blob: b586e911083d3d923a29eef494bd019309b5cb75 [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
namespace android::ftl {
// Fixed-capacity, statically allocated counterpart of std::vector. Akin to std::array, StaticVector
// allocates contiguous storage for N elements of type T at compile time, but stores at most (rather
// than exactly) N elements. Unlike std::array, its default constructor does not require T to have a
// default constructor, since elements are constructed in-place as the vector grows. Operations that
// insert an element, such as push_back and emplace, fail when the vector is full. The API otherwise
// adheres to standard containers, except the unstable_erase operation that does not shift elements,
// and the replace operation that destructively emplaces.
//
// StaticVector<T, 1> is analogous to an iterable std::optional, but StaticVector<T, 0> is an error.
//
// Example usage:
//
// ftl::StaticVector<char, 3> vector;
// assert(vector.empty());
//
// vector = {'a', 'b'};
// assert(vector.size() == 2u);
//
// vector.push_back('c');
// assert(vector.full());
//
// assert(!vector.push_back('d'));
// assert(vector.size() == 3u);
//
// vector.unstable_erase(vector.begin());
// assert(vector == (ftl::StaticVector{'c', 'b'}));
//
// vector.pop_back();
// assert(vector.back() == 'c');
//
// const char array[] = "hi";
// vector = ftl::StaticVector(array);
// assert(vector == (ftl::StaticVector{'h', 'i', '\0'}));
//
template <typename T, size_t N>
class StaticVector {
static_assert(N > 0);
template <typename I>
using IsInputIterator = std::is_base_of<std::input_iterator_tag,
typename std::iterator_traits<I>::iterator_category>;
public:
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = value_type*;
using reference = value_type&;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_pointer = const value_type*;
using const_reference = const value_type&;
using const_iterator = const_pointer;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// Creates an empty vector.
StaticVector() = default;
// Copies and moves a vector, respectively.
StaticVector(const StaticVector& other) : StaticVector(other.begin(), other.end()) {}
StaticVector(StaticVector&& other) { swap<Empty>(other); }
// Copies at most N elements from a smaller convertible vector.
template <typename U, size_t M, typename = std::enable_if_t<M <= N>>
StaticVector(const StaticVector<U, M>& other) : StaticVector(other.begin(), other.end()) {}
// Copies at most N elements from an array.
template <typename U, size_t M>
explicit StaticVector(U (&array)[M]) : StaticVector(std::begin(array), std::end(array)) {}
// Copies at most N elements from the range [first, last).
template <typename Iterator, typename = std::enable_if_t<IsInputIterator<Iterator>{}>>
StaticVector(Iterator first, Iterator last)
: mSize(std::min(max_size(), static_cast<size_type>(std::distance(first, last)))) {
std::uninitialized_copy(first, first + mSize, begin());
}
// Constructs at most N elements. The template arguments T and N are inferred using the
// deduction guide defined below. Note that T is determined from the first element, and
// subsequent elements must have convertible types:
//
// ftl::StaticVector vector = {1, 2, 3};
// static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<int, 3>>);
//
// const auto copy = "quince"s;
// auto move = "tart"s;
// ftl::StaticVector vector = {copy, std::move(move)};
//
// static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 2>>);
//
template <typename E, typename... Es,
typename = std::enable_if_t<std::is_constructible_v<value_type, E>>>
StaticVector(E&& element, Es&&... elements)
: StaticVector(std::index_sequence<0>{}, std::forward<E>(element),
std::forward<Es>(elements)...) {
static_assert(sizeof...(elements) < N, "Too many elements");
}
// Constructs at most N elements. The template arguments T and N are inferred using the
// deduction guide defined below. Element types must be convertible to the specified T:
//
// ftl::StaticVector vector(std::in_place_type<std::string>, "red", "velvet", "cake");
// static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 3>>);
//
template <typename... Es>
explicit StaticVector(std::in_place_type_t<T>, Es... elements)
: StaticVector(std::forward<Es>(elements)...) {}
~StaticVector() { std::destroy(begin(), end()); }
StaticVector& operator=(const StaticVector& other) {
StaticVector copy(other);
swap(copy);
return *this;
}
StaticVector& operator=(StaticVector&& other) {
std::destroy(begin(), end());
mSize = 0;
swap<Empty>(other);
return *this;
}
template <typename = void>
void swap(StaticVector&);
size_type max_size() const { return N; }
size_type size() const { return mSize; }
bool empty() const { return size() == 0; }
bool full() const { return size() == max_size(); }
iterator begin() { return std::launder(reinterpret_cast<pointer>(mData)); }
const_iterator begin() const { return cbegin(); }
const_iterator cbegin() const { return mut().begin(); }
iterator end() { return begin() + size(); }
const_iterator end() const { return cend(); }
const_iterator cend() const { return mut().end(); }
reverse_iterator rbegin() { return std::make_reverse_iterator(end()); }
const_reverse_iterator rbegin() const { return crbegin(); }
const_reverse_iterator crbegin() const { return mut().rbegin(); }
reverse_iterator rend() { return std::make_reverse_iterator(begin()); }
const_reverse_iterator rend() const { return crend(); }
const_reverse_iterator crend() const { return mut().rend(); }
iterator last() { return end() - 1; }
const_iterator last() const { return mut().last(); }
reference front() { return *begin(); }
const_reference front() const { return mut().front(); }
reference back() { return *last(); }
const_reference back() const { return mut().back(); }
reference operator[](size_type i) { return *(begin() + i); }
const_reference operator[](size_type i) const { return mut()[i]; }
// Replaces an element, and returns an iterator to it. If the vector is full, the element is not
// replaced, and the end iterator is returned.
template <typename... Args>
iterator replace(const_iterator cit, Args&&... args) {
if (full()) return end();
// Append element, and move into place if not last.
emplace_back(std::forward<Args>(args)...);
if (cit != last()) unstable_erase(cit);
return const_cast<iterator>(cit);
}
// Appends an element, and returns an iterator to it. If the vector is full, the element is not
// inserted, and the end iterator is returned.
template <typename... Args>
iterator emplace_back(Args&&... args) {
if (full()) return end();
const iterator it = construct_at(end(), std::forward<Args>(args)...);
++mSize;
return it;
}
// Erases an element, but does not preserve order. Rather than shifting subsequent elements,
// this moves the last element to the slot of the erased element.
void unstable_erase(const_iterator it) {
std::destroy_at(it);
if (it != last()) {
// Move last element and destroy its source for destructor side effects.
construct_at(it, std::move(back()));
std::destroy_at(last());
}
--mSize;
}
bool push_back(value_type v) {
// Two statements for sequence point.
const iterator it = emplace_back(std::move(v));
return it != end();
}
void pop_back() { unstable_erase(last()); }
private:
struct Empty {};
StaticVector& mut() const { return *const_cast<StaticVector*>(this); }
// Recursion for variadic constructor.
template <size_t I, typename E, typename... Es>
StaticVector(std::index_sequence<I>, E&& element, Es&&... elements)
: StaticVector(std::index_sequence<I + 1>{}, std::forward<Es>(elements)...) {
construct_at(begin() + I, std::forward<E>(element));
}
// Base case for variadic constructor.
template <size_t I>
explicit StaticVector(std::index_sequence<I>) : mSize(I) {}
// TODO: Replace with std::construct_at in C++20.
template <typename... Args>
static pointer construct_at(const_iterator it, Args&&... args) {
void* const ptr = const_cast<void*>(static_cast<const void*>(it));
return new (ptr) value_type{std::forward<Args>(args)...};
}
size_type mSize = 0;
std::aligned_storage_t<sizeof(value_type), alignof(value_type)> mData[N];
};
// Deduction guide for array constructor.
template <typename T, size_t N>
StaticVector(T (&)[N]) -> StaticVector<std::remove_cv_t<T>, N>;
// Deduction guide for variadic constructor.
template <typename T, typename... Us, typename V = std::decay_t<T>,
typename = std::enable_if_t<(std::is_constructible_v<V, Us> && ...)>>
StaticVector(T&&, Us&&...) -> StaticVector<V, 1 + sizeof...(Us)>;
// Deduction guide for in-place constructor.
template <typename T, typename... Us>
StaticVector(std::in_place_type_t<T>, Us&&...) -> StaticVector<T, sizeof...(Us)>;
template <typename T, size_t N>
template <typename E>
void StaticVector<T, N>::swap(StaticVector& other) {
auto [to, from] = std::make_pair(this, &other);
if (from == this) return;
// Assume this vector has fewer elements, so the excess of the other vector will be moved to it.
auto [min, max] = std::make_pair(size(), other.size());
// No elements to swap if moving into an empty vector.
if constexpr (std::is_same_v<E, Empty>) {
assert(min == 0);
} else {
if (min > max) {
std::swap(from, to);
std::swap(min, max);
}
// Swap elements [0, min).
std::swap_ranges(begin(), begin() + min, other.begin());
// No elements to move if sizes are equal.
if (min == max) return;
}
// Move elements [min, max) and destroy their source for destructor side effects.
const auto [first, last] = std::make_pair(from->begin() + min, from->begin() + max);
std::uninitialized_move(first, last, to->begin() + min);
std::destroy(first, last);
std::swap(mSize, other.mSize);
}
template <typename T, size_t N>
inline void swap(StaticVector<T, N>& lhs, StaticVector<T, N>& rhs) {
lhs.swap(rhs);
}
// TODO: Replace with operator<=> in C++20.
template <typename T, size_t N, size_t M>
inline bool operator==(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
}
template <typename T, size_t N, size_t M>
inline bool operator<(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
}
template <typename T, size_t N, size_t M>
inline bool operator>(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
return rhs < lhs;
}
template <typename T, size_t N, size_t M>
inline bool operator!=(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
return !(lhs == rhs);
}
template <typename T, size_t N, size_t M>
inline bool operator>=(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
return !(lhs < rhs);
}
template <typename T, size_t N, size_t M>
inline bool operator<=(const StaticVector<T, N>& lhs, const StaticVector<T, M>& rhs) {
return !(rhs < lhs);
}
} // namespace android::ftl