|  | // | 
|  | // Copyright 2010 The Android Open Source Project | 
|  | // | 
|  | // The input dispatcher. | 
|  | // | 
|  | #define LOG_TAG "InputDispatcher" | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  |  | 
|  | // Log detailed debug messages about each inbound event notification to the dispatcher. | 
|  | #define DEBUG_INBOUND_EVENT_DETAILS 0 | 
|  |  | 
|  | // Log detailed debug messages about each outbound event processed by the dispatcher. | 
|  | #define DEBUG_OUTBOUND_EVENT_DETAILS 0 | 
|  |  | 
|  | // Log debug messages about batching. | 
|  | #define DEBUG_BATCHING 0 | 
|  |  | 
|  | // Log debug messages about the dispatch cycle. | 
|  | #define DEBUG_DISPATCH_CYCLE 0 | 
|  |  | 
|  | // Log debug messages about registrations. | 
|  | #define DEBUG_REGISTRATION 0 | 
|  |  | 
|  | // Log debug messages about performance statistics. | 
|  | #define DEBUG_PERFORMANCE_STATISTICS 0 | 
|  |  | 
|  | // Log debug messages about input event injection. | 
|  | #define DEBUG_INJECTION 0 | 
|  |  | 
|  | // Log debug messages about input event throttling. | 
|  | #define DEBUG_THROTTLING 0 | 
|  |  | 
|  | // Log debug messages about input focus tracking. | 
|  | #define DEBUG_FOCUS 0 | 
|  |  | 
|  | // Log debug messages about the app switch latency optimization. | 
|  | #define DEBUG_APP_SWITCH 0 | 
|  |  | 
|  | #include <cutils/log.h> | 
|  | #include <ui/InputDispatcher.h> | 
|  | #include <ui/PowerManager.h> | 
|  |  | 
|  | #include <stddef.h> | 
|  | #include <unistd.h> | 
|  | #include <errno.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | #define INDENT "  " | 
|  | #define INDENT2 "    " | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // Delay before reporting long touch events to the power manager. | 
|  | const nsecs_t LONG_TOUCH_DELAY = 300 * 1000000LL; // 300 ms | 
|  |  | 
|  | // Default input dispatching timeout if there is no focused application or paused window | 
|  | // from which to determine an appropriate dispatching timeout. | 
|  | const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec | 
|  |  | 
|  | // Amount of time to allow for all pending events to be processed when an app switch | 
|  | // key is on the way.  This is used to preempt input dispatch and drop input events | 
|  | // when an application takes too long to respond and the user has pressed an app switch key. | 
|  | const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec | 
|  |  | 
|  |  | 
|  | static inline nsecs_t now() { | 
|  | return systemTime(SYSTEM_TIME_MONOTONIC); | 
|  | } | 
|  |  | 
|  | static inline const char* toString(bool value) { | 
|  | return value ? "true" : "false"; | 
|  | } | 
|  |  | 
|  | static inline int32_t getMotionEventActionPointerIndex(int32_t action) { | 
|  | return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) | 
|  | >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; | 
|  | } | 
|  |  | 
|  | static bool isValidKeyAction(int32_t action) { | 
|  | switch (action) { | 
|  | case AKEY_EVENT_ACTION_DOWN: | 
|  | case AKEY_EVENT_ACTION_UP: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool validateKeyEvent(int32_t action) { | 
|  | if (! isValidKeyAction(action)) { | 
|  | LOGE("Key event has invalid action code 0x%x", action); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isValidMotionAction(int32_t action, size_t pointerCount) { | 
|  | switch (action & AMOTION_EVENT_ACTION_MASK) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | case AMOTION_EVENT_ACTION_CANCEL: | 
|  | case AMOTION_EVENT_ACTION_MOVE: | 
|  | case AMOTION_EVENT_ACTION_OUTSIDE: | 
|  | return true; | 
|  | case AMOTION_EVENT_ACTION_POINTER_DOWN: | 
|  | case AMOTION_EVENT_ACTION_POINTER_UP: { | 
|  | int32_t index = getMotionEventActionPointerIndex(action); | 
|  | return index >= 0 && size_t(index) < pointerCount; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool validateMotionEvent(int32_t action, size_t pointerCount, | 
|  | const int32_t* pointerIds) { | 
|  | if (! isValidMotionAction(action, pointerCount)) { | 
|  | LOGE("Motion event has invalid action code 0x%x", action); | 
|  | return false; | 
|  | } | 
|  | if (pointerCount < 1 || pointerCount > MAX_POINTERS) { | 
|  | LOGE("Motion event has invalid pointer count %d; value must be between 1 and %d.", | 
|  | pointerCount, MAX_POINTERS); | 
|  | return false; | 
|  | } | 
|  | BitSet32 pointerIdBits; | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | int32_t id = pointerIds[i]; | 
|  | if (id < 0 || id > MAX_POINTER_ID) { | 
|  | LOGE("Motion event has invalid pointer id %d; value must be between 0 and %d", | 
|  | id, MAX_POINTER_ID); | 
|  | return false; | 
|  | } | 
|  | if (pointerIdBits.hasBit(id)) { | 
|  | LOGE("Motion event has duplicate pointer id %d", id); | 
|  | return false; | 
|  | } | 
|  | pointerIdBits.markBit(id); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputWindow --- | 
|  |  | 
|  | bool InputWindow::touchableAreaContainsPoint(int32_t x, int32_t y) const { | 
|  | return x >= touchableAreaLeft && x <= touchableAreaRight | 
|  | && y >= touchableAreaTop && y <= touchableAreaBottom; | 
|  | } | 
|  |  | 
|  | bool InputWindow::frameContainsPoint(int32_t x, int32_t y) const { | 
|  | return x >= frameLeft && x <= frameRight | 
|  | && y >= frameTop && y <= frameBottom; | 
|  | } | 
|  |  | 
|  | bool InputWindow::isTrustedOverlay() const { | 
|  | return layoutParamsType == TYPE_INPUT_METHOD | 
|  | || layoutParamsType == TYPE_INPUT_METHOD_DIALOG | 
|  | || layoutParamsType == TYPE_SECURE_SYSTEM_OVERLAY; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher --- | 
|  |  | 
|  | InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) : | 
|  | mPolicy(policy), | 
|  | mPendingEvent(NULL), mAppSwitchDueTime(LONG_LONG_MAX), | 
|  | mDispatchEnabled(true), mDispatchFrozen(false), | 
|  | mFocusedWindow(NULL), | 
|  | mFocusedApplication(NULL), | 
|  | mCurrentInputTargetsValid(false), | 
|  | mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) { | 
|  | mLooper = new Looper(false); | 
|  |  | 
|  | mInboundQueue.headSentinel.refCount = -1; | 
|  | mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL; | 
|  | mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN; | 
|  |  | 
|  | mInboundQueue.tailSentinel.refCount = -1; | 
|  | mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL; | 
|  | mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX; | 
|  |  | 
|  | mKeyRepeatState.lastKeyEntry = NULL; | 
|  |  | 
|  | int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond(); | 
|  | mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond; | 
|  | mThrottleState.lastDeviceId = -1; | 
|  |  | 
|  | #if DEBUG_THROTTLING | 
|  | mThrottleState.originalSampleCount = 0; | 
|  | LOGD("Throttling - Max events per second = %d", maxEventsPerSecond); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | InputDispatcher::~InputDispatcher() { | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | resetKeyRepeatLocked(); | 
|  | releasePendingEventLocked(); | 
|  | drainInboundQueueLocked(); | 
|  | } | 
|  |  | 
|  | while (mConnectionsByReceiveFd.size() != 0) { | 
|  | unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dispatchOnce() { | 
|  | nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout(); | 
|  | nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay(); | 
|  |  | 
|  | nsecs_t nextWakeupTime = LONG_LONG_MAX; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  | dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime); | 
|  |  | 
|  | if (runCommandsLockedInterruptible()) { | 
|  | nextWakeupTime = LONG_LONG_MIN;  // force next poll to wake up immediately | 
|  | } | 
|  | } // release lock | 
|  |  | 
|  | // Wait for callback or timeout or wake.  (make sure we round up, not down) | 
|  | nsecs_t currentTime = now(); | 
|  | int32_t timeoutMillis; | 
|  | if (nextWakeupTime > currentTime) { | 
|  | uint64_t timeout = uint64_t(nextWakeupTime - currentTime); | 
|  | timeout = (timeout + 999999LL) / 1000000LL; | 
|  | timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout); | 
|  | } else { | 
|  | timeoutMillis = 0; | 
|  | } | 
|  |  | 
|  | mLooper->pollOnce(timeoutMillis); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, | 
|  | nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) { | 
|  | nsecs_t currentTime = now(); | 
|  |  | 
|  | // Reset the key repeat timer whenever we disallow key events, even if the next event | 
|  | // is not a key.  This is to ensure that we abort a key repeat if the device is just coming | 
|  | // out of sleep. | 
|  | if (keyRepeatTimeout < 0) { | 
|  | resetKeyRepeatLocked(); | 
|  | } | 
|  |  | 
|  | // If dispatching is frozen, do not process timeouts or try to deliver any new events. | 
|  | if (mDispatchFrozen) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Dispatch frozen.  Waiting some more."); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Optimize latency of app switches. | 
|  | // Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has | 
|  | // been pressed.  When it expires, we preempt dispatch and drop all other pending events. | 
|  | bool isAppSwitchDue = mAppSwitchDueTime <= currentTime; | 
|  | if (mAppSwitchDueTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = mAppSwitchDueTime; | 
|  | } | 
|  |  | 
|  | // Ready to start a new event. | 
|  | // If we don't already have a pending event, go grab one. | 
|  | if (! mPendingEvent) { | 
|  | if (mInboundQueue.isEmpty()) { | 
|  | if (isAppSwitchDue) { | 
|  | // The inbound queue is empty so the app switch key we were waiting | 
|  | // for will never arrive.  Stop waiting for it. | 
|  | resetPendingAppSwitchLocked(false); | 
|  | isAppSwitchDue = false; | 
|  | } | 
|  |  | 
|  | // Synthesize a key repeat if appropriate. | 
|  | if (mKeyRepeatState.lastKeyEntry) { | 
|  | if (currentTime >= mKeyRepeatState.nextRepeatTime) { | 
|  | mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay); | 
|  | } else { | 
|  | if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = mKeyRepeatState.nextRepeatTime; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (! mPendingEvent) { | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // Inbound queue has at least one entry. | 
|  | EventEntry* entry = mInboundQueue.headSentinel.next; | 
|  |  | 
|  | // Throttle the entry if it is a move event and there are no | 
|  | // other events behind it in the queue.  Due to movement batching, additional | 
|  | // samples may be appended to this event by the time the throttling timeout | 
|  | // expires. | 
|  | // TODO Make this smarter and consider throttling per device independently. | 
|  | if (entry->type == EventEntry::TYPE_MOTION | 
|  | && !isAppSwitchDue | 
|  | && mDispatchEnabled | 
|  | && (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) | 
|  | && !entry->isInjected()) { | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); | 
|  | int32_t deviceId = motionEntry->deviceId; | 
|  | uint32_t source = motionEntry->source; | 
|  | if (! isAppSwitchDue | 
|  | && motionEntry->next == & mInboundQueue.tailSentinel // exactly one event | 
|  | && motionEntry->action == AMOTION_EVENT_ACTION_MOVE | 
|  | && deviceId == mThrottleState.lastDeviceId | 
|  | && source == mThrottleState.lastSource) { | 
|  | nsecs_t nextTime = mThrottleState.lastEventTime | 
|  | + mThrottleState.minTimeBetweenEvents; | 
|  | if (currentTime < nextTime) { | 
|  | // Throttle it! | 
|  | #if DEBUG_THROTTLING | 
|  | LOGD("Throttling - Delaying motion event for " | 
|  | "device 0x%x, source 0x%08x by up to %0.3fms.", | 
|  | deviceId, source, (nextTime - currentTime) * 0.000001); | 
|  | #endif | 
|  | if (nextTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = nextTime; | 
|  | } | 
|  | if (mThrottleState.originalSampleCount == 0) { | 
|  | mThrottleState.originalSampleCount = | 
|  | motionEntry->countSamples(); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if DEBUG_THROTTLING | 
|  | if (mThrottleState.originalSampleCount != 0) { | 
|  | uint32_t count = motionEntry->countSamples(); | 
|  | LOGD("Throttling - Motion event sample count grew by %d from %d to %d.", | 
|  | count - mThrottleState.originalSampleCount, | 
|  | mThrottleState.originalSampleCount, count); | 
|  | mThrottleState.originalSampleCount = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | mThrottleState.lastEventTime = entry->eventTime < currentTime | 
|  | ? entry->eventTime : currentTime; | 
|  | mThrottleState.lastDeviceId = deviceId; | 
|  | mThrottleState.lastSource = source; | 
|  | } | 
|  |  | 
|  | mInboundQueue.dequeue(entry); | 
|  | mPendingEvent = entry; | 
|  | } | 
|  |  | 
|  | // Poke user activity for this event. | 
|  | if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) { | 
|  | pokeUserActivityLocked(mPendingEvent); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we have an event to dispatch. | 
|  | assert(mPendingEvent != NULL); | 
|  | bool done = false; | 
|  | DropReason dropReason = DROP_REASON_NOT_DROPPED; | 
|  | if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) { | 
|  | dropReason = DROP_REASON_POLICY; | 
|  | } else if (!mDispatchEnabled) { | 
|  | dropReason = DROP_REASON_DISABLED; | 
|  | } | 
|  | switch (mPendingEvent->type) { | 
|  | case EventEntry::TYPE_CONFIGURATION_CHANGED: { | 
|  | ConfigurationChangedEntry* typedEntry = | 
|  | static_cast<ConfigurationChangedEntry*>(mPendingEvent); | 
|  | done = dispatchConfigurationChangedLocked(currentTime, typedEntry); | 
|  | dropReason = DROP_REASON_NOT_DROPPED; // configuration changes are never dropped | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EventEntry::TYPE_KEY: { | 
|  | KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent); | 
|  | if (isAppSwitchDue) { | 
|  | if (isAppSwitchKeyEventLocked(typedEntry)) { | 
|  | resetPendingAppSwitchLocked(true); | 
|  | isAppSwitchDue = false; | 
|  | } else if (dropReason == DROP_REASON_NOT_DROPPED) { | 
|  | dropReason = DROP_REASON_APP_SWITCH; | 
|  | } | 
|  | } | 
|  | done = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout, | 
|  | &dropReason, nextWakeupTime); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EventEntry::TYPE_MOTION: { | 
|  | MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent); | 
|  | if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) { | 
|  | dropReason = DROP_REASON_APP_SWITCH; | 
|  | } | 
|  | done = dispatchMotionLocked(currentTime, typedEntry, | 
|  | &dropReason, nextWakeupTime); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | assert(false); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (done) { | 
|  | if (dropReason != DROP_REASON_NOT_DROPPED) { | 
|  | dropInboundEventLocked(mPendingEvent, dropReason); | 
|  | } | 
|  |  | 
|  | releasePendingEventLocked(); | 
|  | *nextWakeupTime = LONG_LONG_MIN;  // force next poll to wake up immediately | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) { | 
|  | bool needWake = mInboundQueue.isEmpty(); | 
|  | mInboundQueue.enqueueAtTail(entry); | 
|  |  | 
|  | switch (entry->type) { | 
|  | case EventEntry::TYPE_KEY: { | 
|  | KeyEntry* keyEntry = static_cast<KeyEntry*>(entry); | 
|  | if (isAppSwitchKeyEventLocked(keyEntry)) { | 
|  | if (keyEntry->action == AKEY_EVENT_ACTION_DOWN) { | 
|  | mAppSwitchSawKeyDown = true; | 
|  | } else if (keyEntry->action == AKEY_EVENT_ACTION_UP) { | 
|  | if (mAppSwitchSawKeyDown) { | 
|  | #if DEBUG_APP_SWITCH | 
|  | LOGD("App switch is pending!"); | 
|  | #endif | 
|  | mAppSwitchDueTime = keyEntry->eventTime + APP_SWITCH_TIMEOUT; | 
|  | mAppSwitchSawKeyDown = false; | 
|  | needWake = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return needWake; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dropInboundEventLocked(EventEntry* entry, DropReason dropReason) { | 
|  | const char* reason; | 
|  | switch (dropReason) { | 
|  | case DROP_REASON_POLICY: | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("Dropped event because policy consumed it."); | 
|  | #endif | 
|  | reason = "inbound event was dropped because the policy consumed it"; | 
|  | break; | 
|  | case DROP_REASON_DISABLED: | 
|  | LOGI("Dropped event because input dispatch is disabled."); | 
|  | reason = "inbound event was dropped because input dispatch is disabled"; | 
|  | break; | 
|  | case DROP_REASON_APP_SWITCH: | 
|  | LOGI("Dropped event because of pending overdue app switch."); | 
|  | reason = "inbound event was dropped because of pending overdue app switch"; | 
|  | break; | 
|  | default: | 
|  | assert(false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (entry->type) { | 
|  | case EventEntry::TYPE_KEY: | 
|  | synthesizeCancelationEventsForAllConnectionsLocked( | 
|  | InputState::CANCEL_NON_POINTER_EVENTS, reason); | 
|  | break; | 
|  | case EventEntry::TYPE_MOTION: { | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); | 
|  | if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { | 
|  | synthesizeCancelationEventsForAllConnectionsLocked( | 
|  | InputState::CANCEL_POINTER_EVENTS, reason); | 
|  | } else { | 
|  | synthesizeCancelationEventsForAllConnectionsLocked( | 
|  | InputState::CANCEL_NON_POINTER_EVENTS, reason); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isAppSwitchKeyCode(int32_t keyCode) { | 
|  | return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isAppSwitchKeyEventLocked(KeyEntry* keyEntry) { | 
|  | return ! (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED) | 
|  | && isAppSwitchKeyCode(keyEntry->keyCode) | 
|  | && (keyEntry->policyFlags & POLICY_FLAG_TRUSTED) | 
|  | && (keyEntry->policyFlags & POLICY_FLAG_PASS_TO_USER); | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isAppSwitchPendingLocked() { | 
|  | return mAppSwitchDueTime != LONG_LONG_MAX; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetPendingAppSwitchLocked(bool handled) { | 
|  | mAppSwitchDueTime = LONG_LONG_MAX; | 
|  |  | 
|  | #if DEBUG_APP_SWITCH | 
|  | if (handled) { | 
|  | LOGD("App switch has arrived."); | 
|  | } else { | 
|  | LOGD("App switch was abandoned."); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::runCommandsLockedInterruptible() { | 
|  | if (mCommandQueue.isEmpty()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | do { | 
|  | CommandEntry* commandEntry = mCommandQueue.dequeueAtHead(); | 
|  |  | 
|  | Command command = commandEntry->command; | 
|  | (this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible' | 
|  |  | 
|  | commandEntry->connection.clear(); | 
|  | mAllocator.releaseCommandEntry(commandEntry); | 
|  | } while (! mCommandQueue.isEmpty()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) { | 
|  | CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command); | 
|  | mCommandQueue.enqueueAtTail(commandEntry); | 
|  | return commandEntry; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::drainInboundQueueLocked() { | 
|  | while (! mInboundQueue.isEmpty()) { | 
|  | EventEntry* entry = mInboundQueue.dequeueAtHead(); | 
|  | releaseInboundEventLocked(entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::releasePendingEventLocked() { | 
|  | if (mPendingEvent) { | 
|  | releaseInboundEventLocked(mPendingEvent); | 
|  | mPendingEvent = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) { | 
|  | InjectionState* injectionState = entry->injectionState; | 
|  | if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("Injected inbound event was dropped."); | 
|  | #endif | 
|  | setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED); | 
|  | } | 
|  | mAllocator.releaseEventEntry(entry); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetKeyRepeatLocked() { | 
|  | if (mKeyRepeatState.lastKeyEntry) { | 
|  | mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry); | 
|  | mKeyRepeatState.lastKeyEntry = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked( | 
|  | nsecs_t currentTime, nsecs_t keyRepeatDelay) { | 
|  | KeyEntry* entry = mKeyRepeatState.lastKeyEntry; | 
|  |  | 
|  | // Reuse the repeated key entry if it is otherwise unreferenced. | 
|  | uint32_t policyFlags = (entry->policyFlags & POLICY_FLAG_RAW_MASK) | 
|  | | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED; | 
|  | if (entry->refCount == 1) { | 
|  | mAllocator.recycleKeyEntry(entry); | 
|  | entry->eventTime = currentTime; | 
|  | entry->policyFlags = policyFlags; | 
|  | entry->repeatCount += 1; | 
|  | } else { | 
|  | KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime, | 
|  | entry->deviceId, entry->source, policyFlags, | 
|  | entry->action, entry->flags, entry->keyCode, entry->scanCode, | 
|  | entry->metaState, entry->repeatCount + 1, entry->downTime); | 
|  |  | 
|  | mKeyRepeatState.lastKeyEntry = newEntry; | 
|  | mAllocator.releaseKeyEntry(entry); | 
|  |  | 
|  | entry = newEntry; | 
|  | } | 
|  | entry->syntheticRepeat = true; | 
|  |  | 
|  | // Increment reference count since we keep a reference to the event in | 
|  | // mKeyRepeatState.lastKeyEntry in addition to the one we return. | 
|  | entry->refCount += 1; | 
|  |  | 
|  | mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::dispatchConfigurationChangedLocked( | 
|  | nsecs_t currentTime, ConfigurationChangedEntry* entry) { | 
|  | #if DEBUG_OUTBOUND_EVENT_DETAILS | 
|  | LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime); | 
|  | #endif | 
|  |  | 
|  | // Reset key repeating in case a keyboard device was added or removed or something. | 
|  | resetKeyRepeatLocked(); | 
|  |  | 
|  | // Enqueue a command to run outside the lock to tell the policy that the configuration changed. | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doNotifyConfigurationChangedInterruptible); | 
|  | commandEntry->eventTime = entry->eventTime; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::dispatchKeyLocked( | 
|  | nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout, | 
|  | DropReason* dropReason, nsecs_t* nextWakeupTime) { | 
|  | // Preprocessing. | 
|  | if (! entry->dispatchInProgress) { | 
|  | if (entry->repeatCount == 0 | 
|  | && entry->action == AKEY_EVENT_ACTION_DOWN | 
|  | && (entry->policyFlags & POLICY_FLAG_TRUSTED) | 
|  | && !entry->isInjected()) { | 
|  | if (mKeyRepeatState.lastKeyEntry | 
|  | && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) { | 
|  | // We have seen two identical key downs in a row which indicates that the device | 
|  | // driver is automatically generating key repeats itself.  We take note of the | 
|  | // repeat here, but we disable our own next key repeat timer since it is clear that | 
|  | // we will not need to synthesize key repeats ourselves. | 
|  | entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1; | 
|  | resetKeyRepeatLocked(); | 
|  | mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves | 
|  | } else { | 
|  | // Not a repeat.  Save key down state in case we do see a repeat later. | 
|  | resetKeyRepeatLocked(); | 
|  | mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout; | 
|  | } | 
|  | mKeyRepeatState.lastKeyEntry = entry; | 
|  | entry->refCount += 1; | 
|  | } else if (! entry->syntheticRepeat) { | 
|  | resetKeyRepeatLocked(); | 
|  | } | 
|  |  | 
|  | if (entry->repeatCount == 1) { | 
|  | entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS; | 
|  | } else { | 
|  | entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS; | 
|  | } | 
|  |  | 
|  | entry->dispatchInProgress = true; | 
|  | resetTargetsLocked(); | 
|  |  | 
|  | logOutboundKeyDetailsLocked("dispatchKey - ", entry); | 
|  | } | 
|  |  | 
|  | // Give the policy a chance to intercept the key. | 
|  | if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) { | 
|  | if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) { | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible); | 
|  | if (mFocusedWindow) { | 
|  | commandEntry->inputChannel = mFocusedWindow->inputChannel; | 
|  | } | 
|  | commandEntry->keyEntry = entry; | 
|  | entry->refCount += 1; | 
|  | return false; // wait for the command to run | 
|  | } else { | 
|  | entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE; | 
|  | } | 
|  | } else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) { | 
|  | if (*dropReason == DROP_REASON_NOT_DROPPED) { | 
|  | *dropReason = DROP_REASON_POLICY; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clean up if dropping the event. | 
|  | if (*dropReason != DROP_REASON_NOT_DROPPED) { | 
|  | resetTargetsLocked(); | 
|  | setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY | 
|  | ? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Identify targets. | 
|  | if (! mCurrentInputTargetsValid) { | 
|  | int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime, | 
|  | entry, nextWakeupTime); | 
|  | if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | setInjectionResultLocked(entry, injectionResult); | 
|  | if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | addMonitoringTargetsLocked(); | 
|  | commitTargetsLocked(); | 
|  | } | 
|  |  | 
|  | // Dispatch the key. | 
|  | dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) { | 
|  | #if DEBUG_OUTBOUND_EVENT_DETAILS | 
|  | LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " | 
|  | "action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, " | 
|  | "repeatCount=%d, downTime=%lld", | 
|  | prefix, | 
|  | entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, | 
|  | entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, | 
|  | entry->repeatCount, entry->downTime); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::dispatchMotionLocked( | 
|  | nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime) { | 
|  | // Preprocessing. | 
|  | if (! entry->dispatchInProgress) { | 
|  | entry->dispatchInProgress = true; | 
|  | resetTargetsLocked(); | 
|  |  | 
|  | logOutboundMotionDetailsLocked("dispatchMotion - ", entry); | 
|  | } | 
|  |  | 
|  | // Clean up if dropping the event. | 
|  | if (*dropReason != DROP_REASON_NOT_DROPPED) { | 
|  | resetTargetsLocked(); | 
|  | setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY | 
|  | ? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER; | 
|  |  | 
|  | // Identify targets. | 
|  | if (! mCurrentInputTargetsValid) { | 
|  | int32_t injectionResult; | 
|  | if (isPointerEvent) { | 
|  | // Pointer event.  (eg. touchscreen) | 
|  | injectionResult = findTouchedWindowTargetsLocked(currentTime, | 
|  | entry, nextWakeupTime); | 
|  | } else { | 
|  | // Non touch event.  (eg. trackball) | 
|  | injectionResult = findFocusedWindowTargetsLocked(currentTime, | 
|  | entry, nextWakeupTime); | 
|  | } | 
|  | if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | setInjectionResultLocked(entry, injectionResult); | 
|  | if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | addMonitoringTargetsLocked(); | 
|  | commitTargetsLocked(); | 
|  | } | 
|  |  | 
|  | // Dispatch the motion. | 
|  | dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) { | 
|  | #if DEBUG_OUTBOUND_EVENT_DETAILS | 
|  | LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " | 
|  | "action=0x%x, flags=0x%x, " | 
|  | "metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld", | 
|  | prefix, | 
|  | entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, | 
|  | entry->action, entry->flags, | 
|  | entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision, | 
|  | entry->downTime); | 
|  |  | 
|  | // Print the most recent sample that we have available, this may change due to batching. | 
|  | size_t sampleCount = 1; | 
|  | const MotionSample* sample = & entry->firstSample; | 
|  | for (; sample->next != NULL; sample = sample->next) { | 
|  | sampleCount += 1; | 
|  | } | 
|  | for (uint32_t i = 0; i < entry->pointerCount; i++) { | 
|  | LOGD("  Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " | 
|  | "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " | 
|  | "orientation=%f", | 
|  | i, entry->pointerIds[i], | 
|  | sample->pointerCoords[i].x, sample->pointerCoords[i].y, | 
|  | sample->pointerCoords[i].pressure, sample->pointerCoords[i].size, | 
|  | sample->pointerCoords[i].touchMajor, sample->pointerCoords[i].touchMinor, | 
|  | sample->pointerCoords[i].toolMajor, sample->pointerCoords[i].toolMinor, | 
|  | sample->pointerCoords[i].orientation); | 
|  | } | 
|  |  | 
|  | // Keep in mind that due to batching, it is possible for the number of samples actually | 
|  | // dispatched to change before the application finally consumed them. | 
|  | if (entry->action == AMOTION_EVENT_ACTION_MOVE) { | 
|  | LOGD("  ... Total movement samples currently batched %d ...", sampleCount); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime, | 
|  | EventEntry* eventEntry, bool resumeWithAppendedMotionSample) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("dispatchEventToCurrentInputTargets - " | 
|  | "resumeWithAppendedMotionSample=%s", | 
|  | toString(resumeWithAppendedMotionSample)); | 
|  | #endif | 
|  |  | 
|  | assert(eventEntry->dispatchInProgress); // should already have been set to true | 
|  |  | 
|  | pokeUserActivityLocked(eventEntry); | 
|  |  | 
|  | for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { | 
|  | const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i); | 
|  |  | 
|  | ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel); | 
|  | if (connectionIndex >= 0) { | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget, | 
|  | resumeWithAppendedMotionSample); | 
|  | } else { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Dropping event delivery to target with channel '%s' because it " | 
|  | "is no longer registered with the input dispatcher.", | 
|  | inputTarget.inputChannel->getName().string()); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetTargetsLocked() { | 
|  | mCurrentInputTargetsValid = false; | 
|  | mCurrentInputTargets.clear(); | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::commitTargetsLocked() { | 
|  | mCurrentInputTargetsValid = true; | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime, | 
|  | const EventEntry* entry, const InputApplication* application, const InputWindow* window, | 
|  | nsecs_t* nextWakeupTime) { | 
|  | if (application == NULL && window == NULL) { | 
|  | if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting for system to become ready for input."); | 
|  | #endif | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY; | 
|  | mInputTargetWaitStartTime = currentTime; | 
|  | mInputTargetWaitTimeoutTime = LONG_LONG_MAX; | 
|  | mInputTargetWaitTimeoutExpired = false; | 
|  | } | 
|  | } else { | 
|  | if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting for application to become ready for input: %s", | 
|  | getApplicationWindowLabelLocked(application, window).string()); | 
|  | #endif | 
|  | nsecs_t timeout = window ? window->dispatchingTimeout : | 
|  | application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT; | 
|  |  | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY; | 
|  | mInputTargetWaitStartTime = currentTime; | 
|  | mInputTargetWaitTimeoutTime = currentTime + timeout; | 
|  | mInputTargetWaitTimeoutExpired = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mInputTargetWaitTimeoutExpired) { | 
|  | return INPUT_EVENT_INJECTION_TIMED_OUT; | 
|  | } | 
|  |  | 
|  | if (currentTime >= mInputTargetWaitTimeoutTime) { | 
|  | onANRLocked(currentTime, application, window, entry->eventTime, mInputTargetWaitStartTime); | 
|  |  | 
|  | // Force poll loop to wake up immediately on next iteration once we get the | 
|  | // ANR response back from the policy. | 
|  | *nextWakeupTime = LONG_LONG_MIN; | 
|  | return INPUT_EVENT_INJECTION_PENDING; | 
|  | } else { | 
|  | // Force poll loop to wake up when timeout is due. | 
|  | if (mInputTargetWaitTimeoutTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = mInputTargetWaitTimeoutTime; | 
|  | } | 
|  | return INPUT_EVENT_INJECTION_PENDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout, | 
|  | const sp<InputChannel>& inputChannel) { | 
|  | if (newTimeout > 0) { | 
|  | // Extend the timeout. | 
|  | mInputTargetWaitTimeoutTime = now() + newTimeout; | 
|  | } else { | 
|  | // Give up. | 
|  | mInputTargetWaitTimeoutExpired = true; | 
|  |  | 
|  | // Release the touch targets. | 
|  | mTouchState.reset(); | 
|  |  | 
|  | // Input state will not be realistic.  Mark it out of sync. | 
|  | if (inputChannel.get()) { | 
|  | ssize_t connectionIndex = getConnectionIndexLocked(inputChannel); | 
|  | if (connectionIndex >= 0) { | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | synthesizeCancelationEventsForConnectionLocked( | 
|  | connection, InputState::CANCEL_ALL_EVENTS, | 
|  | "application not responding"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked( | 
|  | nsecs_t currentTime) { | 
|  | if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { | 
|  | return currentTime - mInputTargetWaitStartTime; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetANRTimeoutsLocked() { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Resetting ANR timeouts."); | 
|  | #endif | 
|  |  | 
|  | // Reset input target wait timeout. | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime, | 
|  | const EventEntry* entry, nsecs_t* nextWakeupTime) { | 
|  | mCurrentInputTargets.clear(); | 
|  |  | 
|  | int32_t injectionResult; | 
|  |  | 
|  | // If there is no currently focused window and no focused application | 
|  | // then drop the event. | 
|  | if (! mFocusedWindow) { | 
|  | if (mFocusedApplication) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because there is no focused window but there is a " | 
|  | "focused application that may eventually add a window: %s.", | 
|  | getApplicationWindowLabelLocked(mFocusedApplication, NULL).string()); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | mFocusedApplication, NULL, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | LOGI("Dropping event because there is no focused window or focused application."); | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // Check permissions. | 
|  | if (! checkInjectionPermission(mFocusedWindow, entry->injectionState)) { | 
|  | injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // If the currently focused window is paused then keep waiting. | 
|  | if (mFocusedWindow->paused) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because focused window is paused."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | mFocusedApplication, mFocusedWindow, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | // If the currently focused window is still working on previous events then keep waiting. | 
|  | if (! isWindowFinishedWithPreviousInputLocked(mFocusedWindow)) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because focused window still processing previous input."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | mFocusedApplication, mFocusedWindow, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | // Success!  Output targets. | 
|  | injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; | 
|  | addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_FOREGROUND, BitSet32(0)); | 
|  |  | 
|  | // Done. | 
|  | Failed: | 
|  | Unresponsive: | 
|  | nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime); | 
|  | updateDispatchStatisticsLocked(currentTime, entry, | 
|  | injectionResult, timeSpentWaitingForApplication); | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("findFocusedWindow finished: injectionResult=%d, " | 
|  | "timeSpendWaitingForApplication=%0.1fms", | 
|  | injectionResult, timeSpentWaitingForApplication / 1000000.0); | 
|  | #endif | 
|  | return injectionResult; | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime, | 
|  | const MotionEntry* entry, nsecs_t* nextWakeupTime) { | 
|  | enum InjectionPermission { | 
|  | INJECTION_PERMISSION_UNKNOWN, | 
|  | INJECTION_PERMISSION_GRANTED, | 
|  | INJECTION_PERMISSION_DENIED | 
|  | }; | 
|  |  | 
|  | mCurrentInputTargets.clear(); | 
|  |  | 
|  | nsecs_t startTime = now(); | 
|  |  | 
|  | // For security reasons, we defer updating the touch state until we are sure that | 
|  | // event injection will be allowed. | 
|  | // | 
|  | // FIXME In the original code, screenWasOff could never be set to true. | 
|  | //       The reason is that the POLICY_FLAG_WOKE_HERE | 
|  | //       and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw | 
|  | //       EV_KEY, EV_REL and EV_ABS events.  As it happens, the touch event was | 
|  | //       actually enqueued using the policyFlags that appeared in the final EV_SYN | 
|  | //       events upon which no preprocessing took place.  So policyFlags was always 0. | 
|  | //       In the new native input dispatcher we're a bit more careful about event | 
|  | //       preprocessing so the touches we receive can actually have non-zero policyFlags. | 
|  | //       Unfortunately we obtain undesirable behavior. | 
|  | // | 
|  | //       Here's what happens: | 
|  | // | 
|  | //       When the device dims in anticipation of going to sleep, touches | 
|  | //       in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause | 
|  | //       the device to brighten and reset the user activity timer. | 
|  | //       Touches on other windows (such as the launcher window) | 
|  | //       are dropped.  Then after a moment, the device goes to sleep.  Oops. | 
|  | // | 
|  | //       Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE | 
|  | //       instead of POLICY_FLAG_WOKE_HERE... | 
|  | // | 
|  | bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE; | 
|  |  | 
|  | int32_t action = entry->action; | 
|  | int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK; | 
|  |  | 
|  | // Update the touch state as needed based on the properties of the touch event. | 
|  | int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING; | 
|  | InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN; | 
|  | if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { | 
|  | mTempTouchState.reset(); | 
|  | mTempTouchState.down = true; | 
|  | } else { | 
|  | mTempTouchState.copyFrom(mTouchState); | 
|  | } | 
|  |  | 
|  | bool isSplit = mTempTouchState.split && mTempTouchState.down; | 
|  | if (maskedAction == AMOTION_EVENT_ACTION_DOWN | 
|  | || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) { | 
|  | /* Case 1: New splittable pointer going down. */ | 
|  |  | 
|  | int32_t pointerIndex = getMotionEventActionPointerIndex(action); | 
|  | int32_t x = int32_t(entry->firstSample.pointerCoords[pointerIndex].x); | 
|  | int32_t y = int32_t(entry->firstSample.pointerCoords[pointerIndex].y); | 
|  | const InputWindow* newTouchedWindow = NULL; | 
|  | const InputWindow* topErrorWindow = NULL; | 
|  |  | 
|  | // Traverse windows from front to back to find touched window and outside targets. | 
|  | size_t numWindows = mWindows.size(); | 
|  | for (size_t i = 0; i < numWindows; i++) { | 
|  | const InputWindow* window = & mWindows.editItemAt(i); | 
|  | int32_t flags = window->layoutParamsFlags; | 
|  |  | 
|  | if (flags & InputWindow::FLAG_SYSTEM_ERROR) { | 
|  | if (! topErrorWindow) { | 
|  | topErrorWindow = window; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (window->visible) { | 
|  | if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) { | 
|  | bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE | 
|  | | InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0; | 
|  | if (isTouchModal || window->touchableAreaContainsPoint(x, y)) { | 
|  | if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) { | 
|  | newTouchedWindow = window; | 
|  | } | 
|  | break; // found touched window, exit window loop | 
|  | } | 
|  | } | 
|  |  | 
|  | if (maskedAction == AMOTION_EVENT_ACTION_DOWN | 
|  | && (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH)) { | 
|  | int32_t outsideTargetFlags = InputTarget::FLAG_OUTSIDE; | 
|  | if (isWindowObscuredAtPointLocked(window, x, y)) { | 
|  | outsideTargetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED; | 
|  | } | 
|  |  | 
|  | mTempTouchState.addOrUpdateWindow(window, outsideTargetFlags, BitSet32(0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is an error window but it is not taking focus (typically because | 
|  | // it is invisible) then wait for it.  Any other focused window may in | 
|  | // fact be in ANR state. | 
|  | if (topErrorWindow && newTouchedWindow != topErrorWindow) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because system error window is pending."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | NULL, NULL, nextWakeupTime); | 
|  | injectionPermission = INJECTION_PERMISSION_UNKNOWN; | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | // Figure out whether splitting will be allowed for this window. | 
|  | if (newTouchedWindow | 
|  | && (newTouchedWindow->layoutParamsFlags & InputWindow::FLAG_SPLIT_TOUCH)) { | 
|  | // New window supports splitting. | 
|  | isSplit = true; | 
|  | } else if (isSplit) { | 
|  | // New window does not support splitting but we have already split events. | 
|  | // Assign the pointer to the first foreground window we find. | 
|  | // (May be NULL which is why we put this code block before the next check.) | 
|  | newTouchedWindow = mTempTouchState.getFirstForegroundWindow(); | 
|  | } | 
|  |  | 
|  | // If we did not find a touched window then fail. | 
|  | if (! newTouchedWindow) { | 
|  | if (mFocusedApplication) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because there is no touched window but there is a " | 
|  | "focused application that may eventually add a new window: %s.", | 
|  | getApplicationWindowLabelLocked(mFocusedApplication, NULL).string()); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | mFocusedApplication, NULL, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | LOGI("Dropping event because there is no touched window or focused application."); | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // Set target flags. | 
|  | int32_t targetFlags = InputTarget::FLAG_FOREGROUND; | 
|  | if (isSplit) { | 
|  | targetFlags |= InputTarget::FLAG_SPLIT; | 
|  | } | 
|  | if (isWindowObscuredAtPointLocked(newTouchedWindow, x, y)) { | 
|  | targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED; | 
|  | } | 
|  |  | 
|  | // Update the temporary touch state. | 
|  | BitSet32 pointerIds; | 
|  | if (isSplit) { | 
|  | uint32_t pointerId = entry->pointerIds[pointerIndex]; | 
|  | pointerIds.markBit(pointerId); | 
|  | } | 
|  | mTempTouchState.addOrUpdateWindow(newTouchedWindow, targetFlags, pointerIds); | 
|  | } else { | 
|  | /* Case 2: Pointer move, up, cancel or non-splittable pointer down. */ | 
|  |  | 
|  | // If the pointer is not currently down, then ignore the event. | 
|  | if (! mTempTouchState.down) { | 
|  | LOGI("Dropping event because the pointer is not down."); | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | goto Failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check permission to inject into all touched foreground windows and ensure there | 
|  | // is at least one touched foreground window. | 
|  | { | 
|  | bool haveForegroundWindow = false; | 
|  | for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { | 
|  | const TouchedWindow& touchedWindow = mTempTouchState.windows[i]; | 
|  | if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) { | 
|  | haveForegroundWindow = true; | 
|  | if (! checkInjectionPermission(touchedWindow.window, entry->injectionState)) { | 
|  | injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; | 
|  | injectionPermission = INJECTION_PERMISSION_DENIED; | 
|  | goto Failed; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (! haveForegroundWindow) { | 
|  | #if DEBUG_INPUT_DISPATCHER_POLICY | 
|  | LOGD("Dropping event because there is no touched foreground window to receive it."); | 
|  | #endif | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // Permission granted to injection into all touched foreground windows. | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  | } | 
|  |  | 
|  | // Ensure all touched foreground windows are ready for new input. | 
|  | for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { | 
|  | const TouchedWindow& touchedWindow = mTempTouchState.windows[i]; | 
|  | if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) { | 
|  | // If the touched window is paused then keep waiting. | 
|  | if (touchedWindow.window->paused) { | 
|  | #if DEBUG_INPUT_DISPATCHER_POLICY | 
|  | LOGD("Waiting because touched window is paused."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | NULL, touchedWindow.window, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | // If the touched window is still working on previous events then keep waiting. | 
|  | if (! isWindowFinishedWithPreviousInputLocked(touchedWindow.window)) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because touched window still processing previous input."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | NULL, touchedWindow.window, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is the first pointer going down and the touched window has a wallpaper | 
|  | // then also add the touched wallpaper windows so they are locked in for the duration | 
|  | // of the touch gesture. | 
|  | if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { | 
|  | const InputWindow* foregroundWindow = mTempTouchState.getFirstForegroundWindow(); | 
|  | if (foregroundWindow->hasWallpaper) { | 
|  | for (size_t i = 0; i < mWindows.size(); i++) { | 
|  | const InputWindow* window = & mWindows[i]; | 
|  | if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) { | 
|  | mTempTouchState.addOrUpdateWindow(window, | 
|  | InputTarget::FLAG_WINDOW_IS_OBSCURED, BitSet32(0)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Success!  Output targets. | 
|  | injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; | 
|  |  | 
|  | for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { | 
|  | const TouchedWindow& touchedWindow = mTempTouchState.windows.itemAt(i); | 
|  | addWindowTargetLocked(touchedWindow.window, touchedWindow.targetFlags, | 
|  | touchedWindow.pointerIds); | 
|  | } | 
|  |  | 
|  | // Drop the outside touch window since we will not care about them in the next iteration. | 
|  | mTempTouchState.removeOutsideTouchWindows(); | 
|  |  | 
|  | Failed: | 
|  | // Check injection permission once and for all. | 
|  | if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) { | 
|  | if (checkInjectionPermission(NULL, entry->injectionState)) { | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  | } else { | 
|  | injectionPermission = INJECTION_PERMISSION_DENIED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update final pieces of touch state if the injector had permission. | 
|  | if (injectionPermission == INJECTION_PERMISSION_GRANTED) { | 
|  | if (maskedAction == AMOTION_EVENT_ACTION_UP | 
|  | || maskedAction == AMOTION_EVENT_ACTION_CANCEL) { | 
|  | // All pointers up or canceled. | 
|  | mTempTouchState.reset(); | 
|  | } else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { | 
|  | // First pointer went down. | 
|  | if (mTouchState.down) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Pointer down received while already down."); | 
|  | #endif | 
|  | } | 
|  | } else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) { | 
|  | // One pointer went up. | 
|  | if (isSplit) { | 
|  | int32_t pointerIndex = getMotionEventActionPointerIndex(action); | 
|  | uint32_t pointerId = entry->pointerIds[pointerIndex]; | 
|  |  | 
|  | for (size_t i = 0; i < mTempTouchState.windows.size(); ) { | 
|  | TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i); | 
|  | if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) { | 
|  | touchedWindow.pointerIds.clearBit(pointerId); | 
|  | if (touchedWindow.pointerIds.isEmpty()) { | 
|  | mTempTouchState.windows.removeAt(i); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save changes to touch state. | 
|  | mTouchState.copyFrom(mTempTouchState); | 
|  | } else { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Not updating touch focus because injection was denied."); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Unresponsive: | 
|  | // Reset temporary touch state to ensure we release unnecessary references to input channels. | 
|  | mTempTouchState.reset(); | 
|  |  | 
|  | nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime); | 
|  | updateDispatchStatisticsLocked(currentTime, entry, | 
|  | injectionResult, timeSpentWaitingForApplication); | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, " | 
|  | "timeSpentWaitingForApplication=%0.1fms", | 
|  | injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0); | 
|  | #endif | 
|  | return injectionResult; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags, | 
|  | BitSet32 pointerIds) { | 
|  | mCurrentInputTargets.push(); | 
|  |  | 
|  | InputTarget& target = mCurrentInputTargets.editTop(); | 
|  | target.inputChannel = window->inputChannel; | 
|  | target.flags = targetFlags; | 
|  | target.xOffset = - window->frameLeft; | 
|  | target.yOffset = - window->frameTop; | 
|  | target.pointerIds = pointerIds; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::addMonitoringTargetsLocked() { | 
|  | for (size_t i = 0; i < mMonitoringChannels.size(); i++) { | 
|  | mCurrentInputTargets.push(); | 
|  |  | 
|  | InputTarget& target = mCurrentInputTargets.editTop(); | 
|  | target.inputChannel = mMonitoringChannels[i]; | 
|  | target.flags = 0; | 
|  | target.xOffset = 0; | 
|  | target.yOffset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::checkInjectionPermission(const InputWindow* window, | 
|  | const InjectionState* injectionState) { | 
|  | if (injectionState | 
|  | && (window == NULL || window->ownerUid != injectionState->injectorUid) | 
|  | && !hasInjectionPermission(injectionState->injectorPid, injectionState->injectorUid)) { | 
|  | if (window) { | 
|  | LOGW("Permission denied: injecting event from pid %d uid %d to window " | 
|  | "with input channel %s owned by uid %d", | 
|  | injectionState->injectorPid, injectionState->injectorUid, | 
|  | window->inputChannel->getName().string(), | 
|  | window->ownerUid); | 
|  | } else { | 
|  | LOGW("Permission denied: injecting event from pid %d uid %d", | 
|  | injectionState->injectorPid, injectionState->injectorUid); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isWindowObscuredAtPointLocked( | 
|  | const InputWindow* window, int32_t x, int32_t y) const { | 
|  | size_t numWindows = mWindows.size(); | 
|  | for (size_t i = 0; i < numWindows; i++) { | 
|  | const InputWindow* other = & mWindows.itemAt(i); | 
|  | if (other == window) { | 
|  | break; | 
|  | } | 
|  | if (other->visible && ! other->isTrustedOverlay() && other->frameContainsPoint(x, y)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isWindowFinishedWithPreviousInputLocked(const InputWindow* window) { | 
|  | ssize_t connectionIndex = getConnectionIndexLocked(window->inputChannel); | 
|  | if (connectionIndex >= 0) { | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | return connection->outboundQueue.isEmpty(); | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | String8 InputDispatcher::getApplicationWindowLabelLocked(const InputApplication* application, | 
|  | const InputWindow* window) { | 
|  | if (application) { | 
|  | if (window) { | 
|  | String8 label(application->name); | 
|  | label.append(" - "); | 
|  | label.append(window->name); | 
|  | return label; | 
|  | } else { | 
|  | return application->name; | 
|  | } | 
|  | } else if (window) { | 
|  | return window->name; | 
|  | } else { | 
|  | return String8("<unknown application or window>"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::pokeUserActivityLocked(const EventEntry* eventEntry) { | 
|  | int32_t eventType = POWER_MANAGER_BUTTON_EVENT; | 
|  | switch (eventEntry->type) { | 
|  | case EventEntry::TYPE_MOTION: { | 
|  | const MotionEntry* motionEntry = static_cast<const MotionEntry*>(eventEntry); | 
|  | if (motionEntry->action == AMOTION_EVENT_ACTION_CANCEL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { | 
|  | switch (motionEntry->action) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | eventType = POWER_MANAGER_TOUCH_EVENT; | 
|  | break; | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | eventType = POWER_MANAGER_TOUCH_UP_EVENT; | 
|  | break; | 
|  | default: | 
|  | if (motionEntry->eventTime - motionEntry->downTime < LONG_TOUCH_DELAY) { | 
|  | eventType = POWER_MANAGER_TOUCH_EVENT; | 
|  | } else { | 
|  | eventType = POWER_MANAGER_LONG_TOUCH_EVENT; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EventEntry::TYPE_KEY: { | 
|  | const KeyEntry* keyEntry = static_cast<const KeyEntry*>(eventEntry); | 
|  | if (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED) { | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doPokeUserActivityLockedInterruptible); | 
|  | commandEntry->eventTime = eventEntry->eventTime; | 
|  | commandEntry->userActivityEventType = eventType; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget, | 
|  | bool resumeWithAppendedMotionSample) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, " | 
|  | "xOffset=%f, yOffset=%f, " | 
|  | "windowType=%d, pointerIds=0x%x, " | 
|  | "resumeWithAppendedMotionSample=%s", | 
|  | connection->getInputChannelName(), inputTarget->flags, | 
|  | inputTarget->xOffset, inputTarget->yOffset, | 
|  | inputTarget->windowType, inputTarget->pointerIds.value, | 
|  | toString(resumeWithAppendedMotionSample)); | 
|  | #endif | 
|  |  | 
|  | // Make sure we are never called for streaming when splitting across multiple windows. | 
|  | bool isSplit = inputTarget->flags & InputTarget::FLAG_SPLIT; | 
|  | assert(! (resumeWithAppendedMotionSample && isSplit)); | 
|  |  | 
|  | // Skip this event if the connection status is not normal. | 
|  | // We don't want to enqueue additional outbound events if the connection is broken. | 
|  | if (connection->status != Connection::STATUS_NORMAL) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ Dropping event because the channel status is %s", | 
|  | connection->getInputChannelName(), connection->getStatusLabel()); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Split a motion event if needed. | 
|  | if (isSplit) { | 
|  | assert(eventEntry->type == EventEntry::TYPE_MOTION); | 
|  |  | 
|  | MotionEntry* originalMotionEntry = static_cast<MotionEntry*>(eventEntry); | 
|  | if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) { | 
|  | MotionEntry* splitMotionEntry = splitMotionEvent( | 
|  | originalMotionEntry, inputTarget->pointerIds); | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("channel '%s' ~ Split motion event.", | 
|  | connection->getInputChannelName()); | 
|  | logOutboundMotionDetailsLocked("  ", splitMotionEntry); | 
|  | #endif | 
|  | eventEntry = splitMotionEntry; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Resume the dispatch cycle with a freshly appended motion sample. | 
|  | // First we check that the last dispatch entry in the outbound queue is for the same | 
|  | // motion event to which we appended the motion sample.  If we find such a dispatch | 
|  | // entry, and if it is currently in progress then we try to stream the new sample. | 
|  | bool wasEmpty = connection->outboundQueue.isEmpty(); | 
|  |  | 
|  | if (! wasEmpty && resumeWithAppendedMotionSample) { | 
|  | DispatchEntry* motionEventDispatchEntry = | 
|  | connection->findQueuedDispatchEntryForEvent(eventEntry); | 
|  | if (motionEventDispatchEntry) { | 
|  | // If the dispatch entry is not in progress, then we must be busy dispatching an | 
|  | // earlier event.  Not a problem, the motion event is on the outbound queue and will | 
|  | // be dispatched later. | 
|  | if (! motionEventDispatchEntry->inProgress) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Not streaming because the motion event has " | 
|  | "not yet been dispatched.  " | 
|  | "(Waiting for earlier events to be consumed.)", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the dispatch entry is in progress but it already has a tail of pending | 
|  | // motion samples, then it must mean that the shared memory buffer filled up. | 
|  | // Not a problem, when this dispatch cycle is finished, we will eventually start | 
|  | // a new dispatch cycle to process the tail and that tail includes the newly | 
|  | // appended motion sample. | 
|  | if (motionEventDispatchEntry->tailMotionSample) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Not streaming because no new samples can " | 
|  | "be appended to the motion event in this dispatch cycle.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The dispatch entry is in progress and is still potentially open for streaming. | 
|  | // Try to stream the new motion sample.  This might fail if the consumer has already | 
|  | // consumed the motion event (or if the channel is broken). | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry); | 
|  | MotionSample* appendedMotionSample = motionEntry->lastSample; | 
|  | status_t status = connection->inputPublisher.appendMotionSample( | 
|  | appendedMotionSample->eventTime, appendedMotionSample->pointerCoords); | 
|  | if (status == OK) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Successfully streamed new motion sample.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if DEBUG_BATCHING | 
|  | if (status == NO_MEMORY) { | 
|  | LOGD("channel '%s' ~ Could not append motion sample to currently " | 
|  | "dispatched move event because the shared memory buffer is full.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName()); | 
|  | } else if (status == status_t(FAILED_TRANSACTION)) { | 
|  | LOGD("channel '%s' ~ Could not append motion sample to currently " | 
|  | "dispatched move event because the event has already been consumed.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName()); | 
|  | } else { | 
|  | LOGD("channel '%s' ~ Could not append motion sample to currently " | 
|  | "dispatched move event due to an error, status=%d.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName(), status); | 
|  | } | 
|  | #endif | 
|  | // Failed to stream.  Start a new tail of pending motion samples to dispatch | 
|  | // in the next cycle. | 
|  | motionEventDispatchEntry->tailMotionSample = appendedMotionSample; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is a new event. | 
|  | // Enqueue a new dispatch entry onto the outbound queue for this connection. | 
|  | DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref | 
|  | inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset); | 
|  | if (dispatchEntry->hasForegroundTarget()) { | 
|  | incrementPendingForegroundDispatchesLocked(eventEntry); | 
|  | } | 
|  |  | 
|  | // Handle the case where we could not stream a new motion sample because the consumer has | 
|  | // already consumed the motion event (otherwise the corresponding dispatch entry would | 
|  | // still be in the outbound queue for this connection).  We set the head motion sample | 
|  | // to the list starting with the newly appended motion sample. | 
|  | if (resumeWithAppendedMotionSample) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples " | 
|  | "that cannot be streamed because the motion event has already been consumed.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; | 
|  | dispatchEntry->headMotionSample = appendedMotionSample; | 
|  | } | 
|  |  | 
|  | // Enqueue the dispatch entry. | 
|  | connection->outboundQueue.enqueueAtTail(dispatchEntry); | 
|  |  | 
|  | // If the outbound queue was previously empty, start the dispatch cycle going. | 
|  | if (wasEmpty) { | 
|  | activateConnectionLocked(connection.get()); | 
|  | startDispatchCycleLocked(currentTime, connection); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ startDispatchCycle", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  |  | 
|  | assert(connection->status == Connection::STATUS_NORMAL); | 
|  | assert(! connection->outboundQueue.isEmpty()); | 
|  |  | 
|  | DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; | 
|  | assert(! dispatchEntry->inProgress); | 
|  |  | 
|  | // Mark the dispatch entry as in progress. | 
|  | dispatchEntry->inProgress = true; | 
|  |  | 
|  | // Update the connection's input state. | 
|  | EventEntry* eventEntry = dispatchEntry->eventEntry; | 
|  | InputState::Consistency consistency = connection->inputState.trackEvent(eventEntry); | 
|  |  | 
|  | #if FILTER_INPUT_EVENTS | 
|  | // Filter out inconsistent sequences of input events. | 
|  | // The input system may drop or inject events in a way that could violate implicit | 
|  | // invariants on input state and potentially cause an application to crash | 
|  | // or think that a key or pointer is stuck down.  Technically we make no guarantees | 
|  | // of consistency but it would be nice to improve on this where possible. | 
|  | // XXX: This code is a proof of concept only.  Not ready for prime time. | 
|  | if (consistency == InputState::TOLERABLE) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ Sending an event that is inconsistent with the connection's " | 
|  | "current input state but that is likely to be tolerated by the application.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | } else if (consistency == InputState::BROKEN) { | 
|  | LOGI("channel '%s' ~ Dropping an event that is inconsistent with the connection's " | 
|  | "current input state and that is likely to cause the application to crash.", | 
|  | connection->getInputChannelName()); | 
|  | startNextDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Publish the event. | 
|  | status_t status; | 
|  | switch (eventEntry->type) { | 
|  | case EventEntry::TYPE_KEY: { | 
|  | KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry); | 
|  |  | 
|  | // Apply target flags. | 
|  | int32_t action = keyEntry->action; | 
|  | int32_t flags = keyEntry->flags; | 
|  |  | 
|  | // Publish the key event. | 
|  | status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source, | 
|  | action, flags, keyEntry->keyCode, keyEntry->scanCode, | 
|  | keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime, | 
|  | keyEntry->eventTime); | 
|  |  | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not publish key event, " | 
|  | "status=%d", connection->getInputChannelName(), status); | 
|  | abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EventEntry::TYPE_MOTION: { | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry); | 
|  |  | 
|  | // Apply target flags. | 
|  | int32_t action = motionEntry->action; | 
|  | int32_t flags = motionEntry->flags; | 
|  | if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) { | 
|  | action = AMOTION_EVENT_ACTION_OUTSIDE; | 
|  | } | 
|  | if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) { | 
|  | flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED; | 
|  | } | 
|  |  | 
|  | // If headMotionSample is non-NULL, then it points to the first new sample that we | 
|  | // were unable to dispatch during the previous cycle so we resume dispatching from | 
|  | // that point in the list of motion samples. | 
|  | // Otherwise, we just start from the first sample of the motion event. | 
|  | MotionSample* firstMotionSample = dispatchEntry->headMotionSample; | 
|  | if (! firstMotionSample) { | 
|  | firstMotionSample = & motionEntry->firstSample; | 
|  | } | 
|  |  | 
|  | // Set the X and Y offset depending on the input source. | 
|  | float xOffset, yOffset; | 
|  | if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { | 
|  | xOffset = dispatchEntry->xOffset; | 
|  | yOffset = dispatchEntry->yOffset; | 
|  | } else { | 
|  | xOffset = 0.0f; | 
|  | yOffset = 0.0f; | 
|  | } | 
|  |  | 
|  | // Publish the motion event and the first motion sample. | 
|  | status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId, | 
|  | motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState, | 
|  | xOffset, yOffset, | 
|  | motionEntry->xPrecision, motionEntry->yPrecision, | 
|  | motionEntry->downTime, firstMotionSample->eventTime, | 
|  | motionEntry->pointerCount, motionEntry->pointerIds, | 
|  | firstMotionSample->pointerCoords); | 
|  |  | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not publish motion event, " | 
|  | "status=%d", connection->getInputChannelName(), status); | 
|  | abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Append additional motion samples. | 
|  | MotionSample* nextMotionSample = firstMotionSample->next; | 
|  | for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) { | 
|  | status = connection->inputPublisher.appendMotionSample( | 
|  | nextMotionSample->eventTime, nextMotionSample->pointerCoords); | 
|  | if (status == NO_MEMORY) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ Shared memory buffer full.  Some motion samples will " | 
|  | "be sent in the next dispatch cycle.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | if (status != OK) { | 
|  | LOGE("channel '%s' ~ Could not append motion sample " | 
|  | "for a reason other than out of memory, status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember the next motion sample that we could not dispatch, in case we ran out | 
|  | // of space in the shared memory buffer. | 
|  | dispatchEntry->tailMotionSample = nextMotionSample; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: { | 
|  | assert(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send the dispatch signal. | 
|  | status = connection->inputPublisher.sendDispatchSignal(); | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not send dispatch signal, status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Record information about the newly started dispatch cycle. | 
|  | connection->lastEventTime = eventEntry->eventTime; | 
|  | connection->lastDispatchTime = currentTime; | 
|  |  | 
|  | // Notify other system components. | 
|  | onDispatchCycleStartedLocked(currentTime, connection); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, " | 
|  | "%01.1fms since dispatch", | 
|  | connection->getInputChannelName(), | 
|  | connection->getEventLatencyMillis(currentTime), | 
|  | connection->getDispatchLatencyMillis(currentTime)); | 
|  | #endif | 
|  |  | 
|  | if (connection->status == Connection::STATUS_BROKEN | 
|  | || connection->status == Connection::STATUS_ZOMBIE) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Notify other system components. | 
|  | onDispatchCycleFinishedLocked(currentTime, connection); | 
|  |  | 
|  | // Reset the publisher since the event has been consumed. | 
|  | // We do this now so that the publisher can release some of its internal resources | 
|  | // while waiting for the next dispatch cycle to begin. | 
|  | status_t status = connection->inputPublisher.reset(); | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not reset publisher, status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  |  | 
|  | startNextDispatchCycleLocked(currentTime, connection); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection) { | 
|  | // Start the next dispatch cycle for this connection. | 
|  | while (! connection->outboundQueue.isEmpty()) { | 
|  | DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; | 
|  | if (dispatchEntry->inProgress) { | 
|  | // Finish or resume current event in progress. | 
|  | if (dispatchEntry->tailMotionSample) { | 
|  | // We have a tail of undispatched motion samples. | 
|  | // Reuse the same DispatchEntry and start a new cycle. | 
|  | dispatchEntry->inProgress = false; | 
|  | dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample; | 
|  | dispatchEntry->tailMotionSample = NULL; | 
|  | startDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  | // Finished. | 
|  | connection->outboundQueue.dequeueAtHead(); | 
|  | if (dispatchEntry->hasForegroundTarget()) { | 
|  | decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry); | 
|  | } | 
|  | mAllocator.releaseDispatchEntry(dispatchEntry); | 
|  | } else { | 
|  | // If the head is not in progress, then we must have already dequeued the in | 
|  | // progress event, which means we actually aborted it. | 
|  | // So just start the next event for this connection. | 
|  | startDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Outbound queue is empty, deactivate the connection. | 
|  | deactivateConnectionLocked(connection.get()); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ abortBrokenDispatchCycle - broken=%s", | 
|  | connection->getInputChannelName(), toString(broken)); | 
|  | #endif | 
|  |  | 
|  | // Clear the outbound queue. | 
|  | drainOutboundQueueLocked(connection.get()); | 
|  |  | 
|  | // The connection appears to be unrecoverably broken. | 
|  | // Ignore already broken or zombie connections. | 
|  | if (connection->status == Connection::STATUS_NORMAL) { | 
|  | connection->status = Connection::STATUS_BROKEN; | 
|  |  | 
|  | // Notify other system components. | 
|  | onDispatchCycleBrokenLocked(currentTime, connection); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::drainOutboundQueueLocked(Connection* connection) { | 
|  | while (! connection->outboundQueue.isEmpty()) { | 
|  | DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead(); | 
|  | if (dispatchEntry->hasForegroundTarget()) { | 
|  | decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry); | 
|  | } | 
|  | mAllocator.releaseDispatchEntry(dispatchEntry); | 
|  | } | 
|  |  | 
|  | deactivateConnectionLocked(connection); | 
|  | } | 
|  |  | 
|  | int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) { | 
|  | InputDispatcher* d = static_cast<InputDispatcher*>(data); | 
|  |  | 
|  | { // acquire lock | 
|  | AutoMutex _l(d->mLock); | 
|  |  | 
|  | ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd); | 
|  | if (connectionIndex < 0) { | 
|  | LOGE("Received spurious receive callback for unknown input channel.  " | 
|  | "fd=%d, events=0x%x", receiveFd, events); | 
|  | return 0; // remove the callback | 
|  | } | 
|  |  | 
|  | nsecs_t currentTime = now(); | 
|  |  | 
|  | sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) { | 
|  | LOGE("channel '%s' ~ Consumer closed input channel or an error occurred.  " | 
|  | "events=0x%x", connection->getInputChannelName(), events); | 
|  | d->abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  | d->runCommandsLockedInterruptible(); | 
|  | return 0; // remove the callback | 
|  | } | 
|  |  | 
|  | if (! (events & ALOOPER_EVENT_INPUT)) { | 
|  | LOGW("channel '%s' ~ Received spurious callback for unhandled poll event.  " | 
|  | "events=0x%x", connection->getInputChannelName(), events); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | status_t status = connection->inputPublisher.receiveFinishedSignal(); | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Failed to receive finished signal.  status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | d->abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  | d->runCommandsLockedInterruptible(); | 
|  | return 0; // remove the callback | 
|  | } | 
|  |  | 
|  | d->finishDispatchCycleLocked(currentTime, connection); | 
|  | d->runCommandsLockedInterruptible(); | 
|  | return 1; | 
|  | } // release lock | 
|  | } | 
|  |  | 
|  | void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked( | 
|  | InputState::CancelationOptions options, const char* reason) { | 
|  | for (size_t i = 0; i < mConnectionsByReceiveFd.size(); i++) { | 
|  | synthesizeCancelationEventsForConnectionLocked( | 
|  | mConnectionsByReceiveFd.valueAt(i), options, reason); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked( | 
|  | const sp<InputChannel>& channel, InputState::CancelationOptions options, | 
|  | const char* reason) { | 
|  | ssize_t index = getConnectionIndexLocked(channel); | 
|  | if (index >= 0) { | 
|  | synthesizeCancelationEventsForConnectionLocked( | 
|  | mConnectionsByReceiveFd.valueAt(index), options, reason); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::synthesizeCancelationEventsForConnectionLocked( | 
|  | const sp<Connection>& connection, InputState::CancelationOptions options, | 
|  | const char* reason) { | 
|  | nsecs_t currentTime = now(); | 
|  |  | 
|  | mTempCancelationEvents.clear(); | 
|  | connection->inputState.synthesizeCancelationEvents(currentTime, & mAllocator, | 
|  | mTempCancelationEvents, options); | 
|  |  | 
|  | if (! mTempCancelationEvents.isEmpty() | 
|  | && connection->status != Connection::STATUS_BROKEN) { | 
|  | #if DEBUG_OUTBOUND_EVENT_DETAILS | 
|  | LOGD("channel '%s' ~ Synthesized %d cancelation events to bring channel back in sync " | 
|  | "with reality: %s, options=%d.", | 
|  | connection->getInputChannelName(), mTempCancelationEvents.size(), reason, options); | 
|  | #endif | 
|  | for (size_t i = 0; i < mTempCancelationEvents.size(); i++) { | 
|  | EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i); | 
|  | switch (cancelationEventEntry->type) { | 
|  | case EventEntry::TYPE_KEY: | 
|  | logOutboundKeyDetailsLocked("cancel - ", | 
|  | static_cast<KeyEntry*>(cancelationEventEntry)); | 
|  | break; | 
|  | case EventEntry::TYPE_MOTION: | 
|  | logOutboundMotionDetailsLocked("cancel - ", | 
|  | static_cast<MotionEntry*>(cancelationEventEntry)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | int32_t xOffset, yOffset; | 
|  | const InputWindow* window = getWindowLocked(connection->inputChannel); | 
|  | if (window) { | 
|  | xOffset = -window->frameLeft; | 
|  | yOffset = -window->frameTop; | 
|  | } else { | 
|  | xOffset = 0; | 
|  | yOffset = 0; | 
|  | } | 
|  |  | 
|  | DispatchEntry* cancelationDispatchEntry = | 
|  | mAllocator.obtainDispatchEntry(cancelationEventEntry, // increments ref | 
|  | 0, xOffset, yOffset); | 
|  | connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry); | 
|  |  | 
|  | mAllocator.releaseEventEntry(cancelationEventEntry); | 
|  | } | 
|  |  | 
|  | if (!connection->outboundQueue.headSentinel.next->inProgress) { | 
|  | startDispatchCycleLocked(currentTime, connection); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::MotionEntry* | 
|  | InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) { | 
|  | assert(pointerIds.value != 0); | 
|  |  | 
|  | uint32_t splitPointerIndexMap[MAX_POINTERS]; | 
|  | int32_t splitPointerIds[MAX_POINTERS]; | 
|  | PointerCoords splitPointerCoords[MAX_POINTERS]; | 
|  |  | 
|  | uint32_t originalPointerCount = originalMotionEntry->pointerCount; | 
|  | uint32_t splitPointerCount = 0; | 
|  |  | 
|  | for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount; | 
|  | originalPointerIndex++) { | 
|  | int32_t pointerId = uint32_t(originalMotionEntry->pointerIds[originalPointerIndex]); | 
|  | if (pointerIds.hasBit(pointerId)) { | 
|  | splitPointerIndexMap[splitPointerCount] = originalPointerIndex; | 
|  | splitPointerIds[splitPointerCount] = pointerId; | 
|  | splitPointerCoords[splitPointerCount] = | 
|  | originalMotionEntry->firstSample.pointerCoords[originalPointerIndex]; | 
|  | splitPointerCount += 1; | 
|  | } | 
|  | } | 
|  | assert(splitPointerCount == pointerIds.count()); | 
|  |  | 
|  | int32_t action = originalMotionEntry->action; | 
|  | int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK; | 
|  | if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN | 
|  | || maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) { | 
|  | int32_t originalPointerIndex = getMotionEventActionPointerIndex(action); | 
|  | int32_t pointerId = originalMotionEntry->pointerIds[originalPointerIndex]; | 
|  | if (pointerIds.hasBit(pointerId)) { | 
|  | if (pointerIds.count() == 1) { | 
|  | // The first/last pointer went down/up. | 
|  | action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN | 
|  | ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; | 
|  | } else { | 
|  | // A secondary pointer went down/up. | 
|  | uint32_t splitPointerIndex = 0; | 
|  | while (pointerId != splitPointerIds[splitPointerIndex]) { | 
|  | splitPointerIndex += 1; | 
|  | } | 
|  | action = maskedAction | (splitPointerIndex | 
|  | << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); | 
|  | } | 
|  | } else { | 
|  | // An unrelated pointer changed. | 
|  | action = AMOTION_EVENT_ACTION_MOVE; | 
|  | } | 
|  | } | 
|  |  | 
|  | MotionEntry* splitMotionEntry = mAllocator.obtainMotionEntry( | 
|  | originalMotionEntry->eventTime, | 
|  | originalMotionEntry->deviceId, | 
|  | originalMotionEntry->source, | 
|  | originalMotionEntry->policyFlags, | 
|  | action, | 
|  | originalMotionEntry->flags, | 
|  | originalMotionEntry->metaState, | 
|  | originalMotionEntry->edgeFlags, | 
|  | originalMotionEntry->xPrecision, | 
|  | originalMotionEntry->yPrecision, | 
|  | originalMotionEntry->downTime, | 
|  | splitPointerCount, splitPointerIds, splitPointerCoords); | 
|  |  | 
|  | for (MotionSample* originalMotionSample = originalMotionEntry->firstSample.next; | 
|  | originalMotionSample != NULL; originalMotionSample = originalMotionSample->next) { | 
|  | for (uint32_t splitPointerIndex = 0; splitPointerIndex < splitPointerCount; | 
|  | splitPointerIndex++) { | 
|  | uint32_t originalPointerIndex = splitPointerIndexMap[splitPointerIndex]; | 
|  | splitPointerCoords[splitPointerIndex] = | 
|  | originalMotionSample->pointerCoords[originalPointerIndex]; | 
|  | } | 
|  |  | 
|  | mAllocator.appendMotionSample(splitMotionEntry, originalMotionSample->eventTime, | 
|  | splitPointerCoords); | 
|  | } | 
|  |  | 
|  | return splitMotionEntry; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime); | 
|  | #endif | 
|  |  | 
|  | bool needWake; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime); | 
|  | needWake = enqueueInboundEventLocked(newEntry); | 
|  | } // release lock | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source, | 
|  | uint32_t policyFlags, int32_t action, int32_t flags, | 
|  | int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, " | 
|  | "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", | 
|  | eventTime, deviceId, source, policyFlags, action, flags, | 
|  | keyCode, scanCode, metaState, downTime); | 
|  | #endif | 
|  | if (! validateKeyEvent(action)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | policyFlags |= POLICY_FLAG_TRUSTED; | 
|  | mPolicy->interceptKeyBeforeQueueing(eventTime, deviceId, action, /*byref*/ flags, | 
|  | keyCode, scanCode, /*byref*/ policyFlags); | 
|  |  | 
|  | bool needWake; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | int32_t repeatCount = 0; | 
|  | KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime, | 
|  | deviceId, source, policyFlags, action, flags, keyCode, scanCode, | 
|  | metaState, repeatCount, downTime); | 
|  |  | 
|  | needWake = enqueueInboundEventLocked(newEntry); | 
|  | } // release lock | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source, | 
|  | uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags, | 
|  | uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords, | 
|  | float xPrecision, float yPrecision, nsecs_t downTime) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " | 
|  | "action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, " | 
|  | "xPrecision=%f, yPrecision=%f, downTime=%lld", | 
|  | eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags, | 
|  | xPrecision, yPrecision, downTime); | 
|  | for (uint32_t i = 0; i < pointerCount; i++) { | 
|  | LOGD("  Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " | 
|  | "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " | 
|  | "orientation=%f", | 
|  | i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y, | 
|  | pointerCoords[i].pressure, pointerCoords[i].size, | 
|  | pointerCoords[i].touchMajor, pointerCoords[i].touchMinor, | 
|  | pointerCoords[i].toolMajor, pointerCoords[i].toolMinor, | 
|  | pointerCoords[i].orientation); | 
|  | } | 
|  | #endif | 
|  | if (! validateMotionEvent(action, pointerCount, pointerIds)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | policyFlags |= POLICY_FLAG_TRUSTED; | 
|  | mPolicy->interceptGenericBeforeQueueing(eventTime, /*byref*/ policyFlags); | 
|  |  | 
|  | bool needWake; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | // Attempt batching and streaming of move events. | 
|  | if (action == AMOTION_EVENT_ACTION_MOVE) { | 
|  | // BATCHING CASE | 
|  | // | 
|  | // Try to append a move sample to the tail of the inbound queue for this device. | 
|  | // Give up if we encounter a non-move motion event for this device since that | 
|  | // means we cannot append any new samples until a new motion event has started. | 
|  | for (EventEntry* entry = mInboundQueue.tailSentinel.prev; | 
|  | entry != & mInboundQueue.headSentinel; entry = entry->prev) { | 
|  | if (entry->type != EventEntry::TYPE_MOTION) { | 
|  | // Keep looking for motion events. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); | 
|  | if (motionEntry->deviceId != deviceId) { | 
|  | // Keep looking for this device. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE | 
|  | || motionEntry->pointerCount != pointerCount | 
|  | || motionEntry->isInjected()) { | 
|  | // Last motion event in the queue for this device is not compatible for | 
|  | // appending new samples.  Stop here. | 
|  | goto NoBatchingOrStreaming; | 
|  | } | 
|  |  | 
|  | // The last motion event is a move and is compatible for appending. | 
|  | // Do the batching magic. | 
|  | mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("Appended motion sample onto batch for most recent " | 
|  | "motion event for this device in the inbound queue."); | 
|  | #endif | 
|  | return; // done! | 
|  | } | 
|  |  | 
|  | // STREAMING CASE | 
|  | // | 
|  | // There is no pending motion event (of any kind) for this device in the inbound queue. | 
|  | // Search the outbound queue for the current foreground targets to find a dispatched | 
|  | // motion event that is still in progress.  If found, then, appen the new sample to | 
|  | // that event and push it out to all current targets.  The logic in | 
|  | // prepareDispatchCycleLocked takes care of the case where some targets may | 
|  | // already have consumed the motion event by starting a new dispatch cycle if needed. | 
|  | if (mCurrentInputTargetsValid) { | 
|  | for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { | 
|  | const InputTarget& inputTarget = mCurrentInputTargets[i]; | 
|  | if ((inputTarget.flags & InputTarget::FLAG_FOREGROUND) == 0) { | 
|  | // Skip non-foreground targets.  We only want to stream if there is at | 
|  | // least one foreground target whose dispatch is still in progress. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel); | 
|  | if (connectionIndex < 0) { | 
|  | // Connection must no longer be valid. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | if (connection->outboundQueue.isEmpty()) { | 
|  | // This foreground target has an empty outbound queue. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; | 
|  | if (! dispatchEntry->inProgress | 
|  | || dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION | 
|  | || dispatchEntry->isSplit()) { | 
|  | // No motion event is being dispatched, or it is being split across | 
|  | // windows in which case we cannot stream. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>( | 
|  | dispatchEntry->eventEntry); | 
|  | if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE | 
|  | || motionEntry->deviceId != deviceId | 
|  | || motionEntry->pointerCount != pointerCount | 
|  | || motionEntry->isInjected()) { | 
|  | // The motion event is not compatible with this move. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Hurray!  This foreground target is currently dispatching a move event | 
|  | // that we can stream onto.  Append the motion sample and resume dispatch. | 
|  | mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("Appended motion sample onto batch for most recently dispatched " | 
|  | "motion event for this device in the outbound queues.  " | 
|  | "Attempting to stream the motion sample."); | 
|  | #endif | 
|  | nsecs_t currentTime = now(); | 
|  | dispatchEventToCurrentInputTargetsLocked(currentTime, motionEntry, | 
|  | true /*resumeWithAppendedMotionSample*/); | 
|  |  | 
|  | runCommandsLockedInterruptible(); | 
|  | return; // done! | 
|  | } | 
|  | } | 
|  |  | 
|  | NoBatchingOrStreaming:; | 
|  | } | 
|  |  | 
|  | // Just enqueue a new motion event. | 
|  | MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime, | 
|  | deviceId, source, policyFlags, action, flags, metaState, edgeFlags, | 
|  | xPrecision, yPrecision, downTime, | 
|  | pointerCount, pointerIds, pointerCoords); | 
|  |  | 
|  | needWake = enqueueInboundEventLocked(newEntry); | 
|  | } // release lock | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::notifySwitch(nsecs_t when, int32_t switchCode, int32_t switchValue, | 
|  | uint32_t policyFlags) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("notifySwitch - switchCode=%d, switchValue=%d, policyFlags=0x%x", | 
|  | switchCode, switchValue, policyFlags); | 
|  | #endif | 
|  |  | 
|  | policyFlags |= POLICY_FLAG_TRUSTED; | 
|  | mPolicy->notifySwitch(when, switchCode, switchValue, policyFlags); | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::injectInputEvent(const InputEvent* event, | 
|  | int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, " | 
|  | "syncMode=%d, timeoutMillis=%d", | 
|  | event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis); | 
|  | #endif | 
|  |  | 
|  | nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis); | 
|  |  | 
|  | uint32_t policyFlags = POLICY_FLAG_INJECTED; | 
|  | if (hasInjectionPermission(injectorPid, injectorUid)) { | 
|  | policyFlags |= POLICY_FLAG_TRUSTED; | 
|  | } | 
|  |  | 
|  | EventEntry* injectedEntry; | 
|  | switch (event->getType()) { | 
|  | case AINPUT_EVENT_TYPE_KEY: { | 
|  | const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event); | 
|  | int32_t action = keyEvent->getAction(); | 
|  | if (! validateKeyEvent(action)) { | 
|  | return INPUT_EVENT_INJECTION_FAILED; | 
|  | } | 
|  |  | 
|  | nsecs_t eventTime = keyEvent->getEventTime(); | 
|  | int32_t deviceId = keyEvent->getDeviceId(); | 
|  | int32_t flags = keyEvent->getFlags(); | 
|  | int32_t keyCode = keyEvent->getKeyCode(); | 
|  | int32_t scanCode = keyEvent->getScanCode(); | 
|  | mPolicy->interceptKeyBeforeQueueing(eventTime, deviceId, action, /*byref*/ flags, | 
|  | keyCode, scanCode, /*byref*/ policyFlags); | 
|  |  | 
|  | mLock.lock(); | 
|  | injectedEntry = mAllocator.obtainKeyEntry(eventTime, deviceId, keyEvent->getSource(), | 
|  | policyFlags, action, flags, keyCode, scanCode, keyEvent->getMetaState(), | 
|  | keyEvent->getRepeatCount(), keyEvent->getDownTime()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AINPUT_EVENT_TYPE_MOTION: { | 
|  | const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event); | 
|  | int32_t action = motionEvent->getAction(); | 
|  | size_t pointerCount = motionEvent->getPointerCount(); | 
|  | const int32_t* pointerIds = motionEvent->getPointerIds(); | 
|  | if (! validateMotionEvent(action, pointerCount, pointerIds)) { | 
|  | return INPUT_EVENT_INJECTION_FAILED; | 
|  | } | 
|  |  | 
|  | nsecs_t eventTime = motionEvent->getEventTime(); | 
|  | mPolicy->interceptGenericBeforeQueueing(eventTime, /*byref*/ policyFlags); | 
|  |  | 
|  | mLock.lock(); | 
|  | const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes(); | 
|  | const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords(); | 
|  | MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes, | 
|  | motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags, | 
|  | action, motionEvent->getFlags(), | 
|  | motionEvent->getMetaState(), motionEvent->getEdgeFlags(), | 
|  | motionEvent->getXPrecision(), motionEvent->getYPrecision(), | 
|  | motionEvent->getDownTime(), uint32_t(pointerCount), | 
|  | pointerIds, samplePointerCoords); | 
|  | for (size_t i = motionEvent->getHistorySize(); i > 0; i--) { | 
|  | sampleEventTimes += 1; | 
|  | samplePointerCoords += pointerCount; | 
|  | mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords); | 
|  | } | 
|  | injectedEntry = motionEntry; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOGW("Cannot inject event of type %d", event->getType()); | 
|  | return INPUT_EVENT_INJECTION_FAILED; | 
|  | } | 
|  |  | 
|  | InjectionState* injectionState = mAllocator.obtainInjectionState(injectorPid, injectorUid); | 
|  | if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { | 
|  | injectionState->injectionIsAsync = true; | 
|  | } | 
|  |  | 
|  | injectionState->refCount += 1; | 
|  | injectedEntry->injectionState = injectionState; | 
|  |  | 
|  | bool needWake = enqueueInboundEventLocked(injectedEntry); | 
|  | mLock.unlock(); | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  |  | 
|  | int32_t injectionResult; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { | 
|  | injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; | 
|  | } else { | 
|  | for (;;) { | 
|  | injectionResult = injectionState->injectionResult; | 
|  | if (injectionResult != INPUT_EVENT_INJECTION_PENDING) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | nsecs_t remainingTimeout = endTime - now(); | 
|  | if (remainingTimeout <= 0) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Timed out waiting for injection result " | 
|  | "to become available."); | 
|  | #endif | 
|  | injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout); | 
|  | } | 
|  |  | 
|  | if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED | 
|  | && syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) { | 
|  | while (injectionState->pendingForegroundDispatches != 0) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Waiting for %d pending foreground dispatches.", | 
|  | injectionState->pendingForegroundDispatches); | 
|  | #endif | 
|  | nsecs_t remainingTimeout = endTime - now(); | 
|  | if (remainingTimeout <= 0) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Timed out waiting for pending foreground " | 
|  | "dispatches to finish."); | 
|  | #endif | 
|  | injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mAllocator.releaseInjectionState(injectionState); | 
|  | } // release lock | 
|  |  | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Finished with result %d.  " | 
|  | "injectorPid=%d, injectorUid=%d", | 
|  | injectionResult, injectorPid, injectorUid); | 
|  | #endif | 
|  |  | 
|  | return injectionResult; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::hasInjectionPermission(int32_t injectorPid, int32_t injectorUid) { | 
|  | return injectorUid == 0 | 
|  | || mPolicy->checkInjectEventsPermissionNonReentrant(injectorPid, injectorUid); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) { | 
|  | InjectionState* injectionState = entry->injectionState; | 
|  | if (injectionState) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("Setting input event injection result to %d.  " | 
|  | "injectorPid=%d, injectorUid=%d", | 
|  | injectionResult, injectionState->injectorPid, injectionState->injectorUid); | 
|  | #endif | 
|  |  | 
|  | if (injectionState->injectionIsAsync) { | 
|  | // Log the outcome since the injector did not wait for the injection result. | 
|  | switch (injectionResult) { | 
|  | case INPUT_EVENT_INJECTION_SUCCEEDED: | 
|  | LOGV("Asynchronous input event injection succeeded."); | 
|  | break; | 
|  | case INPUT_EVENT_INJECTION_FAILED: | 
|  | LOGW("Asynchronous input event injection failed."); | 
|  | break; | 
|  | case INPUT_EVENT_INJECTION_PERMISSION_DENIED: | 
|  | LOGW("Asynchronous input event injection permission denied."); | 
|  | break; | 
|  | case INPUT_EVENT_INJECTION_TIMED_OUT: | 
|  | LOGW("Asynchronous input event injection timed out."); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | injectionState->injectionResult = injectionResult; | 
|  | mInjectionResultAvailableCondition.broadcast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::incrementPendingForegroundDispatchesLocked(EventEntry* entry) { | 
|  | InjectionState* injectionState = entry->injectionState; | 
|  | if (injectionState) { | 
|  | injectionState->pendingForegroundDispatches += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::decrementPendingForegroundDispatchesLocked(EventEntry* entry) { | 
|  | InjectionState* injectionState = entry->injectionState; | 
|  | if (injectionState) { | 
|  | injectionState->pendingForegroundDispatches -= 1; | 
|  |  | 
|  | if (injectionState->pendingForegroundDispatches == 0) { | 
|  | mInjectionSyncFinishedCondition.broadcast(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const InputWindow* InputDispatcher::getWindowLocked(const sp<InputChannel>& inputChannel) { | 
|  | for (size_t i = 0; i < mWindows.size(); i++) { | 
|  | const InputWindow* window = & mWindows[i]; | 
|  | if (window->inputChannel == inputChannel) { | 
|  | return window; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setInputWindows(const Vector<InputWindow>& inputWindows) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("setInputWindows"); | 
|  | #endif | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | // Clear old window pointers. | 
|  | sp<InputChannel> oldFocusedWindowChannel; | 
|  | if (mFocusedWindow) { | 
|  | oldFocusedWindowChannel = mFocusedWindow->inputChannel; | 
|  | mFocusedWindow = NULL; | 
|  | } | 
|  |  | 
|  | mWindows.clear(); | 
|  |  | 
|  | // Loop over new windows and rebuild the necessary window pointers for | 
|  | // tracking focus and touch. | 
|  | mWindows.appendVector(inputWindows); | 
|  |  | 
|  | size_t numWindows = mWindows.size(); | 
|  | for (size_t i = 0; i < numWindows; i++) { | 
|  | const InputWindow* window = & mWindows.itemAt(i); | 
|  | if (window->hasFocus) { | 
|  | mFocusedWindow = window; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (oldFocusedWindowChannel != NULL) { | 
|  | if (!mFocusedWindow || oldFocusedWindowChannel != mFocusedWindow->inputChannel) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Focus left window: %s", | 
|  | oldFocusedWindowChannel->getName().string()); | 
|  | #endif | 
|  | synthesizeCancelationEventsForInputChannelLocked(oldFocusedWindowChannel, | 
|  | InputState::CANCEL_NON_POINTER_EVENTS, "focus left window"); | 
|  | oldFocusedWindowChannel.clear(); | 
|  | } | 
|  | } | 
|  | if (mFocusedWindow && oldFocusedWindowChannel == NULL) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Focus entered window: %s", | 
|  | mFocusedWindow->inputChannel->getName().string()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < mTouchState.windows.size(); ) { | 
|  | TouchedWindow& touchedWindow = mTouchState.windows.editItemAt(i); | 
|  | const InputWindow* window = getWindowLocked(touchedWindow.channel); | 
|  | if (window) { | 
|  | touchedWindow.window = window; | 
|  | i += 1; | 
|  | } else { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Touched window was removed: %s", touchedWindow.channel->getName().string()); | 
|  | #endif | 
|  | synthesizeCancelationEventsForInputChannelLocked(touchedWindow.channel, | 
|  | InputState::CANCEL_POINTER_EVENTS, "touched window was removed"); | 
|  | mTouchState.windows.removeAt(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if DEBUG_FOCUS | 
|  | //logDispatchStateLocked(); | 
|  | #endif | 
|  | } // release lock | 
|  |  | 
|  | // Wake up poll loop since it may need to make new input dispatching choices. | 
|  | mLooper->wake(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("setFocusedApplication"); | 
|  | #endif | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | releaseFocusedApplicationLocked(); | 
|  |  | 
|  | if (inputApplication) { | 
|  | mFocusedApplicationStorage = *inputApplication; | 
|  | mFocusedApplication = & mFocusedApplicationStorage; | 
|  | } | 
|  |  | 
|  | #if DEBUG_FOCUS | 
|  | //logDispatchStateLocked(); | 
|  | #endif | 
|  | } // release lock | 
|  |  | 
|  | // Wake up poll loop since it may need to make new input dispatching choices. | 
|  | mLooper->wake(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::releaseFocusedApplicationLocked() { | 
|  | if (mFocusedApplication) { | 
|  | mFocusedApplication = NULL; | 
|  | mFocusedApplicationStorage.handle.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen); | 
|  | #endif | 
|  |  | 
|  | bool changed; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) { | 
|  | if (mDispatchFrozen && !frozen) { | 
|  | resetANRTimeoutsLocked(); | 
|  | } | 
|  |  | 
|  | if (mDispatchEnabled && !enabled) { | 
|  | resetAndDropEverythingLocked("dispatcher is being disabled"); | 
|  | } | 
|  |  | 
|  | mDispatchEnabled = enabled; | 
|  | mDispatchFrozen = frozen; | 
|  | changed = true; | 
|  | } else { | 
|  | changed = false; | 
|  | } | 
|  |  | 
|  | #if DEBUG_FOCUS | 
|  | //logDispatchStateLocked(); | 
|  | #endif | 
|  | } // release lock | 
|  |  | 
|  | if (changed) { | 
|  | // Wake up poll loop since it may need to make new input dispatching choices. | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetAndDropEverythingLocked(const char* reason) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Resetting and dropping all events (%s).", reason); | 
|  | #endif | 
|  |  | 
|  | synthesizeCancelationEventsForAllConnectionsLocked(InputState::CANCEL_ALL_EVENTS, reason); | 
|  |  | 
|  | resetKeyRepeatLocked(); | 
|  | releasePendingEventLocked(); | 
|  | drainInboundQueueLocked(); | 
|  | resetTargetsLocked(); | 
|  |  | 
|  | mTouchState.reset(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::logDispatchStateLocked() { | 
|  | String8 dump; | 
|  | dumpDispatchStateLocked(dump); | 
|  |  | 
|  | char* text = dump.lockBuffer(dump.size()); | 
|  | char* start = text; | 
|  | while (*start != '\0') { | 
|  | char* end = strchr(start, '\n'); | 
|  | if (*end == '\n') { | 
|  | *(end++) = '\0'; | 
|  | } | 
|  | LOGD("%s", start); | 
|  | start = end; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dumpDispatchStateLocked(String8& dump) { | 
|  | dump.appendFormat(INDENT "DispatchEnabled: %d\n", mDispatchEnabled); | 
|  | dump.appendFormat(INDENT "DispatchFrozen: %d\n", mDispatchFrozen); | 
|  |  | 
|  | if (mFocusedApplication) { | 
|  | dump.appendFormat(INDENT "FocusedApplication: name='%s', dispatchingTimeout=%0.3fms\n", | 
|  | mFocusedApplication->name.string(), | 
|  | mFocusedApplication->dispatchingTimeout / 1000000.0); | 
|  | } else { | 
|  | dump.append(INDENT "FocusedApplication: <null>\n"); | 
|  | } | 
|  | dump.appendFormat(INDENT "FocusedWindow: name='%s'\n", | 
|  | mFocusedWindow != NULL ? mFocusedWindow->name.string() : "<null>"); | 
|  |  | 
|  | dump.appendFormat(INDENT "TouchDown: %s\n", toString(mTouchState.down)); | 
|  | dump.appendFormat(INDENT "TouchSplit: %s\n", toString(mTouchState.split)); | 
|  | if (!mTouchState.windows.isEmpty()) { | 
|  | dump.append(INDENT "TouchedWindows:\n"); | 
|  | for (size_t i = 0; i < mTouchState.windows.size(); i++) { | 
|  | const TouchedWindow& touchedWindow = mTouchState.windows[i]; | 
|  | dump.appendFormat(INDENT2 "%d: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n", | 
|  | i, touchedWindow.window->name.string(), touchedWindow.pointerIds.value, | 
|  | touchedWindow.targetFlags); | 
|  | } | 
|  | } else { | 
|  | dump.append(INDENT "TouchedWindows: <none>\n"); | 
|  | } | 
|  |  | 
|  | if (!mWindows.isEmpty()) { | 
|  | dump.append(INDENT "Windows:\n"); | 
|  | for (size_t i = 0; i < mWindows.size(); i++) { | 
|  | const InputWindow& window = mWindows[i]; | 
|  | dump.appendFormat(INDENT2 "%d: name='%s', paused=%s, hasFocus=%s, hasWallpaper=%s, " | 
|  | "visible=%s, canReceiveKeys=%s, flags=0x%08x, type=0x%08x, layer=%d, " | 
|  | "frame=[%d,%d][%d,%d], " | 
|  | "visibleFrame=[%d,%d][%d,%d], " | 
|  | "touchableArea=[%d,%d][%d,%d], " | 
|  | "ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n", | 
|  | i, window.name.string(), | 
|  | toString(window.paused), | 
|  | toString(window.hasFocus), | 
|  | toString(window.hasWallpaper), | 
|  | toString(window.visible), | 
|  | toString(window.canReceiveKeys), | 
|  | window.layoutParamsFlags, window.layoutParamsType, | 
|  | window.layer, | 
|  | window.frameLeft, window.frameTop, | 
|  | window.frameRight, window.frameBottom, | 
|  | window.visibleFrameLeft, window.visibleFrameTop, | 
|  | window.visibleFrameRight, window.visibleFrameBottom, | 
|  | window.touchableAreaLeft, window.touchableAreaTop, | 
|  | window.touchableAreaRight, window.touchableAreaBottom, | 
|  | window.ownerPid, window.ownerUid, | 
|  | window.dispatchingTimeout / 1000000.0); | 
|  | } | 
|  | } else { | 
|  | dump.append(INDENT "Windows: <none>\n"); | 
|  | } | 
|  |  | 
|  | if (!mMonitoringChannels.isEmpty()) { | 
|  | dump.append(INDENT "MonitoringChannels:\n"); | 
|  | for (size_t i = 0; i < mMonitoringChannels.size(); i++) { | 
|  | const sp<InputChannel>& channel = mMonitoringChannels[i]; | 
|  | dump.appendFormat(INDENT2 "%d: '%s'\n", i, channel->getName().string()); | 
|  | } | 
|  | } else { | 
|  | dump.append(INDENT "MonitoringChannels: <none>\n"); | 
|  | } | 
|  |  | 
|  | dump.appendFormat(INDENT "InboundQueue: length=%u\n", mInboundQueue.count()); | 
|  |  | 
|  | if (!mActiveConnections.isEmpty()) { | 
|  | dump.append(INDENT "ActiveConnections:\n"); | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | const Connection* connection = mActiveConnections[i]; | 
|  | dump.appendFormat(INDENT2 "%d: '%s', status=%s, outboundQueueLength=%u" | 
|  | "inputState.isNeutral=%s\n", | 
|  | i, connection->getInputChannelName(), connection->getStatusLabel(), | 
|  | connection->outboundQueue.count(), | 
|  | toString(connection->inputState.isNeutral())); | 
|  | } | 
|  | } else { | 
|  | dump.append(INDENT "ActiveConnections: <none>\n"); | 
|  | } | 
|  |  | 
|  | if (isAppSwitchPendingLocked()) { | 
|  | dump.appendFormat(INDENT "AppSwitch: pending, due in %01.1fms\n", | 
|  | (mAppSwitchDueTime - now()) / 1000000.0); | 
|  | } else { | 
|  | dump.append(INDENT "AppSwitch: not pending\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) { | 
|  | #if DEBUG_REGISTRATION | 
|  | LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(), | 
|  | toString(monitor)); | 
|  | #endif | 
|  |  | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | if (getConnectionIndexLocked(inputChannel) >= 0) { | 
|  | LOGW("Attempted to register already registered input channel '%s'", | 
|  | inputChannel->getName().string()); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | sp<Connection> connection = new Connection(inputChannel); | 
|  | status_t status = connection->initialize(); | 
|  | if (status) { | 
|  | LOGE("Failed to initialize input publisher for input channel '%s', status=%d", | 
|  | inputChannel->getName().string(), status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | int32_t receiveFd = inputChannel->getReceivePipeFd(); | 
|  | mConnectionsByReceiveFd.add(receiveFd, connection); | 
|  |  | 
|  | if (monitor) { | 
|  | mMonitoringChannels.push(inputChannel); | 
|  | } | 
|  |  | 
|  | mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this); | 
|  |  | 
|  | runCommandsLockedInterruptible(); | 
|  | } // release lock | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) { | 
|  | #if DEBUG_REGISTRATION | 
|  | LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string()); | 
|  | #endif | 
|  |  | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | ssize_t connectionIndex = getConnectionIndexLocked(inputChannel); | 
|  | if (connectionIndex < 0) { | 
|  | LOGW("Attempted to unregister already unregistered input channel '%s'", | 
|  | inputChannel->getName().string()); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | mConnectionsByReceiveFd.removeItemsAt(connectionIndex); | 
|  |  | 
|  | connection->status = Connection::STATUS_ZOMBIE; | 
|  |  | 
|  | for (size_t i = 0; i < mMonitoringChannels.size(); i++) { | 
|  | if (mMonitoringChannels[i] == inputChannel) { | 
|  | mMonitoringChannels.removeAt(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mLooper->removeFd(inputChannel->getReceivePipeFd()); | 
|  |  | 
|  | nsecs_t currentTime = now(); | 
|  | abortBrokenDispatchCycleLocked(currentTime, connection); | 
|  |  | 
|  | runCommandsLockedInterruptible(); | 
|  | } // release lock | 
|  |  | 
|  | // Wake the poll loop because removing the connection may have changed the current | 
|  | // synchronization state. | 
|  | mLooper->wake(); | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | ssize_t InputDispatcher::getConnectionIndexLocked(const sp<InputChannel>& inputChannel) { | 
|  | ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd()); | 
|  | if (connectionIndex >= 0) { | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | if (connection->inputChannel.get() == inputChannel.get()) { | 
|  | return connectionIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::activateConnectionLocked(Connection* connection) { | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | if (mActiveConnections.itemAt(i) == connection) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | mActiveConnections.add(connection); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::deactivateConnectionLocked(Connection* connection) { | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | if (mActiveConnections.itemAt(i) == connection) { | 
|  | mActiveConnections.removeAt(i); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onDispatchCycleStartedLocked( | 
|  | nsecs_t currentTime, const sp<Connection>& connection) { | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onDispatchCycleFinishedLocked( | 
|  | nsecs_t currentTime, const sp<Connection>& connection) { | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onDispatchCycleBrokenLocked( | 
|  | nsecs_t currentTime, const sp<Connection>& connection) { | 
|  | LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!", | 
|  | connection->getInputChannelName()); | 
|  |  | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible); | 
|  | commandEntry->connection = connection; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onANRLocked( | 
|  | nsecs_t currentTime, const InputApplication* application, const InputWindow* window, | 
|  | nsecs_t eventTime, nsecs_t waitStartTime) { | 
|  | LOGI("Application is not responding: %s.  " | 
|  | "%01.1fms since event, %01.1fms since wait started", | 
|  | getApplicationWindowLabelLocked(application, window).string(), | 
|  | (currentTime - eventTime) / 1000000.0, | 
|  | (currentTime - waitStartTime) / 1000000.0); | 
|  |  | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doNotifyANRLockedInterruptible); | 
|  | if (application) { | 
|  | commandEntry->inputApplicationHandle = application->handle; | 
|  | } | 
|  | if (window) { | 
|  | commandEntry->inputChannel = window->inputChannel; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doNotifyConfigurationChangedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | mPolicy->notifyConfigurationChanged(commandEntry->eventTime); | 
|  |  | 
|  | mLock.lock(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | sp<Connection> connection = commandEntry->connection; | 
|  |  | 
|  | if (connection->status != Connection::STATUS_ZOMBIE) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | mPolicy->notifyInputChannelBroken(connection->inputChannel); | 
|  |  | 
|  | mLock.lock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doNotifyANRLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | nsecs_t newTimeout = mPolicy->notifyANR( | 
|  | commandEntry->inputApplicationHandle, commandEntry->inputChannel); | 
|  |  | 
|  | mLock.lock(); | 
|  |  | 
|  | resumeAfterTargetsNotReadyTimeoutLocked(newTimeout, commandEntry->inputChannel); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | KeyEntry* entry = commandEntry->keyEntry; | 
|  | mReusableKeyEvent.initialize(entry->deviceId, entry->source, entry->action, entry->flags, | 
|  | entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount, | 
|  | entry->downTime, entry->eventTime); | 
|  |  | 
|  | mLock.unlock(); | 
|  |  | 
|  | bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputChannel, | 
|  | & mReusableKeyEvent, entry->policyFlags); | 
|  |  | 
|  | mLock.lock(); | 
|  |  | 
|  | entry->interceptKeyResult = consumed | 
|  | ? KeyEntry::INTERCEPT_KEY_RESULT_SKIP | 
|  | : KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE; | 
|  | mAllocator.releaseKeyEntry(entry); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType); | 
|  |  | 
|  | mLock.lock(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry, | 
|  | int32_t injectionResult, nsecs_t timeSpentWaitingForApplication) { | 
|  | // TODO Write some statistics about how long we spend waiting. | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dump(String8& dump) { | 
|  | dump.append("Input Dispatcher State:\n"); | 
|  | dumpDispatchStateLocked(dump); | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::Queue --- | 
|  |  | 
|  | template <typename T> | 
|  | uint32_t InputDispatcher::Queue<T>::count() const { | 
|  | uint32_t result = 0; | 
|  | for (const T* entry = headSentinel.next; entry != & tailSentinel; entry = entry->next) { | 
|  | result += 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::Allocator --- | 
|  |  | 
|  | InputDispatcher::Allocator::Allocator() { | 
|  | } | 
|  |  | 
|  | InputDispatcher::InjectionState* | 
|  | InputDispatcher::Allocator::obtainInjectionState(int32_t injectorPid, int32_t injectorUid) { | 
|  | InjectionState* injectionState = mInjectionStatePool.alloc(); | 
|  | injectionState->refCount = 1; | 
|  | injectionState->injectorPid = injectorPid; | 
|  | injectionState->injectorUid = injectorUid; | 
|  | injectionState->injectionIsAsync = false; | 
|  | injectionState->injectionResult = INPUT_EVENT_INJECTION_PENDING; | 
|  | injectionState->pendingForegroundDispatches = 0; | 
|  | return injectionState; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type, | 
|  | nsecs_t eventTime, uint32_t policyFlags) { | 
|  | entry->type = type; | 
|  | entry->refCount = 1; | 
|  | entry->dispatchInProgress = false; | 
|  | entry->eventTime = eventTime; | 
|  | entry->policyFlags = policyFlags; | 
|  | entry->injectionState = NULL; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseEventEntryInjectionState(EventEntry* entry) { | 
|  | if (entry->injectionState) { | 
|  | releaseInjectionState(entry->injectionState); | 
|  | entry->injectionState = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::ConfigurationChangedEntry* | 
|  | InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) { | 
|  | ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc(); | 
|  | initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime, 0); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime, | 
|  | int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, | 
|  | int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, | 
|  | int32_t repeatCount, nsecs_t downTime) { | 
|  | KeyEntry* entry = mKeyEntryPool.alloc(); | 
|  | initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime, policyFlags); | 
|  |  | 
|  | entry->deviceId = deviceId; | 
|  | entry->source = source; | 
|  | entry->action = action; | 
|  | entry->flags = flags; | 
|  | entry->keyCode = keyCode; | 
|  | entry->scanCode = scanCode; | 
|  | entry->metaState = metaState; | 
|  | entry->repeatCount = repeatCount; | 
|  | entry->downTime = downTime; | 
|  | entry->syntheticRepeat = false; | 
|  | entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime, | 
|  | int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, | 
|  | int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision, | 
|  | nsecs_t downTime, uint32_t pointerCount, | 
|  | const int32_t* pointerIds, const PointerCoords* pointerCoords) { | 
|  | MotionEntry* entry = mMotionEntryPool.alloc(); | 
|  | initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime, policyFlags); | 
|  |  | 
|  | entry->eventTime = eventTime; | 
|  | entry->deviceId = deviceId; | 
|  | entry->source = source; | 
|  | entry->action = action; | 
|  | entry->flags = flags; | 
|  | entry->metaState = metaState; | 
|  | entry->edgeFlags = edgeFlags; | 
|  | entry->xPrecision = xPrecision; | 
|  | entry->yPrecision = yPrecision; | 
|  | entry->downTime = downTime; | 
|  | entry->pointerCount = pointerCount; | 
|  | entry->firstSample.eventTime = eventTime; | 
|  | entry->firstSample.next = NULL; | 
|  | entry->lastSample = & entry->firstSample; | 
|  | for (uint32_t i = 0; i < pointerCount; i++) { | 
|  | entry->pointerIds[i] = pointerIds[i]; | 
|  | entry->firstSample.pointerCoords[i] = pointerCoords[i]; | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry( | 
|  | EventEntry* eventEntry, | 
|  | int32_t targetFlags, float xOffset, float yOffset) { | 
|  | DispatchEntry* entry = mDispatchEntryPool.alloc(); | 
|  | entry->eventEntry = eventEntry; | 
|  | eventEntry->refCount += 1; | 
|  | entry->targetFlags = targetFlags; | 
|  | entry->xOffset = xOffset; | 
|  | entry->yOffset = yOffset; | 
|  | entry->inProgress = false; | 
|  | entry->headMotionSample = NULL; | 
|  | entry->tailMotionSample = NULL; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) { | 
|  | CommandEntry* entry = mCommandEntryPool.alloc(); | 
|  | entry->command = command; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseInjectionState(InjectionState* injectionState) { | 
|  | injectionState->refCount -= 1; | 
|  | if (injectionState->refCount == 0) { | 
|  | mInjectionStatePool.free(injectionState); | 
|  | } else { | 
|  | assert(injectionState->refCount > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) { | 
|  | switch (entry->type) { | 
|  | case EventEntry::TYPE_CONFIGURATION_CHANGED: | 
|  | releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry)); | 
|  | break; | 
|  | case EventEntry::TYPE_KEY: | 
|  | releaseKeyEntry(static_cast<KeyEntry*>(entry)); | 
|  | break; | 
|  | case EventEntry::TYPE_MOTION: | 
|  | releaseMotionEntry(static_cast<MotionEntry*>(entry)); | 
|  | break; | 
|  | default: | 
|  | assert(false); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseConfigurationChangedEntry( | 
|  | ConfigurationChangedEntry* entry) { | 
|  | entry->refCount -= 1; | 
|  | if (entry->refCount == 0) { | 
|  | releaseEventEntryInjectionState(entry); | 
|  | mConfigurationChangeEntryPool.free(entry); | 
|  | } else { | 
|  | assert(entry->refCount > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) { | 
|  | entry->refCount -= 1; | 
|  | if (entry->refCount == 0) { | 
|  | releaseEventEntryInjectionState(entry); | 
|  | mKeyEntryPool.free(entry); | 
|  | } else { | 
|  | assert(entry->refCount > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) { | 
|  | entry->refCount -= 1; | 
|  | if (entry->refCount == 0) { | 
|  | releaseEventEntryInjectionState(entry); | 
|  | for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) { | 
|  | MotionSample* next = sample->next; | 
|  | mMotionSamplePool.free(sample); | 
|  | sample = next; | 
|  | } | 
|  | mMotionEntryPool.free(entry); | 
|  | } else { | 
|  | assert(entry->refCount > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) { | 
|  | releaseEventEntry(entry->eventEntry); | 
|  | mDispatchEntryPool.free(entry); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) { | 
|  | mCommandEntryPool.free(entry); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry, | 
|  | nsecs_t eventTime, const PointerCoords* pointerCoords) { | 
|  | MotionSample* sample = mMotionSamplePool.alloc(); | 
|  | sample->eventTime = eventTime; | 
|  | uint32_t pointerCount = motionEntry->pointerCount; | 
|  | for (uint32_t i = 0; i < pointerCount; i++) { | 
|  | sample->pointerCoords[i] = pointerCoords[i]; | 
|  | } | 
|  |  | 
|  | sample->next = NULL; | 
|  | motionEntry->lastSample->next = sample; | 
|  | motionEntry->lastSample = sample; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::recycleKeyEntry(KeyEntry* keyEntry) { | 
|  | releaseEventEntryInjectionState(keyEntry); | 
|  |  | 
|  | keyEntry->dispatchInProgress = false; | 
|  | keyEntry->syntheticRepeat = false; | 
|  | keyEntry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::MotionEntry --- | 
|  |  | 
|  | uint32_t InputDispatcher::MotionEntry::countSamples() const { | 
|  | uint32_t count = 1; | 
|  | for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) { | 
|  | count += 1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::InputState --- | 
|  |  | 
|  | InputDispatcher::InputState::InputState() { | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::~InputState() { | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::InputState::isNeutral() const { | 
|  | return mKeyMementos.isEmpty() && mMotionMementos.isEmpty(); | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackEvent( | 
|  | const EventEntry* entry) { | 
|  | switch (entry->type) { | 
|  | case EventEntry::TYPE_KEY: | 
|  | return trackKey(static_cast<const KeyEntry*>(entry)); | 
|  |  | 
|  | case EventEntry::TYPE_MOTION: | 
|  | return trackMotion(static_cast<const MotionEntry*>(entry)); | 
|  |  | 
|  | default: | 
|  | return CONSISTENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackKey( | 
|  | const KeyEntry* entry) { | 
|  | int32_t action = entry->action; | 
|  | for (size_t i = 0; i < mKeyMementos.size(); i++) { | 
|  | KeyMemento& memento = mKeyMementos.editItemAt(i); | 
|  | if (memento.deviceId == entry->deviceId | 
|  | && memento.source == entry->source | 
|  | && memento.keyCode == entry->keyCode | 
|  | && memento.scanCode == entry->scanCode) { | 
|  | switch (action) { | 
|  | case AKEY_EVENT_ACTION_UP: | 
|  | mKeyMementos.removeAt(i); | 
|  | return CONSISTENT; | 
|  |  | 
|  | case AKEY_EVENT_ACTION_DOWN: | 
|  | return TOLERABLE; | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (action) { | 
|  | case AKEY_EVENT_ACTION_DOWN: { | 
|  | mKeyMementos.push(); | 
|  | KeyMemento& memento = mKeyMementos.editTop(); | 
|  | memento.deviceId = entry->deviceId; | 
|  | memento.source = entry->source; | 
|  | memento.keyCode = entry->keyCode; | 
|  | memento.scanCode = entry->scanCode; | 
|  | memento.downTime = entry->downTime; | 
|  | return CONSISTENT; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackMotion( | 
|  | const MotionEntry* entry) { | 
|  | int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK; | 
|  | for (size_t i = 0; i < mMotionMementos.size(); i++) { | 
|  | MotionMemento& memento = mMotionMementos.editItemAt(i); | 
|  | if (memento.deviceId == entry->deviceId | 
|  | && memento.source == entry->source) { | 
|  | switch (action) { | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | case AMOTION_EVENT_ACTION_CANCEL: | 
|  | mMotionMementos.removeAt(i); | 
|  | return CONSISTENT; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | return TOLERABLE; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_POINTER_DOWN: | 
|  | if (entry->pointerCount == memento.pointerCount + 1) { | 
|  | memento.setPointers(entry); | 
|  | return CONSISTENT; | 
|  | } | 
|  | return BROKEN; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_POINTER_UP: | 
|  | if (entry->pointerCount == memento.pointerCount - 1) { | 
|  | memento.setPointers(entry); | 
|  | return CONSISTENT; | 
|  | } | 
|  | return BROKEN; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_MOVE: | 
|  | if (entry->pointerCount == memento.pointerCount) { | 
|  | return CONSISTENT; | 
|  | } | 
|  | return BROKEN; | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (action) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: { | 
|  | mMotionMementos.push(); | 
|  | MotionMemento& memento = mMotionMementos.editTop(); | 
|  | memento.deviceId = entry->deviceId; | 
|  | memento.source = entry->source; | 
|  | memento.xPrecision = entry->xPrecision; | 
|  | memento.yPrecision = entry->yPrecision; | 
|  | memento.downTime = entry->downTime; | 
|  | memento.setPointers(entry); | 
|  | return CONSISTENT; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) { | 
|  | pointerCount = entry->pointerCount; | 
|  | for (uint32_t i = 0; i < entry->pointerCount; i++) { | 
|  | pointerIds[i] = entry->pointerIds[i]; | 
|  | pointerCoords[i] = entry->lastSample->pointerCoords[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::synthesizeCancelationEvents(nsecs_t currentTime, | 
|  | Allocator* allocator, Vector<EventEntry*>& outEvents, | 
|  | CancelationOptions options) { | 
|  | for (size_t i = 0; i < mKeyMementos.size(); ) { | 
|  | const KeyMemento& memento = mKeyMementos.itemAt(i); | 
|  | if (shouldCancelEvent(memento.source, options)) { | 
|  | outEvents.push(allocator->obtainKeyEntry(currentTime, | 
|  | memento.deviceId, memento.source, 0, | 
|  | AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_CANCELED, | 
|  | memento.keyCode, memento.scanCode, 0, 0, memento.downTime)); | 
|  | mKeyMementos.removeAt(i); | 
|  | } else { | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < mMotionMementos.size(); ) { | 
|  | const MotionMemento& memento = mMotionMementos.itemAt(i); | 
|  | if (shouldCancelEvent(memento.source, options)) { | 
|  | outEvents.push(allocator->obtainMotionEntry(currentTime, | 
|  | memento.deviceId, memento.source, 0, | 
|  | AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0, | 
|  | memento.xPrecision, memento.yPrecision, memento.downTime, | 
|  | memento.pointerCount, memento.pointerIds, memento.pointerCoords)); | 
|  | mMotionMementos.removeAt(i); | 
|  | } else { | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::clear() { | 
|  | mKeyMementos.clear(); | 
|  | mMotionMementos.clear(); | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::InputState::shouldCancelEvent(int32_t eventSource, | 
|  | CancelationOptions options) { | 
|  | switch (options) { | 
|  | case CANCEL_POINTER_EVENTS: | 
|  | return eventSource & AINPUT_SOURCE_CLASS_POINTER; | 
|  | case CANCEL_NON_POINTER_EVENTS: | 
|  | return !(eventSource & AINPUT_SOURCE_CLASS_POINTER); | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::Connection --- | 
|  |  | 
|  | InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel) : | 
|  | status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel), | 
|  | lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX) { | 
|  | } | 
|  |  | 
|  | InputDispatcher::Connection::~Connection() { | 
|  | } | 
|  |  | 
|  | status_t InputDispatcher::Connection::initialize() { | 
|  | return inputPublisher.initialize(); | 
|  | } | 
|  |  | 
|  | const char* InputDispatcher::Connection::getStatusLabel() const { | 
|  | switch (status) { | 
|  | case STATUS_NORMAL: | 
|  | return "NORMAL"; | 
|  |  | 
|  | case STATUS_BROKEN: | 
|  | return "BROKEN"; | 
|  |  | 
|  | case STATUS_ZOMBIE: | 
|  | return "ZOMBIE"; | 
|  |  | 
|  | default: | 
|  | return "UNKNOWN"; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent( | 
|  | const EventEntry* eventEntry) const { | 
|  | for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev; | 
|  | dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) { | 
|  | if (dispatchEntry->eventEntry == eventEntry) { | 
|  | return dispatchEntry; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::CommandEntry --- | 
|  |  | 
|  | InputDispatcher::CommandEntry::CommandEntry() : | 
|  | keyEntry(NULL) { | 
|  | } | 
|  |  | 
|  | InputDispatcher::CommandEntry::~CommandEntry() { | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::TouchState --- | 
|  |  | 
|  | InputDispatcher::TouchState::TouchState() : | 
|  | down(false), split(false) { | 
|  | } | 
|  |  | 
|  | InputDispatcher::TouchState::~TouchState() { | 
|  | } | 
|  |  | 
|  | void InputDispatcher::TouchState::reset() { | 
|  | down = false; | 
|  | split = false; | 
|  | windows.clear(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::TouchState::copyFrom(const TouchState& other) { | 
|  | down = other.down; | 
|  | split = other.split; | 
|  | windows.clear(); | 
|  | windows.appendVector(other.windows); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::TouchState::addOrUpdateWindow(const InputWindow* window, | 
|  | int32_t targetFlags, BitSet32 pointerIds) { | 
|  | if (targetFlags & InputTarget::FLAG_SPLIT) { | 
|  | split = true; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < windows.size(); i++) { | 
|  | TouchedWindow& touchedWindow = windows.editItemAt(i); | 
|  | if (touchedWindow.window == window) { | 
|  | touchedWindow.targetFlags |= targetFlags; | 
|  | touchedWindow.pointerIds.value |= pointerIds.value; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | windows.push(); | 
|  |  | 
|  | TouchedWindow& touchedWindow = windows.editTop(); | 
|  | touchedWindow.window = window; | 
|  | touchedWindow.targetFlags = targetFlags; | 
|  | touchedWindow.pointerIds = pointerIds; | 
|  | touchedWindow.channel = window->inputChannel; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::TouchState::removeOutsideTouchWindows() { | 
|  | for (size_t i = 0 ; i < windows.size(); ) { | 
|  | if (windows[i].targetFlags & InputTarget::FLAG_OUTSIDE) { | 
|  | windows.removeAt(i); | 
|  | } else { | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const InputWindow* InputDispatcher::TouchState::getFirstForegroundWindow() { | 
|  | for (size_t i = 0; i < windows.size(); i++) { | 
|  | if (windows[i].targetFlags & InputTarget::FLAG_FOREGROUND) { | 
|  | return windows[i].window; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcherThread --- | 
|  |  | 
|  | InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) : | 
|  | Thread(/*canCallJava*/ true), mDispatcher(dispatcher) { | 
|  | } | 
|  |  | 
|  | InputDispatcherThread::~InputDispatcherThread() { | 
|  | } | 
|  |  | 
|  | bool InputDispatcherThread::threadLoop() { | 
|  | mDispatcher->dispatchOnce(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // namespace android |