetterDisplayId).c_str()); | 
|  |  | 
|  | std::shared_ptr<VsyncSchedule> newVsyncSchedulePtr; | 
|  | if (const auto pacesetterOpt = pacesetterDisplayLocked()) { | 
|  | const Display& pacesetter = *pacesetterOpt; | 
|  |  | 
|  | pacesetter.selectorPtr->setIdleTimerCallbacks( | 
|  | {.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); }, | 
|  | .onExpired = [this] { idleTimerCallback(TimerState::Expired); }}, | 
|  | .kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); }, | 
|  | .onExpired = | 
|  | [this] { kernelIdleTimerCallback(TimerState::Expired); }}}); | 
|  |  | 
|  | pacesetter.selectorPtr->startIdleTimer(); | 
|  |  | 
|  | newVsyncSchedulePtr = pacesetter.schedulePtr; | 
|  |  | 
|  | const Fps refreshRate = pacesetter.selectorPtr->getActiveMode().modePtr->getVsyncRate(); | 
|  | constexpr bool kForce = true; | 
|  | newVsyncSchedulePtr->startPeriodTransition(refreshRate.getPeriod(), kForce); | 
|  | } | 
|  | return newVsyncSchedulePtr; | 
|  | } | 
|  |  | 
|  | void Scheduler::applyNewVsyncSchedule(std::shared_ptr<VsyncSchedule> vsyncSchedule) { | 
|  | onNewVsyncSchedule(vsyncSchedule->getDispatch()); | 
|  | std::vector<android::EventThread*> threads; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | threads.reserve(mConnections.size()); | 
|  | for (auto& [_, connection] : mConnections) { | 
|  | threads.push_back(connection.thread.get()); | 
|  | } | 
|  | } | 
|  | for (auto* thread : threads) { | 
|  | thread->onNewVsyncSchedule(vsyncSchedule); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::demotePacesetterDisplay() { | 
|  | // No need to lock for reads on kMainThreadContext. | 
|  | if (const auto pacesetterPtr = FTL_FAKE_GUARD(mDisplayLock, pacesetterSelectorPtrLocked())) { | 
|  | pacesetterPtr->stopIdleTimer(); | 
|  | pacesetterPtr->clearIdleTimerCallbacks(); | 
|  | } | 
|  |  | 
|  | // Clear state that depends on the pacesetter's RefreshRateSelector. | 
|  | std::scoped_lock lock(mPolicyLock); | 
|  | mPolicy = {}; | 
|  | } | 
|  |  | 
|  | void Scheduler::updateAttachedChoreographersFrameRate( | 
|  | const surfaceflinger::frontend::RequestedLayerState& layer, Fps fps) { | 
|  | std::scoped_lock lock(mChoreographerLock); | 
|  |  | 
|  | const auto layerId = static_cast<int32_t>(layer.id); | 
|  | const auto choreographers = mAttachedChoreographers.find(layerId); | 
|  | if (choreographers == mAttachedChoreographers.end()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto& layerChoreographers = choreographers->second; | 
|  |  | 
|  | layerChoreographers.frameRate = fps; | 
|  | ATRACE_FORMAT_INSTANT("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str()); | 
|  | ALOGV("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str()); | 
|  |  | 
|  | auto it = layerChoreographers.connections.begin(); | 
|  | while (it != layerChoreographers.connections.end()) { | 
|  | sp<EventThreadConnection> choreographerConnection = it->promote(); | 
|  | if (choreographerConnection) { | 
|  | choreographerConnection->frameRate = fps; | 
|  | it++; | 
|  | } else { | 
|  | it = choreographers->second.connections.erase(it); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (layerChoreographers.connections.empty()) { | 
|  | mAttachedChoreographers.erase(choreographers); | 
|  | } | 
|  | } | 
|  |  | 
|  | int Scheduler::updateAttachedChoreographersInternal( | 
|  | const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate, | 
|  | int parentDivisor) { | 
|  | const char* name = layerHierarchy.getLayer() ? layerHierarchy.getLayer()->name.c_str() : "Root"; | 
|  |  | 
|  | int divisor = 0; | 
|  | if (layerHierarchy.getLayer()) { | 
|  | const auto frameRateCompatibility = layerHierarchy.getLayer()->frameRateCompatibility; | 
|  | const auto frameRate = Fps::fromValue(layerHierarchy.getLayer()->frameRate); | 
|  | ALOGV("%s: %s frameRate %s parentDivisor=%d", __func__, name, to_string(frameRate).c_str(), | 
|  | parentDivisor); | 
|  |  | 
|  | if (frameRate.isValid()) { | 
|  | if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE || | 
|  | frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_EXACT) { | 
|  | // Since this layer wants an exact match, we would only set a frame rate if the | 
|  | // desired rate is a divisor of the display refresh rate. | 
|  | divisor = RefreshRateSelector::getFrameRateDivisor(displayRefreshRate, frameRate); | 
|  | } else if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT) { | 
|  | // find the closest frame rate divisor for the desired frame rate. | 
|  | divisor = static_cast<int>( | 
|  | std::round(displayRefreshRate.getValue() / frameRate.getValue())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We start by traversing the children, updating their choreographers, and getting back the | 
|  | // aggregated frame rate. | 
|  | int childrenDivisor = 0; | 
|  | for (const auto& [child, _] : layerHierarchy.mChildren) { | 
|  | LOG_ALWAYS_FATAL_IF(child == nullptr || child->getLayer() == nullptr); | 
|  |  | 
|  | ALOGV("%s: %s traversing child %s", __func__, name, child->getLayer()->name.c_str()); | 
|  |  | 
|  | const int childDivisor = | 
|  | updateAttachedChoreographersInternal(*child, displayRefreshRate, divisor); | 
|  | childrenDivisor = childrenDivisor > 0 ? childrenDivisor : childDivisor; | 
|  | if (childDivisor > 0) { | 
|  | childrenDivisor = std::gcd(childrenDivisor, childDivisor); | 
|  | } | 
|  | ALOGV("%s: %s childrenDivisor=%d", __func__, name, childrenDivisor); | 
|  | } | 
|  |  | 
|  | ALOGV("%s: %s divisor=%d", __func__, name, divisor); | 
|  |  | 
|  | // If there is no explicit vote for this layer. Use the children's vote if exists | 
|  | divisor = (divisor == 0) ? childrenDivisor : divisor; | 
|  | ALOGV("%s: %s divisor=%d with children", __func__, name, divisor); | 
|  |  | 
|  | // If there is no explicit vote for this layer or its children, Use the parent vote if exists | 
|  | divisor = (divisor == 0) ? parentDivisor : divisor; | 
|  | ALOGV("%s: %s divisor=%d with parent", __func__, name, divisor); | 
|  |  | 
|  | if (layerHierarchy.getLayer()) { | 
|  | Fps fps = divisor > 1 ? displayRefreshRate / (unsigned int)divisor : Fps(); | 
|  | updateAttachedChoreographersFrameRate(*layerHierarchy.getLayer(), fps); | 
|  | } | 
|  |  | 
|  | return divisor; | 
|  | } | 
|  |  | 
|  | void Scheduler::updateAttachedChoreographers( | 
|  | const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate) { | 
|  | ATRACE_CALL(); | 
|  | updateAttachedChoreographersInternal(layerHierarchy, displayRefreshRate, 0); | 
|  | } | 
|  |  | 
|  | template <typename S, typename T> | 
|  | auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals { | 
|  | ATRACE_CALL(); | 
|  | std::vector<display::DisplayModeRequest> modeRequests; | 
|  | GlobalSignals consideredSignals; | 
|  |  | 
|  | bool refreshRateChanged = false; | 
|  | bool frameRateOverridesChanged; | 
|  |  | 
|  | { | 
|  | std::scoped_lock lock(mPolicyLock); | 
|  |  | 
|  | auto& currentState = mPolicy.*statePtr; | 
|  | if (currentState == newState) return {}; | 
|  | currentState = std::forward<T>(newState); | 
|  |  | 
|  | DisplayModeChoiceMap modeChoices; | 
|  | ftl::Optional<FrameRateMode> modeOpt; | 
|  | { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  |  | 
|  | modeChoices = chooseDisplayModes(); | 
|  |  | 
|  | // TODO(b/240743786): The pacesetter display's mode must change for any | 
|  | // DisplayModeRequest to go through. Fix this by tracking per-display Scheduler::Policy | 
|  | // and timers. | 
|  | std::tie(modeOpt, consideredSignals) = | 
|  | modeChoices.get(*mPacesetterDisplayId) | 
|  | .transform([](const DisplayModeChoice& choice) { | 
|  | return std::make_pair(choice.mode, choice.consideredSignals); | 
|  | }) | 
|  | .value(); | 
|  | } | 
|  |  | 
|  | modeRequests.reserve(modeChoices.size()); | 
|  | for (auto& [id, choice] : modeChoices) { | 
|  | modeRequests.emplace_back( | 
|  | display::DisplayModeRequest{.mode = std::move(choice.mode), | 
|  | .emitEvent = !choice.consideredSignals.idle}); | 
|  | } | 
|  |  | 
|  | frameRateOverridesChanged = updateFrameRateOverridesLocked(consideredSignals, modeOpt->fps); | 
|  |  | 
|  | if (mPolicy.modeOpt != modeOpt) { | 
|  | mPolicy.modeOpt = modeOpt; | 
|  | refreshRateChanged = true; | 
|  | } else { | 
|  | // We don't need to change the display mode, but we might need to send an event | 
|  | // about a mode change, since it was suppressed if previously considered idle. | 
|  | if (!consideredSignals.idle) { | 
|  | dispatchCachedReportedMode(); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (refreshRateChanged) { | 
|  | mSchedulerCallback.requestDisplayModes(std::move(modeRequests)); | 
|  | } | 
|  | if (frameRateOverridesChanged) { | 
|  | mSchedulerCallback.triggerOnFrameRateOverridesChanged(); | 
|  | } | 
|  | return consideredSignals; | 
|  | } | 
|  |  | 
|  | auto Scheduler::chooseDisplayModes() const -> DisplayModeChoiceMap { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | using RankedRefreshRates = RefreshRateSelector::RankedFrameRates; | 
|  | ui::PhysicalDisplayVector<RankedRefreshRates> perDisplayRanking; | 
|  | const auto globalSignals = makeGlobalSignals(); | 
|  | Fps pacesetterFps; | 
|  |  | 
|  | for (const auto& [id, display] : mDisplays) { | 
|  | auto rankedFrameRates = | 
|  | display.selectorPtr->getRankedFrameRates(mPolicy.contentRequirements, | 
|  | globalSignals); | 
|  | if (id == *mPacesetterDisplayId) { | 
|  | pacesetterFps = rankedFrameRates.ranking.front().frameRateMode.fps; | 
|  | } | 
|  | perDisplayRanking.push_back(std::move(rankedFrameRates)); | 
|  | } | 
|  |  | 
|  | DisplayModeChoiceMap modeChoices; | 
|  | using fps_approx_ops::operator==; | 
|  |  | 
|  | for (auto& [rankings, signals] : perDisplayRanking) { | 
|  | const auto chosenFrameRateMode = | 
|  | ftl::find_if(rankings, | 
|  | [&](const auto& ranking) { | 
|  | return ranking.frameRateMode.fps == pacesetterFps; | 
|  | }) | 
|  | .transform([](const auto& scoredFrameRate) { | 
|  | return scoredFrameRate.get().frameRateMode; | 
|  | }) | 
|  | .value_or(rankings.front().frameRateMode); | 
|  |  | 
|  | modeChoices.try_emplace(chosenFrameRateMode.modePtr->getPhysicalDisplayId(), | 
|  | DisplayModeChoice{chosenFrameRateMode, signals}); | 
|  | } | 
|  | return modeChoices; | 
|  | } | 
|  |  | 
|  | GlobalSignals Scheduler::makeGlobalSignals() const { | 
|  | const bool powerOnImminent = mDisplayPowerTimer && | 
|  | (mPolicy.displayPowerMode != hal::PowerMode::ON || | 
|  | mPolicy.displayPowerTimer == TimerState::Reset); | 
|  |  | 
|  | return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active, | 
|  | .idle = mPolicy.idleTimer == TimerState::Expired, | 
|  | .powerOnImminent = powerOnImminent}; | 
|  | } | 
|  |  | 
|  | FrameRateMode Scheduler::getPreferredDisplayMode() { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | const auto frameRateMode = | 
|  | pacesetterSelectorPtr() | 
|  | ->getRankedFrameRates(mPolicy.contentRequirements, makeGlobalSignals()) | 
|  | .ranking.front() | 
|  | .frameRateMode; | 
|  |  | 
|  | // Make sure the stored mode is up to date. | 
|  | mPolicy.modeOpt = frameRateMode; | 
|  |  | 
|  | return frameRateMode; | 
|  | } | 
|  |  | 
|  | void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); | 
|  |  | 
|  | const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); | 
|  | if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { | 
|  | mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Scheduler::onPostComposition(nsecs_t presentTime) { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { | 
|  | if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) { | 
|  | // We need to composite again as refreshTimeNanos is still in the future. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mLastVsyncPeriodChangeTimeline->refreshRequired = false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) { | 
|  | mLayerHistory.setDisplayArea(displayArea); | 
|  | } | 
|  |  | 
|  | void Scheduler::setGameModeRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
|  | if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride); | 
|  | } | 
|  |  | 
|  | void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
|  | if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride); | 
|  | } | 
|  |  | 
|  | void Scheduler::updateSmallAreaDetection( | 
|  | std::vector<std::pair<uid_t, float>>& uidThresholdMappings) { | 
|  | mSmallAreaDetectionAllowMappings.update(uidThresholdMappings); | 
|  | } | 
|  |  | 
|  | void Scheduler::setSmallAreaDetectionThreshold(uid_t uid, float threshold) { | 
|  | mSmallAreaDetectionAllowMappings.setThesholdForUid(uid, threshold); | 
|  | } | 
|  |  | 
|  | bool Scheduler::isSmallDirtyArea(uid_t uid, uint32_t dirtyArea) { | 
|  | std::optional<float> oThreshold = mSmallAreaDetectionAllowMappings.getThresholdForUid(uid); | 
|  | if (oThreshold) return mLayerHistory.isSmallDirtyArea(dirtyArea, oThreshold.value()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | } // namespace android::scheduler |