|  | /* | 
|  | * Copyright (C) 2017 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "BufferLayer" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "BufferLayer.h" | 
|  | #include "Colorizer.h" | 
|  | #include "DisplayDevice.h" | 
|  | #include "LayerRejecter.h" | 
|  | #include "clz.h" | 
|  |  | 
|  | #include "RenderEngine/RenderEngine.h" | 
|  |  | 
|  | #include <gui/BufferItem.h> | 
|  | #include <gui/BufferQueue.h> | 
|  | #include <gui/LayerDebugInfo.h> | 
|  | #include <gui/Surface.h> | 
|  |  | 
|  | #include <ui/DebugUtils.h> | 
|  |  | 
|  | #include <utils/Errors.h> | 
|  | #include <utils/Log.h> | 
|  | #include <utils/NativeHandle.h> | 
|  | #include <utils/StopWatch.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <cutils/compiler.h> | 
|  | #include <cutils/native_handle.h> | 
|  | #include <cutils/properties.h> | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <mutex> | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | BufferLayer::BufferLayer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, | 
|  | uint32_t w, uint32_t h, uint32_t flags) | 
|  | : Layer(flinger, client, name, w, h, flags), | 
|  | mConsumer(nullptr), | 
|  | mTextureName(UINT32_MAX), | 
|  | mFormat(PIXEL_FORMAT_NONE), | 
|  | mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), | 
|  | mBufferLatched(false), | 
|  | mPreviousFrameNumber(0), | 
|  | mUpdateTexImageFailed(false), | 
|  | mRefreshPending(false) { | 
|  | ALOGV("Creating Layer %s", name.string()); | 
|  |  | 
|  | mTextureName = mFlinger->getNewTexture(); | 
|  | mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName); | 
|  |  | 
|  | if (flags & ISurfaceComposerClient::eNonPremultiplied) mPremultipliedAlpha = false; | 
|  |  | 
|  | mCurrentState.requested = mCurrentState.active; | 
|  |  | 
|  | // drawing state & current state are identical | 
|  | mDrawingState = mCurrentState; | 
|  | } | 
|  |  | 
|  | BufferLayer::~BufferLayer() { | 
|  | mFlinger->deleteTextureAsync(mTextureName); | 
|  |  | 
|  | if (!getBE().mHwcLayers.empty()) { | 
|  | ALOGE("Found stale hardware composer layers when destroying " | 
|  | "surface flinger layer %s", | 
|  | mName.string()); | 
|  | destroyAllHwcLayers(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BufferLayer::useSurfaceDamage() { | 
|  | if (mFlinger->mForceFullDamage) { | 
|  | surfaceDamageRegion = Region::INVALID_REGION; | 
|  | } else { | 
|  | surfaceDamageRegion = mConsumer->getSurfaceDamage(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BufferLayer::useEmptyDamage() { | 
|  | surfaceDamageRegion.clear(); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isProtected() const { | 
|  | const sp<GraphicBuffer>& buffer(getBE().compositionInfo.mBuffer); | 
|  | return (buffer != 0) && | 
|  | (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isVisible() const { | 
|  | return !(isHiddenByPolicy()) && getAlpha() > 0.0f && | 
|  | (getBE().compositionInfo.mBuffer != nullptr || | 
|  | getBE().compositionInfo.hwc.sidebandStream != nullptr); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isFixedSize() const { | 
|  | return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
|  | } | 
|  |  | 
|  | status_t BufferLayer::setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) { | 
|  | uint32_t const maxSurfaceDims = | 
|  | min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims()); | 
|  |  | 
|  | // never allow a surface larger than what our underlying GL implementation | 
|  | // can handle. | 
|  | if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) { | 
|  | ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | mFormat = format; | 
|  |  | 
|  | mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false; | 
|  | mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false; | 
|  | mCurrentOpacity = getOpacityForFormat(format); | 
|  |  | 
|  | mConsumer->setDefaultBufferSize(w, h); | 
|  | mConsumer->setDefaultBufferFormat(format); | 
|  | mConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
|  |  | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | static constexpr mat4 inverseOrientation(uint32_t transform) { | 
|  | const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
|  | const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); | 
|  | const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
|  | mat4 tr; | 
|  |  | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | tr = tr * rot90; | 
|  | } | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { | 
|  | tr = tr * flipH; | 
|  | } | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { | 
|  | tr = tr * flipV; | 
|  | } | 
|  | return inverse(tr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * onDraw will draw the current layer onto the presentable buffer | 
|  | */ | 
|  | void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip, | 
|  | bool useIdentityTransform) const { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (CC_UNLIKELY(getBE().compositionInfo.mBuffer == 0)) { | 
|  | // the texture has not been created yet, this Layer has | 
|  | // in fact never been drawn into. This happens frequently with | 
|  | // SurfaceView because the WindowManager can't know when the client | 
|  | // has drawn the first time. | 
|  |  | 
|  | // If there is nothing under us, we paint the screen in black, otherwise | 
|  | // we just skip this update. | 
|  |  | 
|  | // figure out if there is something below us | 
|  | Region under; | 
|  | bool finished = false; | 
|  | mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { | 
|  | if (finished || layer == static_cast<BufferLayer const*>(this)) { | 
|  | finished = true; | 
|  | return; | 
|  | } | 
|  | under.orSelf(renderArea.getTransform().transform(layer->visibleRegion)); | 
|  | }); | 
|  | // if not everything below us is covered, we plug the holes! | 
|  | Region holes(clip.subtract(under)); | 
|  | if (!holes.isEmpty()) { | 
|  | clearWithOpenGL(renderArea, 0, 0, 0, 1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Bind the current buffer to the GL texture, and wait for it to be | 
|  | // ready for us to draw into. | 
|  | status_t err = mConsumer->bindTextureImage(); | 
|  | if (err != NO_ERROR) { | 
|  | ALOGW("onDraw: bindTextureImage failed (err=%d)", err); | 
|  | // Go ahead and draw the buffer anyway; no matter what we do the screen | 
|  | // is probably going to have something visibly wrong. | 
|  | } | 
|  |  | 
|  | bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure()); | 
|  |  | 
|  | auto& engine(mFlinger->getRenderEngine()); | 
|  |  | 
|  | if (!blackOutLayer) { | 
|  | // TODO: we could be more subtle with isFixedSize() | 
|  | const bool useFiltering = getFiltering() || needsFiltering(renderArea) || isFixedSize(); | 
|  |  | 
|  | // Query the texture matrix given our current filtering mode. | 
|  | float textureMatrix[16]; | 
|  | mConsumer->setFilteringEnabled(useFiltering); | 
|  | mConsumer->getTransformMatrix(textureMatrix); | 
|  |  | 
|  | if (getTransformToDisplayInverse()) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to | 
|  | * the texture transform | 
|  | */ | 
|  | uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
|  | mat4 tr = inverseOrientation(transform); | 
|  |  | 
|  | /** | 
|  | * TODO(b/36727915): This is basically a hack. | 
|  | * | 
|  | * Ensure that regardless of the parent transformation, | 
|  | * this buffer is always transformed from native display | 
|  | * orientation to display orientation. For example, in the case | 
|  | * of a camera where the buffer remains in native orientation, | 
|  | * we want the pixels to always be upright. | 
|  | */ | 
|  | sp<Layer> p = mDrawingParent.promote(); | 
|  | if (p != nullptr) { | 
|  | const auto parentTransform = p->getTransform(); | 
|  | tr = tr * inverseOrientation(parentTransform.getOrientation()); | 
|  | } | 
|  |  | 
|  | // and finally apply it to the original texture matrix | 
|  | const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); | 
|  | memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); | 
|  | } | 
|  |  | 
|  | // Set things up for texturing. | 
|  | mTexture.setDimensions(getBE().compositionInfo.mBuffer->getWidth(), | 
|  | getBE().compositionInfo.mBuffer->getHeight()); | 
|  | mTexture.setFiltering(useFiltering); | 
|  | mTexture.setMatrix(textureMatrix); | 
|  |  | 
|  | engine.setupLayerTexturing(mTexture); | 
|  | } else { | 
|  | engine.setupLayerBlackedOut(); | 
|  | } | 
|  | drawWithOpenGL(renderArea, useIdentityTransform); | 
|  | engine.disableTexturing(); | 
|  | } | 
|  |  | 
|  | void BufferLayer::onLayerDisplayed(const sp<Fence>& releaseFence) { | 
|  | mConsumer->setReleaseFence(releaseFence); | 
|  | } | 
|  |  | 
|  | void BufferLayer::abandon() { | 
|  | mConsumer->abandon(); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::shouldPresentNow(const DispSync& dispSync) const { | 
|  | if (mSidebandStreamChanged || mAutoRefresh) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | if (mQueueItems.empty()) { | 
|  | return false; | 
|  | } | 
|  | auto timestamp = mQueueItems[0].mTimestamp; | 
|  | nsecs_t expectedPresent = mConsumer->computeExpectedPresent(dispSync); | 
|  |  | 
|  | // Ignore timestamps more than a second in the future | 
|  | bool isPlausible = timestamp < (expectedPresent + s2ns(1)); | 
|  | ALOGW_IF(!isPlausible, | 
|  | "[%s] Timestamp %" PRId64 " seems implausible " | 
|  | "relative to expectedPresent %" PRId64, | 
|  | mName.string(), timestamp, expectedPresent); | 
|  |  | 
|  | bool isDue = timestamp < expectedPresent; | 
|  | return isDue || !isPlausible; | 
|  | } | 
|  |  | 
|  | void BufferLayer::setTransformHint(uint32_t orientation) const { | 
|  | mConsumer->setTransformHint(orientation); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { | 
|  | if (mBufferLatched) { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPreComposition(mCurrentFrameNumber, | 
|  | refreshStartTime); | 
|  | } | 
|  | mRefreshPending = false; | 
|  | return mQueuedFrames > 0 || mSidebandStreamChanged || | 
|  | mAutoRefresh; | 
|  | } | 
|  | bool BufferLayer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence, | 
|  | const std::shared_ptr<FenceTime>& presentFence, | 
|  | const CompositorTiming& compositorTiming) { | 
|  | // mFrameLatencyNeeded is true when a new frame was latched for the | 
|  | // composition. | 
|  | if (!mFrameLatencyNeeded) return false; | 
|  |  | 
|  | // Update mFrameEventHistory. | 
|  | { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, | 
|  | presentFence, compositorTiming); | 
|  | } | 
|  |  | 
|  | // Update mFrameTracker. | 
|  | nsecs_t desiredPresentTime = mConsumer->getTimestamp(); | 
|  | mFrameTracker.setDesiredPresentTime(desiredPresentTime); | 
|  |  | 
|  | const std::string layerName(getName().c_str()); | 
|  | mTimeStats.setDesiredTime(layerName, mCurrentFrameNumber, desiredPresentTime); | 
|  |  | 
|  | std::shared_ptr<FenceTime> frameReadyFence = mConsumer->getCurrentFenceTime(); | 
|  | if (frameReadyFence->isValid()) { | 
|  | mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); | 
|  | } else { | 
|  | // There was no fence for this frame, so assume that it was ready | 
|  | // to be presented at the desired present time. | 
|  | mFrameTracker.setFrameReadyTime(desiredPresentTime); | 
|  | } | 
|  |  | 
|  | if (presentFence->isValid()) { | 
|  | mTimeStats.setPresentFence(layerName, mCurrentFrameNumber, presentFence); | 
|  | mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); | 
|  | } else { | 
|  | // The HWC doesn't support present fences, so use the refresh | 
|  | // timestamp instead. | 
|  | const nsecs_t actualPresentTime = | 
|  | mFlinger->getHwComposer().getRefreshTimestamp(HWC_DISPLAY_PRIMARY); | 
|  | mTimeStats.setPresentTime(layerName, mCurrentFrameNumber, actualPresentTime); | 
|  | mFrameTracker.setActualPresentTime(actualPresentTime); | 
|  | } | 
|  |  | 
|  | mFrameTracker.advanceFrame(); | 
|  | mFrameLatencyNeeded = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::vector<OccupancyTracker::Segment> BufferLayer::getOccupancyHistory(bool forceFlush) { | 
|  | std::vector<OccupancyTracker::Segment> history; | 
|  | status_t result = mConsumer->getOccupancyHistory(forceFlush, &history); | 
|  | if (result != NO_ERROR) { | 
|  | ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), result); | 
|  | return {}; | 
|  | } | 
|  | return history; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::getTransformToDisplayInverse() const { | 
|  | return mConsumer->getTransformToDisplayInverse(); | 
|  | } | 
|  |  | 
|  | void BufferLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) { | 
|  | if (!mConsumer->releasePendingBuffer()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto releaseFenceTime = | 
|  | std::make_shared<FenceTime>(mConsumer->getPrevFinalReleaseFence()); | 
|  | mReleaseTimeline.updateSignalTimes(); | 
|  | mReleaseTimeline.push(releaseFenceTime); | 
|  |  | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | if (mPreviousFrameNumber != 0) { | 
|  | mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime, | 
|  | std::move(releaseFenceTime)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) { | 
|  | // mSidebandStreamChanged was true | 
|  | mSidebandStream = mConsumer->getSidebandStream(); | 
|  | // replicated in LayerBE until FE/BE is ready to be synchronized | 
|  | getBE().compositionInfo.hwc.sidebandStream = mSidebandStream; | 
|  | if (getBE().compositionInfo.hwc.sidebandStream != nullptr) { | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | mFlinger->setTransactionFlags(eTraversalNeeded); | 
|  | } | 
|  | recomputeVisibleRegions = true; | 
|  |  | 
|  | const State& s(getDrawingState()); | 
|  | return getTransform().transform(Region(Rect(s.active.w, s.active.h))); | 
|  | } | 
|  |  | 
|  | Region outDirtyRegion; | 
|  | if (mQueuedFrames <= 0 && !mAutoRefresh) { | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // if we've already called updateTexImage() without going through | 
|  | // a composition step, we have to skip this layer at this point | 
|  | // because we cannot call updateTeximage() without a corresponding | 
|  | // compositionComplete() call. | 
|  | // we'll trigger an update in onPreComposition(). | 
|  | if (mRefreshPending) { | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // If the head buffer's acquire fence hasn't signaled yet, return and | 
|  | // try again later | 
|  | if (!headFenceHasSignaled()) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // Capture the old state of the layer for comparisons later | 
|  | const State& s(getDrawingState()); | 
|  | const bool oldOpacity = isOpaque(s); | 
|  | sp<GraphicBuffer> oldBuffer = getBE().compositionInfo.mBuffer; | 
|  |  | 
|  | if (!allTransactionsSignaled()) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // This boolean is used to make sure that SurfaceFlinger's shadow copy | 
|  | // of the buffer queue isn't modified when the buffer queue is returning | 
|  | // BufferItem's that weren't actually queued. This can happen in shared | 
|  | // buffer mode. | 
|  | bool queuedBuffer = false; | 
|  | LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions, | 
|  | getProducerStickyTransform() != 0, mName.string(), | 
|  | mOverrideScalingMode, mFreezeGeometryUpdates); | 
|  | status_t updateResult = | 
|  | mConsumer->updateTexImage(&r, mFlinger->mPrimaryDispSync, | 
|  | &mAutoRefresh, &queuedBuffer, | 
|  | mLastFrameNumberReceived); | 
|  | if (updateResult == BufferQueue::PRESENT_LATER) { | 
|  | // Producer doesn't want buffer to be displayed yet.  Signal a | 
|  | // layer update so we check again at the next opportunity. | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return outDirtyRegion; | 
|  | } else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) { | 
|  | // If the buffer has been rejected, remove it from the shadow queue | 
|  | // and return early | 
|  | if (queuedBuffer) { | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber); | 
|  | mQueueItems.removeAt(0); | 
|  | android_atomic_dec(&mQueuedFrames); | 
|  | } | 
|  | return outDirtyRegion; | 
|  | } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) { | 
|  | // This can occur if something goes wrong when trying to create the | 
|  | // EGLImage for this buffer. If this happens, the buffer has already | 
|  | // been released, so we need to clean up the queue and bug out | 
|  | // early. | 
|  | if (queuedBuffer) { | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | mQueueItems.clear(); | 
|  | android_atomic_and(0, &mQueuedFrames); | 
|  | mTimeStats.clearLayerRecord(getName().c_str()); | 
|  | } | 
|  |  | 
|  | // Once we have hit this state, the shadow queue may no longer | 
|  | // correctly reflect the incoming BufferQueue's contents, so even if | 
|  | // updateTexImage starts working, the only safe course of action is | 
|  | // to continue to ignore updates. | 
|  | mUpdateTexImageFailed = true; | 
|  |  | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | if (queuedBuffer) { | 
|  | // Autolock scope | 
|  | auto currentFrameNumber = mConsumer->getFrameNumber(); | 
|  |  | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  |  | 
|  | // Remove any stale buffers that have been dropped during | 
|  | // updateTexImage | 
|  | while (mQueueItems[0].mFrameNumber != currentFrameNumber) { | 
|  | mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber); | 
|  | mQueueItems.removeAt(0); | 
|  | android_atomic_dec(&mQueuedFrames); | 
|  | } | 
|  |  | 
|  | const std::string layerName(getName().c_str()); | 
|  | mTimeStats.setAcquireFence(layerName, currentFrameNumber, mQueueItems[0].mFenceTime); | 
|  | mTimeStats.setLatchTime(layerName, currentFrameNumber, latchTime); | 
|  |  | 
|  | mQueueItems.removeAt(0); | 
|  | } | 
|  |  | 
|  | // Decrement the queued-frames count.  Signal another event if we | 
|  | // have more frames pending. | 
|  | if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) || | 
|  | mAutoRefresh) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  |  | 
|  | // update the active buffer | 
|  | getBE().compositionInfo.mBuffer = | 
|  | mConsumer->getCurrentBuffer(&getBE().compositionInfo.mBufferSlot); | 
|  | // replicated in LayerBE until FE/BE is ready to be synchronized | 
|  | mActiveBuffer = getBE().compositionInfo.mBuffer; | 
|  | if (getBE().compositionInfo.mBuffer == nullptr) { | 
|  | // this can only happen if the very first buffer was rejected. | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | mBufferLatched = true; | 
|  | mPreviousFrameNumber = mCurrentFrameNumber; | 
|  | mCurrentFrameNumber = mConsumer->getFrameNumber(); | 
|  |  | 
|  | { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime); | 
|  | } | 
|  |  | 
|  | mRefreshPending = true; | 
|  | mFrameLatencyNeeded = true; | 
|  | if (oldBuffer == nullptr) { | 
|  | // the first time we receive a buffer, we need to trigger a | 
|  | // geometry invalidation. | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | ui::Dataspace dataSpace = mConsumer->getCurrentDataSpace(); | 
|  | // treat modern dataspaces as legacy dataspaces whenever possible, until | 
|  | // we can trust the buffer producers | 
|  | switch (dataSpace) { | 
|  | case ui::Dataspace::V0_SRGB: | 
|  | dataSpace = ui::Dataspace::SRGB; | 
|  | break; | 
|  | case ui::Dataspace::V0_SRGB_LINEAR: | 
|  | dataSpace = ui::Dataspace::SRGB_LINEAR; | 
|  | break; | 
|  | case ui::Dataspace::V0_JFIF: | 
|  | dataSpace = ui::Dataspace::JFIF; | 
|  | break; | 
|  | case ui::Dataspace::V0_BT601_625: | 
|  | dataSpace = ui::Dataspace::BT601_625; | 
|  | break; | 
|  | case ui::Dataspace::V0_BT601_525: | 
|  | dataSpace = ui::Dataspace::BT601_525; | 
|  | break; | 
|  | case ui::Dataspace::V0_BT709: | 
|  | dataSpace = ui::Dataspace::BT709; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | mCurrentDataSpace = dataSpace; | 
|  |  | 
|  | Rect crop(mConsumer->getCurrentCrop()); | 
|  | const uint32_t transform(mConsumer->getCurrentTransform()); | 
|  | const uint32_t scalingMode(mConsumer->getCurrentScalingMode()); | 
|  | if ((crop != mCurrentCrop) || | 
|  | (transform != mCurrentTransform) || | 
|  | (scalingMode != mCurrentScalingMode)) { | 
|  | mCurrentCrop = crop; | 
|  | mCurrentTransform = transform; | 
|  | mCurrentScalingMode = scalingMode; | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | if (oldBuffer != nullptr) { | 
|  | uint32_t bufWidth = getBE().compositionInfo.mBuffer->getWidth(); | 
|  | uint32_t bufHeight = getBE().compositionInfo.mBuffer->getHeight(); | 
|  | if (bufWidth != uint32_t(oldBuffer->width) || | 
|  | bufHeight != uint32_t(oldBuffer->height)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | mCurrentOpacity = getOpacityForFormat(getBE().compositionInfo.mBuffer->format); | 
|  | if (oldOpacity != isOpaque(s)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | // Remove any sync points corresponding to the buffer which was just | 
|  | // latched | 
|  | { | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | auto point = mLocalSyncPoints.begin(); | 
|  | while (point != mLocalSyncPoints.end()) { | 
|  | if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { | 
|  | // This sync point must have been added since we started | 
|  | // latching. Don't drop it yet. | 
|  | ++point; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { | 
|  | point = mLocalSyncPoints.erase(point); | 
|  | } else { | 
|  | ++point; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: postedRegion should be dirty & bounds | 
|  | Region dirtyRegion(Rect(s.active.w, s.active.h)); | 
|  |  | 
|  | // transform the dirty region to window-manager space | 
|  | outDirtyRegion = (getTransform().transform(dirtyRegion)); | 
|  |  | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | void BufferLayer::setDefaultBufferSize(uint32_t w, uint32_t h) { | 
|  | mConsumer->setDefaultBufferSize(w, h); | 
|  | } | 
|  |  | 
|  | void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) { | 
|  | // Apply this display's projection's viewport to the visible region | 
|  | // before giving it to the HWC HAL. | 
|  | const Transform& tr = displayDevice->getTransform(); | 
|  | const auto& viewport = displayDevice->getViewport(); | 
|  | Region visible = tr.transform(visibleRegion.intersect(viewport)); | 
|  | auto hwcId = displayDevice->getHwcDisplayId(); | 
|  | if (!hasHwcLayer(hwcId)) { | 
|  | return; | 
|  | } | 
|  | auto& hwcInfo = getBE().mHwcLayers[hwcId]; | 
|  | auto& hwcLayer = hwcInfo.layer; | 
|  | auto error = hwcLayer->setVisibleRegion(visible); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | visible.dump(LOG_TAG); | 
|  | } | 
|  |  | 
|  | error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | surfaceDamageRegion.dump(LOG_TAG); | 
|  | } | 
|  |  | 
|  | // Sideband layers | 
|  | if (getBE().compositionInfo.hwc.sidebandStream.get()) { | 
|  | setCompositionType(hwcId, HWC2::Composition::Sideband); | 
|  | ALOGV("[%s] Requesting Sideband composition", mName.string()); | 
|  | error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle()); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), | 
|  | getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Device or Cursor layers | 
|  | if (mPotentialCursor) { | 
|  | ALOGV("[%s] Requesting Cursor composition", mName.string()); | 
|  | setCompositionType(hwcId, HWC2::Composition::Cursor); | 
|  | } else { | 
|  | ALOGV("[%s] Requesting Device composition", mName.string()); | 
|  | setCompositionType(hwcId, HWC2::Composition::Device); | 
|  | } | 
|  |  | 
|  | ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace); | 
|  | error = hwcLayer->setDataspace(mCurrentDataSpace); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace, | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | const HdrMetadata& metadata = mConsumer->getCurrentHdrMetadata(); | 
|  | error = hwcLayer->setPerFrameMetadata(displayDevice->getSupportedPerFrameMetadata(), metadata); | 
|  | if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { | 
|  | ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | uint32_t hwcSlot = 0; | 
|  | sp<GraphicBuffer> hwcBuffer; | 
|  | hwcInfo.bufferCache.getHwcBuffer(getBE().compositionInfo.mBufferSlot, | 
|  | getBE().compositionInfo.mBuffer, &hwcSlot, &hwcBuffer); | 
|  |  | 
|  | auto acquireFence = mConsumer->getCurrentFence(); | 
|  | error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), | 
|  | getBE().compositionInfo.mBuffer->handle, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isOpaque(const Layer::State& s) const { | 
|  | // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the | 
|  | // layer's opaque flag. | 
|  | if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (getBE().compositionInfo.mBuffer == nullptr)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the layer has the opaque flag, then we're always opaque, | 
|  | // otherwise we use the current buffer's format. | 
|  | return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity; | 
|  | } | 
|  |  | 
|  | void BufferLayer::onFirstRef() { | 
|  | // Creates a custom BufferQueue for SurfaceFlingerConsumer to use | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer, true); | 
|  | mProducer = new MonitoredProducer(producer, mFlinger, this); | 
|  | { | 
|  | // Grab the SF state lock during this since it's the only safe way to access RenderEngine | 
|  | Mutex::Autolock lock(mFlinger->mStateLock); | 
|  | mConsumer = new BufferLayerConsumer(consumer, mFlinger->getRenderEngine(), mTextureName, | 
|  | this); | 
|  | } | 
|  | mConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
|  | mConsumer->setContentsChangedListener(this); | 
|  | mConsumer->setName(mName); | 
|  |  | 
|  | if (mFlinger->isLayerTripleBufferingDisabled()) { | 
|  | mProducer->setMaxDequeuedBufferCount(2); | 
|  | } | 
|  |  | 
|  | const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice()); | 
|  | updateTransformHint(hw); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | void BufferLayer::onFrameAvailable(const BufferItem& item) { | 
|  | // Add this buffer from our internal queue tracker | 
|  | { // Autolock scope | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | mFlinger->mInterceptor->saveBufferUpdate(this, item.mGraphicBuffer->getWidth(), | 
|  | item.mGraphicBuffer->getHeight(), | 
|  | item.mFrameNumber); | 
|  | // Reset the frame number tracker when we receive the first buffer after | 
|  | // a frame number reset | 
|  | if (item.mFrameNumber == 1) { | 
|  | mLastFrameNumberReceived = 0; | 
|  | } | 
|  |  | 
|  | // Ensure that callbacks are handled in order | 
|  | while (item.mFrameNumber != mLastFrameNumberReceived + 1) { | 
|  | status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, | 
|  | ms2ns(500)); | 
|  | if (result != NO_ERROR) { | 
|  | ALOGE("[%s] Timed out waiting on callback", mName.string()); | 
|  | } | 
|  | } | 
|  |  | 
|  | mQueueItems.push_back(item); | 
|  | android_atomic_inc(&mQueuedFrames); | 
|  |  | 
|  | // Wake up any pending callbacks | 
|  | mLastFrameNumberReceived = item.mFrameNumber; | 
|  | mQueueItemCondition.broadcast(); | 
|  | } | 
|  |  | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  |  | 
|  | void BufferLayer::onFrameReplaced(const BufferItem& item) { | 
|  | { // Autolock scope | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  |  | 
|  | // Ensure that callbacks are handled in order | 
|  | while (item.mFrameNumber != mLastFrameNumberReceived + 1) { | 
|  | status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, | 
|  | ms2ns(500)); | 
|  | if (result != NO_ERROR) { | 
|  | ALOGE("[%s] Timed out waiting on callback", mName.string()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mQueueItems.empty()) { | 
|  | ALOGE("Can't replace a frame on an empty queue"); | 
|  | return; | 
|  | } | 
|  | mQueueItems.editItemAt(mQueueItems.size() - 1) = item; | 
|  |  | 
|  | // Wake up any pending callbacks | 
|  | mLastFrameNumberReceived = item.mFrameNumber; | 
|  | mQueueItemCondition.broadcast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BufferLayer::onSidebandStreamChanged() { | 
|  | if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) { | 
|  | // mSidebandStreamChanged was false | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BufferLayer::needsFiltering(const RenderArea& renderArea) const { | 
|  | return mNeedsFiltering || renderArea.needsFiltering(); | 
|  | } | 
|  |  | 
|  | // As documented in libhardware header, formats in the range | 
|  | // 0x100 - 0x1FF are specific to the HAL implementation, and | 
|  | // are known to have no alpha channel | 
|  | // TODO: move definition for device-specific range into | 
|  | // hardware.h, instead of using hard-coded values here. | 
|  | #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) | 
|  |  | 
|  | bool BufferLayer::getOpacityForFormat(uint32_t format) { | 
|  | if (HARDWARE_IS_DEVICE_FORMAT(format)) { | 
|  | return true; | 
|  | } | 
|  | switch (format) { | 
|  | case HAL_PIXEL_FORMAT_RGBA_8888: | 
|  | case HAL_PIXEL_FORMAT_BGRA_8888: | 
|  | case HAL_PIXEL_FORMAT_RGBA_FP16: | 
|  | case HAL_PIXEL_FORMAT_RGBA_1010102: | 
|  | return false; | 
|  | } | 
|  | // in all other case, we have no blending (also for unknown formats) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isHdrY410() const { | 
|  | // pixel format is HDR Y410 masquerading as RGBA_1010102 | 
|  | return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && | 
|  | mConsumer->getCurrentApi() == NATIVE_WINDOW_API_MEDIA && | 
|  | getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); | 
|  | } | 
|  |  | 
|  | void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const { | 
|  | ATRACE_CALL(); | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | computeGeometry(renderArea, getBE().mMesh, useIdentityTransform); | 
|  |  | 
|  | /* | 
|  | * NOTE: the way we compute the texture coordinates here produces | 
|  | * different results than when we take the HWC path -- in the later case | 
|  | * the "source crop" is rounded to texel boundaries. | 
|  | * This can produce significantly different results when the texture | 
|  | * is scaled by a large amount. | 
|  | * | 
|  | * The GL code below is more logical (imho), and the difference with | 
|  | * HWC is due to a limitation of the HWC API to integers -- a question | 
|  | * is suspend is whether we should ignore this problem or revert to | 
|  | * GL composition when a buffer scaling is applied (maybe with some | 
|  | * minimal value)? Or, we could make GL behave like HWC -- but this feel | 
|  | * like more of a hack. | 
|  | */ | 
|  | const Rect bounds{computeBounds()}; // Rounds from FloatRect | 
|  |  | 
|  | Transform t = getTransform(); | 
|  | Rect win = bounds; | 
|  | if (!s.finalCrop.isEmpty()) { | 
|  | win = t.transform(win); | 
|  | if (!win.intersect(s.finalCrop, &win)) { | 
|  | win.clear(); | 
|  | } | 
|  | win = t.inverse().transform(win); | 
|  | if (!win.intersect(bounds, &win)) { | 
|  | win.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | float left = float(win.left) / float(s.active.w); | 
|  | float top = float(win.top) / float(s.active.h); | 
|  | float right = float(win.right) / float(s.active.w); | 
|  | float bottom = float(win.bottom) / float(s.active.h); | 
|  |  | 
|  | // TODO: we probably want to generate the texture coords with the mesh | 
|  | // here we assume that we only have 4 vertices | 
|  | Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>()); | 
|  | texCoords[0] = vec2(left, 1.0f - top); | 
|  | texCoords[1] = vec2(left, 1.0f - bottom); | 
|  | texCoords[2] = vec2(right, 1.0f - bottom); | 
|  | texCoords[3] = vec2(right, 1.0f - top); | 
|  |  | 
|  | auto& engine(mFlinger->getRenderEngine()); | 
|  | engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */, | 
|  | getColor()); | 
|  | engine.setSourceDataSpace(mCurrentDataSpace); | 
|  |  | 
|  | if (isHdrY410()) { | 
|  | engine.setSourceY410BT2020(true); | 
|  | } | 
|  |  | 
|  | engine.drawMesh(getBE().mMesh); | 
|  | engine.disableBlending(); | 
|  |  | 
|  | engine.setSourceY410BT2020(false); | 
|  | } | 
|  |  | 
|  | uint32_t BufferLayer::getProducerStickyTransform() const { | 
|  | int producerStickyTransform = 0; | 
|  | int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform); | 
|  | if (ret != OK) { | 
|  | ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__, | 
|  | strerror(-ret), ret); | 
|  | return 0; | 
|  | } | 
|  | return static_cast<uint32_t>(producerStickyTransform); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::latchUnsignaledBuffers() { | 
|  | static bool propertyLoaded = false; | 
|  | static bool latch = false; | 
|  | static std::mutex mutex; | 
|  | std::lock_guard<std::mutex> lock(mutex); | 
|  | if (!propertyLoaded) { | 
|  | char value[PROPERTY_VALUE_MAX] = {}; | 
|  | property_get("debug.sf.latch_unsignaled", value, "0"); | 
|  | latch = atoi(value); | 
|  | propertyLoaded = true; | 
|  | } | 
|  | return latch; | 
|  | } | 
|  |  | 
|  | uint64_t BufferLayer::getHeadFrameNumber() const { | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | if (!mQueueItems.empty()) { | 
|  | return mQueueItems[0].mFrameNumber; | 
|  | } else { | 
|  | return mCurrentFrameNumber; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BufferLayer::headFenceHasSignaled() const { | 
|  | if (latchUnsignaledBuffers()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | if (mQueueItems.empty()) { | 
|  | return true; | 
|  | } | 
|  | if (mQueueItems[0].mIsDroppable) { | 
|  | // Even though this buffer's fence may not have signaled yet, it could | 
|  | // be replaced by another buffer before it has a chance to, which means | 
|  | // that it's possible to get into a situation where a buffer is never | 
|  | // able to be latched. To avoid this, grab this buffer anyway. | 
|  | return true; | 
|  | } | 
|  | return mQueueItems[0].mFenceTime->getSignalTime() != | 
|  | Fence::SIGNAL_TIME_PENDING; | 
|  | } | 
|  |  | 
|  | uint32_t BufferLayer::getEffectiveScalingMode() const { | 
|  | if (mOverrideScalingMode >= 0) { | 
|  | return mOverrideScalingMode; | 
|  | } | 
|  | return mCurrentScalingMode; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // transaction | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | void BufferLayer::notifyAvailableFrames() { | 
|  | auto headFrameNumber = getHeadFrameNumber(); | 
|  | bool headFenceSignaled = headFenceHasSignaled(); | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { | 
|  | point->setFrameAvailable(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | sp<IGraphicBufferProducer> BufferLayer::getProducer() const { | 
|  | return mProducer; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // h/w composer set-up | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | bool BufferLayer::allTransactionsSignaled() { | 
|  | auto headFrameNumber = getHeadFrameNumber(); | 
|  | bool matchingFramesFound = false; | 
|  | bool allTransactionsApplied = true; | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  |  | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (point->getFrameNumber() > headFrameNumber) { | 
|  | break; | 
|  | } | 
|  | matchingFramesFound = true; | 
|  |  | 
|  | if (!point->frameIsAvailable()) { | 
|  | // We haven't notified the remote layer that the frame for | 
|  | // this point is available yet. Notify it now, and then | 
|  | // abort this attempt to latch. | 
|  | point->setFrameAvailable(); | 
|  | allTransactionsApplied = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); | 
|  | } | 
|  | return !matchingFramesFound || allTransactionsApplied; | 
|  | } | 
|  |  | 
|  | } // namespace android | 
|  |  | 
|  | #if defined(__gl_h_) | 
|  | #error "don't include gl/gl.h in this file" | 
|  | #endif | 
|  |  | 
|  | #if defined(__gl2_h_) | 
|  | #error "don't include gl2/gl2.h in this file" | 
|  | #endif |