|  | /* | 
|  | * Copyright (C) 2011 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "DummyConsumer.h" | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> | 
|  | #include <binder/ProcessState.h> | 
|  | #include <configstore/Utils.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <inttypes.h> | 
|  | #include <gui/BufferItemConsumer.h> | 
|  | #include <gui/IDisplayEventConnection.h> | 
|  | #include <gui/IProducerListener.h> | 
|  | #include <gui/ISurfaceComposer.h> | 
|  | #include <gui/Surface.h> | 
|  | #include <gui/SurfaceComposerClient.h> | 
|  | #include <private/gui/ComposerService.h> | 
|  | #include <ui/Rect.h> | 
|  | #include <utils/String8.h> | 
|  |  | 
|  | #include <limits> | 
|  | #include <thread> | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | using namespace std::chrono_literals; | 
|  | // retrieve wide-color and hdr settings from configstore | 
|  | using namespace android::hardware::configstore; | 
|  | using namespace android::hardware::configstore::V1_0; | 
|  | using ui::ColorMode; | 
|  |  | 
|  | using Transaction = SurfaceComposerClient::Transaction; | 
|  |  | 
|  | static bool hasWideColorDisplay = | 
|  | getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false); | 
|  |  | 
|  | static bool hasHdrDisplay = | 
|  | getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasHDRDisplay>(false); | 
|  |  | 
|  | class FakeSurfaceComposer; | 
|  | class FakeProducerFrameEventHistory; | 
|  |  | 
|  | static constexpr uint64_t NO_FRAME_INDEX = std::numeric_limits<uint64_t>::max(); | 
|  |  | 
|  | class SurfaceTest : public ::testing::Test { | 
|  | protected: | 
|  | SurfaceTest() { | 
|  | ProcessState::self()->startThreadPool(); | 
|  | } | 
|  |  | 
|  | virtual void SetUp() { | 
|  | mComposerClient = new SurfaceComposerClient; | 
|  | ASSERT_EQ(NO_ERROR, mComposerClient->initCheck()); | 
|  |  | 
|  | // TODO(brianderson): The following sometimes fails and is a source of | 
|  | //   test flakiness. | 
|  | mSurfaceControl = mComposerClient->createSurface( | 
|  | String8("Test Surface"), 32, 32, PIXEL_FORMAT_RGBA_8888, 0); | 
|  |  | 
|  | ASSERT_TRUE(mSurfaceControl != nullptr); | 
|  | ASSERT_TRUE(mSurfaceControl->isValid()); | 
|  |  | 
|  | Transaction t; | 
|  | ASSERT_EQ(NO_ERROR, t.setLayer(mSurfaceControl, 0x7fffffff) | 
|  | .show(mSurfaceControl) | 
|  | .apply()); | 
|  |  | 
|  | mSurface = mSurfaceControl->getSurface(); | 
|  | ASSERT_TRUE(mSurface != nullptr); | 
|  | } | 
|  |  | 
|  | virtual void TearDown() { | 
|  | mComposerClient->dispose(); | 
|  | } | 
|  |  | 
|  | sp<Surface> mSurface; | 
|  | sp<SurfaceComposerClient> mComposerClient; | 
|  | sp<SurfaceControl> mSurfaceControl; | 
|  | }; | 
|  |  | 
|  | TEST_F(SurfaceTest, CreateSurfaceReturnsErrorBadClient) { | 
|  | mComposerClient->dispose(); | 
|  | ASSERT_EQ(NO_INIT, mComposerClient->initCheck()); | 
|  |  | 
|  | sp<SurfaceControl> sc; | 
|  | status_t err = mComposerClient->createSurfaceChecked( | 
|  | String8("Test Surface"), 32, 32, PIXEL_FORMAT_RGBA_8888, &sc, 0); | 
|  | ASSERT_EQ(NO_INIT, err); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenVisible) { | 
|  | sp<ANativeWindow> anw(mSurface); | 
|  | int result = -123; | 
|  | int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER, | 
|  | &result); | 
|  | EXPECT_EQ(NO_ERROR, err); | 
|  | EXPECT_EQ(1, result); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenPurgatorized) { | 
|  | mSurfaceControl.clear(); | 
|  | // Wait for the async clean-up to complete. | 
|  | std::this_thread::sleep_for(50ms); | 
|  |  | 
|  | sp<ANativeWindow> anw(mSurface); | 
|  | int result = -123; | 
|  | int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER, | 
|  | &result); | 
|  | EXPECT_EQ(NO_ERROR, err); | 
|  | EXPECT_EQ(1, result); | 
|  | } | 
|  |  | 
|  | // This test probably doesn't belong here. | 
|  | TEST_F(SurfaceTest, ScreenshotsOfProtectedBuffersSucceed) { | 
|  | sp<ANativeWindow> anw(mSurface); | 
|  |  | 
|  | // Verify the screenshot works with no protected buffers. | 
|  | sp<ISurfaceComposer> sf(ComposerService::getComposerService()); | 
|  | sp<IBinder> display(sf->getBuiltInDisplay( | 
|  | ISurfaceComposer::eDisplayIdMain)); | 
|  | sp<GraphicBuffer> outBuffer; | 
|  | ASSERT_EQ(NO_ERROR, | 
|  | sf->captureScreen(display, &outBuffer, ui::Dataspace::V0_SRGB, | 
|  | ui::PixelFormat::RGBA_8888, Rect(), 64, 64, false)); | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(), | 
|  | NATIVE_WINDOW_API_CPU)); | 
|  | // Set the PROTECTED usage bit and verify that the screenshot fails.  Note | 
|  | // that we need to dequeue a buffer in order for it to actually get | 
|  | // allocated in SurfaceFlinger. | 
|  | ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(), | 
|  | GRALLOC_USAGE_PROTECTED)); | 
|  | ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(anw.get(), 3)); | 
|  | ANativeWindowBuffer* buf = nullptr; | 
|  |  | 
|  | status_t err = native_window_dequeue_buffer_and_wait(anw.get(), &buf); | 
|  | if (err) { | 
|  | // we could fail if GRALLOC_USAGE_PROTECTED is not supported. | 
|  | // that's okay as long as this is the reason for the failure. | 
|  | // try again without the GRALLOC_USAGE_PROTECTED bit. | 
|  | ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(), 0)); | 
|  | ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(), | 
|  | &buf)); | 
|  | return; | 
|  | } | 
|  | ASSERT_EQ(NO_ERROR, anw->cancelBuffer(anw.get(), buf, -1)); | 
|  |  | 
|  | for (int i = 0; i < 4; i++) { | 
|  | // Loop to make sure SurfaceFlinger has retired a protected buffer. | 
|  | ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(), | 
|  | &buf)); | 
|  | ASSERT_EQ(NO_ERROR, anw->queueBuffer(anw.get(), buf, -1)); | 
|  | } | 
|  | ASSERT_EQ(NO_ERROR, | 
|  | sf->captureScreen(display, &outBuffer, ui::Dataspace::V0_SRGB, | 
|  | ui::PixelFormat::RGBA_8888, Rect(), 64, 64, false)); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, ConcreteTypeIsSurface) { | 
|  | sp<ANativeWindow> anw(mSurface); | 
|  | int result = -123; | 
|  | int err = anw->query(anw.get(), NATIVE_WINDOW_CONCRETE_TYPE, &result); | 
|  | EXPECT_EQ(NO_ERROR, err); | 
|  | EXPECT_EQ(NATIVE_WINDOW_SURFACE, result); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, LayerCountIsOne) { | 
|  | sp<ANativeWindow> anw(mSurface); | 
|  | int result = -123; | 
|  | int err = anw->query(anw.get(), NATIVE_WINDOW_LAYER_COUNT, &result); | 
|  | EXPECT_EQ(NO_ERROR, err); | 
|  | EXPECT_EQ(1, result); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, QueryConsumerUsage) { | 
|  | const int TEST_USAGE_FLAGS = | 
|  | GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER; | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  | sp<BufferItemConsumer> c = new BufferItemConsumer(consumer, | 
|  | TEST_USAGE_FLAGS); | 
|  | sp<Surface> s = new Surface(producer); | 
|  |  | 
|  | sp<ANativeWindow> anw(s); | 
|  |  | 
|  | int flags = -1; | 
|  | int err = anw->query(anw.get(), NATIVE_WINDOW_CONSUMER_USAGE_BITS, &flags); | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, err); | 
|  | ASSERT_EQ(TEST_USAGE_FLAGS, flags); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, QueryDefaultBuffersDataSpace) { | 
|  | const android_dataspace TEST_DATASPACE = HAL_DATASPACE_SRGB; | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  | sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1); | 
|  |  | 
|  | cpuConsumer->setDefaultBufferDataSpace(TEST_DATASPACE); | 
|  |  | 
|  | sp<Surface> s = new Surface(producer); | 
|  |  | 
|  | sp<ANativeWindow> anw(s); | 
|  |  | 
|  | android_dataspace dataSpace; | 
|  |  | 
|  | int err = anw->query(anw.get(), NATIVE_WINDOW_DEFAULT_DATASPACE, | 
|  | reinterpret_cast<int*>(&dataSpace)); | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, err); | 
|  | ASSERT_EQ(TEST_DATASPACE, dataSpace); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, SettingGenerationNumber) { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  | sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1); | 
|  | sp<Surface> surface = new Surface(producer); | 
|  | sp<ANativeWindow> window(surface); | 
|  |  | 
|  | // Allocate a buffer with a generation number of 0 | 
|  | ANativeWindowBuffer* buffer; | 
|  | int fenceFd; | 
|  | ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(), | 
|  | NATIVE_WINDOW_API_CPU)); | 
|  | ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd)); | 
|  | ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, fenceFd)); | 
|  |  | 
|  | // Detach the buffer and check its generation number | 
|  | sp<GraphicBuffer> graphicBuffer; | 
|  | sp<Fence> fence; | 
|  | ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&graphicBuffer, &fence)); | 
|  | ASSERT_EQ(0U, graphicBuffer->getGenerationNumber()); | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, surface->setGenerationNumber(1)); | 
|  | buffer = static_cast<ANativeWindowBuffer*>(graphicBuffer.get()); | 
|  |  | 
|  | // This should change the generation number of the GraphicBuffer | 
|  | ASSERT_EQ(NO_ERROR, surface->attachBuffer(buffer)); | 
|  |  | 
|  | // Check that the new generation number sticks with the buffer | 
|  | ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, -1)); | 
|  | ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd)); | 
|  | graphicBuffer = static_cast<GraphicBuffer*>(buffer); | 
|  | ASSERT_EQ(1U, graphicBuffer->getGenerationNumber()); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, GetConsumerName) { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  |  | 
|  | sp<DummyConsumer> dummyConsumer(new DummyConsumer); | 
|  | consumer->consumerConnect(dummyConsumer, false); | 
|  | consumer->setConsumerName(String8("TestConsumer")); | 
|  |  | 
|  | sp<Surface> surface = new Surface(producer); | 
|  | sp<ANativeWindow> window(surface); | 
|  | native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU); | 
|  |  | 
|  | EXPECT_STREQ("TestConsumer", surface->getConsumerName().string()); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, GetWideColorSupport) { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  |  | 
|  | sp<DummyConsumer> dummyConsumer(new DummyConsumer); | 
|  | consumer->consumerConnect(dummyConsumer, false); | 
|  | consumer->setConsumerName(String8("TestConsumer")); | 
|  |  | 
|  | sp<Surface> surface = new Surface(producer); | 
|  | sp<ANativeWindow> window(surface); | 
|  | native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU); | 
|  |  | 
|  | bool supported; | 
|  | surface->getWideColorSupport(&supported); | 
|  |  | 
|  | // NOTE: This test assumes that device that supports | 
|  | // wide-color (as indicated by BoardConfig) must also | 
|  | // have a wide-color primary display. | 
|  | // That assumption allows this test to cover devices | 
|  | // that advertised a wide-color color mode without | 
|  | // actually supporting wide-color to pass this test | 
|  | // as well as the case of a device that does support | 
|  | // wide-color (via BoardConfig) and has a wide-color | 
|  | // primary display. | 
|  | // NOT covered at this time is a device that supports | 
|  | // wide color in the BoardConfig but does not support | 
|  | // a wide-color color mode on the primary display. | 
|  | ASSERT_EQ(hasWideColorDisplay, supported); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, GetHdrSupport) { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  |  | 
|  | sp<DummyConsumer> dummyConsumer(new DummyConsumer); | 
|  | consumer->consumerConnect(dummyConsumer, false); | 
|  | consumer->setConsumerName(String8("TestConsumer")); | 
|  |  | 
|  | sp<Surface> surface = new Surface(producer); | 
|  | sp<ANativeWindow> window(surface); | 
|  | native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU); | 
|  |  | 
|  | bool supported; | 
|  | status_t result = surface->getHdrSupport(&supported); | 
|  | ASSERT_EQ(NO_ERROR, result); | 
|  |  | 
|  | // NOTE: This is not a CTS test. | 
|  | // This test verifies that when the BoardConfig TARGET_HAS_HDR_DISPLAY | 
|  | // is TRUE, getHdrSupport is also true. | 
|  | // TODO: Add check for an HDR color mode on the primary display. | 
|  | ASSERT_EQ(hasHdrDisplay, supported); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, SetHdrMetadata) { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  |  | 
|  | sp<DummyConsumer> dummyConsumer(new DummyConsumer); | 
|  | consumer->consumerConnect(dummyConsumer, false); | 
|  | consumer->setConsumerName(String8("TestConsumer")); | 
|  |  | 
|  | sp<Surface> surface = new Surface(producer); | 
|  | sp<ANativeWindow> window(surface); | 
|  | native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU); | 
|  |  | 
|  | bool supported; | 
|  | status_t result = surface->getHdrSupport(&supported); | 
|  | ASSERT_EQ(NO_ERROR, result); | 
|  |  | 
|  | if (!hasHdrDisplay || !supported) { | 
|  | return; | 
|  | } | 
|  | const android_smpte2086_metadata smpte2086 = { | 
|  | {0.680, 0.320}, | 
|  | {0.265, 0.690}, | 
|  | {0.150, 0.060}, | 
|  | {0.3127, 0.3290}, | 
|  | 100.0, | 
|  | 0.1, | 
|  | }; | 
|  | const android_cta861_3_metadata cta861_3 = { | 
|  | 78.0, | 
|  | 62.0, | 
|  | }; | 
|  | int error = native_window_set_buffers_smpte2086_metadata(window.get(), &smpte2086); | 
|  | ASSERT_EQ(error, NO_ERROR); | 
|  | error = native_window_set_buffers_cta861_3_metadata(window.get(), &cta861_3); | 
|  | ASSERT_EQ(error, NO_ERROR); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, DynamicSetBufferCount) { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  |  | 
|  | sp<DummyConsumer> dummyConsumer(new DummyConsumer); | 
|  | consumer->consumerConnect(dummyConsumer, false); | 
|  | consumer->setConsumerName(String8("TestConsumer")); | 
|  |  | 
|  | sp<Surface> surface = new Surface(producer); | 
|  | sp<ANativeWindow> window(surface); | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(), | 
|  | NATIVE_WINDOW_API_CPU)); | 
|  | native_window_set_buffer_count(window.get(), 4); | 
|  |  | 
|  | int fence; | 
|  | ANativeWindowBuffer* buffer; | 
|  | ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence)); | 
|  | native_window_set_buffer_count(window.get(), 3); | 
|  | ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence)); | 
|  | native_window_set_buffer_count(window.get(), 2); | 
|  | ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence)); | 
|  | ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence)); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, GetAndFlushRemovedBuffers) { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  |  | 
|  | sp<DummyConsumer> dummyConsumer(new DummyConsumer); | 
|  | consumer->consumerConnect(dummyConsumer, false); | 
|  | consumer->setConsumerName(String8("TestConsumer")); | 
|  |  | 
|  | sp<Surface> surface = new Surface(producer); | 
|  | sp<ANativeWindow> window(surface); | 
|  | sp<DummyProducerListener> listener = new DummyProducerListener(); | 
|  | ASSERT_EQ(OK, surface->connect( | 
|  | NATIVE_WINDOW_API_CPU, | 
|  | /*listener*/listener, | 
|  | /*reportBufferRemoval*/true)); | 
|  | const int BUFFER_COUNT = 4; | 
|  | ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(window.get(), BUFFER_COUNT)); | 
|  |  | 
|  | sp<GraphicBuffer> detachedBuffer; | 
|  | sp<Fence> outFence; | 
|  | int fences[BUFFER_COUNT]; | 
|  | ANativeWindowBuffer* buffers[BUFFER_COUNT]; | 
|  | // Allocate buffers because detachNextBuffer requires allocated buffers | 
|  | for (int i = 0; i < BUFFER_COUNT; i++) { | 
|  | ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i])); | 
|  | } | 
|  | for (int i = 0; i < BUFFER_COUNT; i++) { | 
|  | ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i])); | 
|  | } | 
|  |  | 
|  | // Test detached buffer is correctly reported | 
|  | ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); | 
|  | std::vector<sp<GraphicBuffer>> removedBuffers; | 
|  | ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); | 
|  | ASSERT_EQ(1u, removedBuffers.size()); | 
|  | ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle); | 
|  | // Test the list is flushed one getAndFlushRemovedBuffers returns | 
|  | ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); | 
|  | ASSERT_EQ(0u, removedBuffers.size()); | 
|  |  | 
|  |  | 
|  | // Test removed buffer list is cleanup after next dequeueBuffer call | 
|  | ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); | 
|  | ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[0], &fences[0])); | 
|  | ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); | 
|  | ASSERT_EQ(0u, removedBuffers.size()); | 
|  | ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[0], fences[0])); | 
|  |  | 
|  | // Test removed buffer list is cleanup after next detachNextBuffer call | 
|  | ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); | 
|  | ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); | 
|  | ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); | 
|  | ASSERT_EQ(1u, removedBuffers.size()); | 
|  | ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle); | 
|  |  | 
|  | // Re-allocate buffers since all buffers are detached up to now | 
|  | for (int i = 0; i < BUFFER_COUNT; i++) { | 
|  | ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i])); | 
|  | } | 
|  | for (int i = 0; i < BUFFER_COUNT; i++) { | 
|  | ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i])); | 
|  | } | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); | 
|  | ASSERT_EQ(NO_ERROR, surface->attachBuffer(detachedBuffer.get())); | 
|  | ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); | 
|  | // Depends on which slot GraphicBufferProducer impl pick, the attach call might | 
|  | // get 0 or 1 buffer removed. | 
|  | ASSERT_LE(removedBuffers.size(), 1u); | 
|  | } | 
|  |  | 
|  | TEST_F(SurfaceTest, TestGetLastDequeueStartTime) { | 
|  | sp<ANativeWindow> anw(mSurface); | 
|  | ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(), NATIVE_WINDOW_API_CPU)); | 
|  |  | 
|  | ANativeWindowBuffer* buffer = nullptr; | 
|  | int32_t fenceFd = -1; | 
|  |  | 
|  | nsecs_t before = systemTime(CLOCK_MONOTONIC); | 
|  | anw->dequeueBuffer(anw.get(), &buffer, &fenceFd); | 
|  | nsecs_t after = systemTime(CLOCK_MONOTONIC); | 
|  |  | 
|  | nsecs_t lastDequeueTime = mSurface->getLastDequeueStartTime(); | 
|  | ASSERT_LE(before, lastDequeueTime); | 
|  | ASSERT_GE(after, lastDequeueTime); | 
|  | } | 
|  |  | 
|  | class FakeConsumer : public BnConsumerListener { | 
|  | public: | 
|  | void onFrameAvailable(const BufferItem& /*item*/) override {} | 
|  | void onBuffersReleased() override {} | 
|  | void onSidebandStreamChanged() override {} | 
|  |  | 
|  | void addAndGetFrameTimestamps( | 
|  | const NewFrameEventsEntry* newTimestamps, | 
|  | FrameEventHistoryDelta* outDelta) override { | 
|  | if (newTimestamps) { | 
|  | if (mGetFrameTimestampsEnabled) { | 
|  | EXPECT_GT(mNewFrameEntryOverride.frameNumber, 0u) << | 
|  | "Test should set mNewFrameEntryOverride before queuing " | 
|  | "a frame."; | 
|  | EXPECT_EQ(newTimestamps->frameNumber, | 
|  | mNewFrameEntryOverride.frameNumber) << | 
|  | "Test attempting to add NewFrameEntryOverride with " | 
|  | "incorrect frame number."; | 
|  | mFrameEventHistory.addQueue(mNewFrameEntryOverride); | 
|  | mNewFrameEntryOverride.frameNumber = 0; | 
|  | } | 
|  | mAddFrameTimestampsCount++; | 
|  | mLastAddedFrameNumber = newTimestamps->frameNumber; | 
|  | } | 
|  | if (outDelta) { | 
|  | mFrameEventHistory.getAndResetDelta(outDelta); | 
|  | mGetFrameTimestampsCount++; | 
|  | } | 
|  | mAddAndGetFrameTimestampsCallCount++; | 
|  | } | 
|  |  | 
|  | bool mGetFrameTimestampsEnabled = false; | 
|  |  | 
|  | ConsumerFrameEventHistory mFrameEventHistory; | 
|  | int mAddAndGetFrameTimestampsCallCount = 0; | 
|  | int mAddFrameTimestampsCount = 0; | 
|  | int mGetFrameTimestampsCount = 0; | 
|  | uint64_t mLastAddedFrameNumber = NO_FRAME_INDEX; | 
|  |  | 
|  | NewFrameEventsEntry mNewFrameEntryOverride = { 0, 0, 0, nullptr }; | 
|  | }; | 
|  |  | 
|  |  | 
|  | class FakeSurfaceComposer : public ISurfaceComposer{ | 
|  | public: | 
|  | ~FakeSurfaceComposer() override {} | 
|  |  | 
|  | void setSupportsPresent(bool supportsPresent) { | 
|  | mSupportsPresent = supportsPresent; | 
|  | } | 
|  |  | 
|  | sp<ISurfaceComposerClient> createConnection() override { return nullptr; } | 
|  | sp<ISurfaceComposerClient> createScopedConnection( | 
|  | const sp<IGraphicBufferProducer>& /* parent */) override { | 
|  | return nullptr; | 
|  | } | 
|  | sp<IDisplayEventConnection> createDisplayEventConnection(ISurfaceComposer::VsyncSource) | 
|  | override { | 
|  | return nullptr; | 
|  | } | 
|  | sp<IBinder> createDisplay(const String8& /*displayName*/, | 
|  | bool /*secure*/) override { return nullptr; } | 
|  | void destroyDisplay(const sp<IBinder>& /*display */) override {} | 
|  | sp<IBinder> getBuiltInDisplay(int32_t /*id*/) override { return nullptr; } | 
|  | void setTransactionState(const Vector<ComposerState>& /*state*/, | 
|  | const Vector<DisplayState>& /*displays*/, uint32_t /*flags*/) | 
|  | override {} | 
|  | void bootFinished() override {} | 
|  | bool authenticateSurfaceTexture( | 
|  | const sp<IGraphicBufferProducer>& /*surface*/) const override { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | status_t getSupportedFrameTimestamps(std::vector<FrameEvent>* outSupported) | 
|  | const override { | 
|  | *outSupported = { | 
|  | FrameEvent::REQUESTED_PRESENT, | 
|  | FrameEvent::ACQUIRE, | 
|  | FrameEvent::LATCH, | 
|  | FrameEvent::FIRST_REFRESH_START, | 
|  | FrameEvent::LAST_REFRESH_START, | 
|  | FrameEvent::GPU_COMPOSITION_DONE, | 
|  | FrameEvent::DEQUEUE_READY, | 
|  | FrameEvent::RELEASE | 
|  | }; | 
|  | if (mSupportsPresent) { | 
|  | outSupported->push_back( | 
|  | FrameEvent::DISPLAY_PRESENT); | 
|  | } | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | void setPowerMode(const sp<IBinder>& /*display*/, int /*mode*/) override {} | 
|  | status_t getDisplayConfigs(const sp<IBinder>& /*display*/, | 
|  | Vector<DisplayInfo>* /*configs*/) override { return NO_ERROR; } | 
|  | status_t getDisplayStats(const sp<IBinder>& /*display*/, | 
|  | DisplayStatInfo* /*stats*/) override { return NO_ERROR; } | 
|  | int getActiveConfig(const sp<IBinder>& /*display*/) override { return 0; } | 
|  | status_t setActiveConfig(const sp<IBinder>& /*display*/, int /*id*/) | 
|  | override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | status_t getDisplayColorModes(const sp<IBinder>& /*display*/, | 
|  | Vector<ColorMode>* /*outColorModes*/) override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | ColorMode getActiveColorMode(const sp<IBinder>& /*display*/) | 
|  | override { | 
|  | return ColorMode::NATIVE; | 
|  | } | 
|  | status_t setActiveColorMode(const sp<IBinder>& /*display*/, | 
|  | ColorMode /*colorMode*/) override { return NO_ERROR; } | 
|  | status_t captureScreen(const sp<IBinder>& /*display*/, sp<GraphicBuffer>* /*outBuffer*/, | 
|  | const ui::Dataspace /*reqDataspace*/, | 
|  | const ui::PixelFormat /*reqPixelFormat*/, Rect /*sourceCrop*/, | 
|  | uint32_t /*reqWidth*/, uint32_t /*reqHeight*/, | 
|  | bool /*useIdentityTransform*/, Rotation /*rotation*/) override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | virtual status_t captureLayers(const sp<IBinder>& /*parentHandle*/, | 
|  | sp<GraphicBuffer>* /*outBuffer*/, | 
|  | const ui::Dataspace /*reqDataspace*/, | 
|  | const ui::PixelFormat /*reqPixelFormat*/, | 
|  | const Rect& /*sourceCrop*/, float /*frameScale*/, | 
|  | bool /*childrenOnly*/) override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | status_t clearAnimationFrameStats() override { return NO_ERROR; } | 
|  | status_t getAnimationFrameStats(FrameStats* /*outStats*/) const override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | status_t getHdrCapabilities(const sp<IBinder>& /*display*/, | 
|  | HdrCapabilities* /*outCapabilities*/) const override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | status_t enableVSyncInjections(bool /*enable*/) override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | status_t injectVSync(nsecs_t /*when*/) override { return NO_ERROR; } | 
|  | status_t getLayerDebugInfo(std::vector<LayerDebugInfo>* /*layers*/) const override { | 
|  | return NO_ERROR; | 
|  | } | 
|  | status_t getCompositionPreference( | 
|  | ui::Dataspace* /*outDefaultDataspace*/, ui::PixelFormat* /*outDefaultPixelFormat*/, | 
|  | ui::Dataspace* /*outWideColorGamutDataspace*/, | 
|  | ui::PixelFormat* /*outWideColorGamutPixelFormat*/) const override { | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | virtual bool isColorManagementUsed() const { return false; } | 
|  |  | 
|  | protected: | 
|  | IBinder* onAsBinder() override { return nullptr; } | 
|  |  | 
|  | private: | 
|  | bool mSupportsPresent{true}; | 
|  | }; | 
|  |  | 
|  | class FakeProducerFrameEventHistory : public ProducerFrameEventHistory { | 
|  | public: | 
|  | FakeProducerFrameEventHistory(FenceToFenceTimeMap* fenceMap) | 
|  | : mFenceMap(fenceMap) {} | 
|  |  | 
|  | ~FakeProducerFrameEventHistory() {} | 
|  |  | 
|  | void updateAcquireFence(uint64_t frameNumber, | 
|  | std::shared_ptr<FenceTime>&& acquire) override { | 
|  | // Verify the acquire fence being added isn't the one from the consumer. | 
|  | EXPECT_NE(mConsumerAcquireFence, acquire); | 
|  | // Override the fence, so we can verify this was called by the | 
|  | // producer after the frame is queued. | 
|  | ProducerFrameEventHistory::updateAcquireFence(frameNumber, | 
|  | std::shared_ptr<FenceTime>(mAcquireFenceOverride)); | 
|  | } | 
|  |  | 
|  | void setAcquireFenceOverride( | 
|  | const std::shared_ptr<FenceTime>& acquireFenceOverride, | 
|  | const std::shared_ptr<FenceTime>& consumerAcquireFence) { | 
|  | mAcquireFenceOverride = acquireFenceOverride; | 
|  | mConsumerAcquireFence = consumerAcquireFence; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | std::shared_ptr<FenceTime> createFenceTime(const sp<Fence>& fence) | 
|  | const override { | 
|  | return mFenceMap->createFenceTimeForTest(fence); | 
|  | } | 
|  |  | 
|  | FenceToFenceTimeMap* mFenceMap{nullptr}; | 
|  |  | 
|  | std::shared_ptr<FenceTime> mAcquireFenceOverride{FenceTime::NO_FENCE}; | 
|  | std::shared_ptr<FenceTime> mConsumerAcquireFence{FenceTime::NO_FENCE}; | 
|  | }; | 
|  |  | 
|  |  | 
|  | class TestSurface : public Surface { | 
|  | public: | 
|  | TestSurface(const sp<IGraphicBufferProducer>& bufferProducer, | 
|  | FenceToFenceTimeMap* fenceMap) | 
|  | : Surface(bufferProducer), | 
|  | mFakeSurfaceComposer(new FakeSurfaceComposer) { | 
|  | mFakeFrameEventHistory = new FakeProducerFrameEventHistory(fenceMap); | 
|  | mFrameEventHistory.reset(mFakeFrameEventHistory); | 
|  | } | 
|  |  | 
|  | ~TestSurface() override {} | 
|  |  | 
|  | sp<ISurfaceComposer> composerService() const override { | 
|  | return mFakeSurfaceComposer; | 
|  | } | 
|  |  | 
|  | nsecs_t now() const override { | 
|  | return mNow; | 
|  | } | 
|  |  | 
|  | void setNow(nsecs_t now) { | 
|  | mNow = now; | 
|  | } | 
|  |  | 
|  | public: | 
|  | sp<FakeSurfaceComposer> mFakeSurfaceComposer; | 
|  | nsecs_t mNow = 0; | 
|  |  | 
|  | // mFrameEventHistory owns the instance of FakeProducerFrameEventHistory, | 
|  | // but this raw pointer gives access to test functionality. | 
|  | FakeProducerFrameEventHistory* mFakeFrameEventHistory; | 
|  | }; | 
|  |  | 
|  |  | 
|  | class GetFrameTimestampsTest : public ::testing::Test { | 
|  | protected: | 
|  | struct FenceAndFenceTime { | 
|  | explicit FenceAndFenceTime(FenceToFenceTimeMap& fenceMap) | 
|  | : mFence(new Fence), | 
|  | mFenceTime(fenceMap.createFenceTimeForTest(mFence)) {} | 
|  | sp<Fence> mFence { nullptr }; | 
|  | std::shared_ptr<FenceTime> mFenceTime { nullptr }; | 
|  | }; | 
|  |  | 
|  | struct RefreshEvents { | 
|  | RefreshEvents(FenceToFenceTimeMap& fenceMap, nsecs_t refreshStart) | 
|  | : mFenceMap(fenceMap), | 
|  | kCompositorTiming( | 
|  | {refreshStart, refreshStart + 1, refreshStart + 2 }), | 
|  | kStartTime(refreshStart + 3), | 
|  | kGpuCompositionDoneTime(refreshStart + 4), | 
|  | kPresentTime(refreshStart + 5) {} | 
|  |  | 
|  | void signalPostCompositeFences() { | 
|  | mFenceMap.signalAllForTest( | 
|  | mGpuCompositionDone.mFence, kGpuCompositionDoneTime); | 
|  | mFenceMap.signalAllForTest(mPresent.mFence, kPresentTime); | 
|  | } | 
|  |  | 
|  | FenceToFenceTimeMap& mFenceMap; | 
|  |  | 
|  | FenceAndFenceTime mGpuCompositionDone { mFenceMap }; | 
|  | FenceAndFenceTime mPresent { mFenceMap }; | 
|  |  | 
|  | const CompositorTiming kCompositorTiming; | 
|  |  | 
|  | const nsecs_t kStartTime; | 
|  | const nsecs_t kGpuCompositionDoneTime; | 
|  | const nsecs_t kPresentTime; | 
|  | }; | 
|  |  | 
|  | struct FrameEvents { | 
|  | FrameEvents(FenceToFenceTimeMap& fenceMap, nsecs_t frameStartTime) | 
|  | : mFenceMap(fenceMap), | 
|  | kPostedTime(frameStartTime + 100), | 
|  | kRequestedPresentTime(frameStartTime + 200), | 
|  | kProducerAcquireTime(frameStartTime + 300), | 
|  | kConsumerAcquireTime(frameStartTime + 301), | 
|  | kLatchTime(frameStartTime + 500), | 
|  | kDequeueReadyTime(frameStartTime + 600), | 
|  | kReleaseTime(frameStartTime + 700), | 
|  | mRefreshes { | 
|  | { mFenceMap, frameStartTime + 410 }, | 
|  | { mFenceMap, frameStartTime + 420 }, | 
|  | { mFenceMap, frameStartTime + 430 } } {} | 
|  |  | 
|  | void signalQueueFences() { | 
|  | mFenceMap.signalAllForTest( | 
|  | mAcquireConsumer.mFence, kConsumerAcquireTime); | 
|  | mFenceMap.signalAllForTest( | 
|  | mAcquireProducer.mFence, kProducerAcquireTime); | 
|  | } | 
|  |  | 
|  | void signalRefreshFences() { | 
|  | for (auto& re : mRefreshes) { | 
|  | re.signalPostCompositeFences(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void signalReleaseFences() { | 
|  | mFenceMap.signalAllForTest(mRelease.mFence, kReleaseTime); | 
|  | } | 
|  |  | 
|  | FenceToFenceTimeMap& mFenceMap; | 
|  |  | 
|  | FenceAndFenceTime mAcquireConsumer { mFenceMap }; | 
|  | FenceAndFenceTime mAcquireProducer { mFenceMap }; | 
|  | FenceAndFenceTime mRelease { mFenceMap }; | 
|  |  | 
|  | const nsecs_t kPostedTime; | 
|  | const nsecs_t kRequestedPresentTime; | 
|  | const nsecs_t kProducerAcquireTime; | 
|  | const nsecs_t kConsumerAcquireTime; | 
|  | const nsecs_t kLatchTime; | 
|  | const nsecs_t kDequeueReadyTime; | 
|  | const nsecs_t kReleaseTime; | 
|  |  | 
|  | RefreshEvents mRefreshes[3]; | 
|  | }; | 
|  |  | 
|  | GetFrameTimestampsTest() {} | 
|  |  | 
|  | virtual void SetUp() { | 
|  | BufferQueue::createBufferQueue(&mProducer, &mConsumer); | 
|  | mFakeConsumer = new FakeConsumer; | 
|  | mCfeh = &mFakeConsumer->mFrameEventHistory; | 
|  | mConsumer->consumerConnect(mFakeConsumer, false); | 
|  | mConsumer->setConsumerName(String8("TestConsumer")); | 
|  | mSurface = new TestSurface(mProducer, &mFenceMap); | 
|  | mWindow = mSurface; | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, native_window_api_connect(mWindow.get(), | 
|  | NATIVE_WINDOW_API_CPU)); | 
|  | native_window_set_buffer_count(mWindow.get(), 4); | 
|  | } | 
|  |  | 
|  | void disableFrameTimestamps() { | 
|  | mFakeConsumer->mGetFrameTimestampsEnabled = false; | 
|  | native_window_enable_frame_timestamps(mWindow.get(), 0); | 
|  | mFrameTimestampsEnabled = false; | 
|  | } | 
|  |  | 
|  | void enableFrameTimestamps() { | 
|  | mFakeConsumer->mGetFrameTimestampsEnabled = true; | 
|  | native_window_enable_frame_timestamps(mWindow.get(), 1); | 
|  | mFrameTimestampsEnabled = true; | 
|  | } | 
|  |  | 
|  | int getAllFrameTimestamps(uint64_t frameId) { | 
|  | return native_window_get_frame_timestamps(mWindow.get(), frameId, | 
|  | &outRequestedPresentTime, &outAcquireTime, &outLatchTime, | 
|  | &outFirstRefreshStartTime, &outLastRefreshStartTime, | 
|  | &outGpuCompositionDoneTime, &outDisplayPresentTime, | 
|  | &outDequeueReadyTime, &outReleaseTime); | 
|  | } | 
|  |  | 
|  | void resetTimestamps() { | 
|  | outRequestedPresentTime = -1; | 
|  | outAcquireTime = -1; | 
|  | outLatchTime = -1; | 
|  | outFirstRefreshStartTime = -1; | 
|  | outLastRefreshStartTime = -1; | 
|  | outGpuCompositionDoneTime = -1; | 
|  | outDisplayPresentTime = -1; | 
|  | outDequeueReadyTime = -1; | 
|  | outReleaseTime = -1; | 
|  | } | 
|  |  | 
|  | uint64_t getNextFrameId() { | 
|  | uint64_t frameId = -1; | 
|  | int status = native_window_get_next_frame_id(mWindow.get(), &frameId); | 
|  | EXPECT_EQ(status, NO_ERROR); | 
|  | return frameId; | 
|  | } | 
|  |  | 
|  | void dequeueAndQueue(uint64_t frameIndex) { | 
|  | int fence = -1; | 
|  | ANativeWindowBuffer* buffer = nullptr; | 
|  | ASSERT_EQ(NO_ERROR, | 
|  | mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence)); | 
|  |  | 
|  | int oldAddFrameTimestampsCount = | 
|  | mFakeConsumer->mAddFrameTimestampsCount; | 
|  |  | 
|  | FrameEvents* frame = &mFrames[frameIndex]; | 
|  | uint64_t frameNumber = frameIndex + 1; | 
|  |  | 
|  | NewFrameEventsEntry fe; | 
|  | fe.frameNumber = frameNumber; | 
|  | fe.postedTime = frame->kPostedTime; | 
|  | fe.requestedPresentTime = frame->kRequestedPresentTime; | 
|  | fe.acquireFence = frame->mAcquireConsumer.mFenceTime; | 
|  | mFakeConsumer->mNewFrameEntryOverride = fe; | 
|  |  | 
|  | mSurface->mFakeFrameEventHistory->setAcquireFenceOverride( | 
|  | frame->mAcquireProducer.mFenceTime, | 
|  | frame->mAcquireConsumer.mFenceTime); | 
|  |  | 
|  | ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence)); | 
|  |  | 
|  | EXPECT_EQ(frameNumber, mFakeConsumer->mLastAddedFrameNumber); | 
|  |  | 
|  | EXPECT_EQ( | 
|  | oldAddFrameTimestampsCount + (mFrameTimestampsEnabled ? 1 : 0), | 
|  | mFakeConsumer->mAddFrameTimestampsCount); | 
|  | } | 
|  |  | 
|  | void addFrameEvents( | 
|  | bool gpuComposited, uint64_t iOldFrame, int64_t iNewFrame) { | 
|  | FrameEvents* oldFrame = | 
|  | (iOldFrame == NO_FRAME_INDEX) ? nullptr : &mFrames[iOldFrame]; | 
|  | FrameEvents* newFrame = &mFrames[iNewFrame]; | 
|  |  | 
|  | uint64_t nOldFrame = (iOldFrame == NO_FRAME_INDEX) ? 0 : iOldFrame + 1; | 
|  | uint64_t nNewFrame = iNewFrame + 1; | 
|  |  | 
|  | // Latch, Composite, and Release the frames in a plausible order. | 
|  | // Note: The timestamps won't necessarily match the order, but | 
|  | // that's okay for the purposes of this test. | 
|  | std::shared_ptr<FenceTime> gpuDoneFenceTime = FenceTime::NO_FENCE; | 
|  |  | 
|  | // Composite the previous frame one more time, which helps verify | 
|  | // LastRefresh is updated properly. | 
|  | if (oldFrame != nullptr) { | 
|  | mCfeh->addPreComposition(nOldFrame, | 
|  | oldFrame->mRefreshes[2].kStartTime); | 
|  | gpuDoneFenceTime = gpuComposited ? | 
|  | oldFrame->mRefreshes[2].mGpuCompositionDone.mFenceTime : | 
|  | FenceTime::NO_FENCE; | 
|  | mCfeh->addPostComposition(nOldFrame, gpuDoneFenceTime, | 
|  | oldFrame->mRefreshes[2].mPresent.mFenceTime, | 
|  | oldFrame->mRefreshes[2].kCompositorTiming); | 
|  | } | 
|  |  | 
|  | // Latch the new frame. | 
|  | mCfeh->addLatch(nNewFrame, newFrame->kLatchTime); | 
|  |  | 
|  | mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[0].kStartTime); | 
|  | gpuDoneFenceTime = gpuComposited ? | 
|  | newFrame->mRefreshes[0].mGpuCompositionDone.mFenceTime : | 
|  | FenceTime::NO_FENCE; | 
|  | // HWC2 releases the previous buffer after a new latch just before | 
|  | // calling postComposition. | 
|  | if (oldFrame != nullptr) { | 
|  | mCfeh->addRelease(nOldFrame, oldFrame->kDequeueReadyTime, | 
|  | std::shared_ptr<FenceTime>(oldFrame->mRelease.mFenceTime)); | 
|  | } | 
|  | mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime, | 
|  | newFrame->mRefreshes[0].mPresent.mFenceTime, | 
|  | newFrame->mRefreshes[0].kCompositorTiming); | 
|  |  | 
|  | mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[1].kStartTime); | 
|  | gpuDoneFenceTime = gpuComposited ? | 
|  | newFrame->mRefreshes[1].mGpuCompositionDone.mFenceTime : | 
|  | FenceTime::NO_FENCE; | 
|  | mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime, | 
|  | newFrame->mRefreshes[1].mPresent.mFenceTime, | 
|  | newFrame->mRefreshes[1].kCompositorTiming); | 
|  | } | 
|  |  | 
|  | sp<IGraphicBufferProducer> mProducer; | 
|  | sp<IGraphicBufferConsumer> mConsumer; | 
|  | sp<FakeConsumer> mFakeConsumer; | 
|  | ConsumerFrameEventHistory* mCfeh; | 
|  | sp<TestSurface> mSurface; | 
|  | sp<ANativeWindow> mWindow; | 
|  |  | 
|  | FenceToFenceTimeMap mFenceMap; | 
|  |  | 
|  | bool mFrameTimestampsEnabled = false; | 
|  |  | 
|  | int64_t outRequestedPresentTime = -1; | 
|  | int64_t outAcquireTime = -1; | 
|  | int64_t outLatchTime = -1; | 
|  | int64_t outFirstRefreshStartTime = -1; | 
|  | int64_t outLastRefreshStartTime = -1; | 
|  | int64_t outGpuCompositionDoneTime = -1; | 
|  | int64_t outDisplayPresentTime = -1; | 
|  | int64_t outDequeueReadyTime = -1; | 
|  | int64_t outReleaseTime = -1; | 
|  |  | 
|  | FrameEvents mFrames[3] { | 
|  | { mFenceMap, 1000 }, { mFenceMap, 2000 }, { mFenceMap, 3000 } }; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // This test verifies that the frame timestamps are not retrieved when not | 
|  | // explicitly enabled via native_window_enable_frame_timestamps. | 
|  | // We want to check this to make sure there's no overhead for users | 
|  | // that don't need the timestamp information. | 
|  | TEST_F(GetFrameTimestampsTest, DefaultDisabled) { | 
|  | int fence; | 
|  | ANativeWindowBuffer* buffer; | 
|  |  | 
|  | EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); | 
|  | EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); | 
|  |  | 
|  | const uint64_t fId = getNextFrameId(); | 
|  |  | 
|  | // Verify the producer doesn't get frame timestamps piggybacked on dequeue. | 
|  | ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence)); | 
|  | EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); | 
|  | EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); | 
|  |  | 
|  | // Verify the producer doesn't get frame timestamps piggybacked on queue. | 
|  | // It is okay that frame timestamps are added in the consumer since it is | 
|  | // still needed for SurfaceFlinger dumps. | 
|  | ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence)); | 
|  | EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount); | 
|  | EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); | 
|  |  | 
|  | // Verify attempts to get frame timestamps fail. | 
|  | int result = getAllFrameTimestamps(fId); | 
|  | EXPECT_EQ(INVALID_OPERATION, result); | 
|  | EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); | 
|  |  | 
|  | // Verify compositor timing query fails. | 
|  | nsecs_t compositeDeadline = 0; | 
|  | nsecs_t compositeInterval = 0; | 
|  | nsecs_t compositeToPresentLatency = 0; | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(INVALID_OPERATION, result); | 
|  | } | 
|  |  | 
|  | // This test verifies that the frame timestamps are retrieved if explicitly | 
|  | // enabled via native_window_enable_frame_timestamps. | 
|  | TEST_F(GetFrameTimestampsTest, EnabledSimple) { | 
|  | CompositorTiming initialCompositorTiming { | 
|  | 1000000000, // 1s deadline | 
|  | 16666667, // 16ms interval | 
|  | 50000000, // 50ms present latency | 
|  | }; | 
|  | mCfeh->initializeCompositorTiming(initialCompositorTiming); | 
|  |  | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // Verify the compositor timing query gets the initial compositor values | 
|  | // after timststamps are enabled; even before the first frame is queued | 
|  | // or dequeued. | 
|  | nsecs_t compositeDeadline = 0; | 
|  | nsecs_t compositeInterval = 0; | 
|  | nsecs_t compositeToPresentLatency = 0; | 
|  | mSurface->setNow(initialCompositorTiming.deadline - 1); | 
|  | int result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); | 
|  | EXPECT_EQ(initialCompositorTiming.interval, compositeInterval); | 
|  | EXPECT_EQ(initialCompositorTiming.presentLatency, | 
|  | compositeToPresentLatency); | 
|  |  | 
|  | int fence; | 
|  | ANativeWindowBuffer* buffer; | 
|  |  | 
|  | EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); | 
|  | EXPECT_EQ(1, mFakeConsumer->mGetFrameTimestampsCount); | 
|  |  | 
|  | const uint64_t fId1 = getNextFrameId(); | 
|  |  | 
|  | // Verify getFrameTimestamps is piggybacked on dequeue. | 
|  | ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence)); | 
|  | EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); | 
|  | EXPECT_EQ(2, mFakeConsumer->mGetFrameTimestampsCount); | 
|  |  | 
|  | NewFrameEventsEntry f1; | 
|  | f1.frameNumber = 1; | 
|  | f1.postedTime = mFrames[0].kPostedTime; | 
|  | f1.requestedPresentTime = mFrames[0].kRequestedPresentTime; | 
|  | f1.acquireFence = mFrames[0].mAcquireConsumer.mFenceTime; | 
|  | mSurface->mFakeFrameEventHistory->setAcquireFenceOverride( | 
|  | mFrames[0].mAcquireProducer.mFenceTime, | 
|  | mFrames[0].mAcquireConsumer.mFenceTime); | 
|  | mFakeConsumer->mNewFrameEntryOverride = f1; | 
|  | mFrames[0].signalQueueFences(); | 
|  |  | 
|  | // Verify getFrameTimestamps is piggybacked on queue. | 
|  | ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence)); | 
|  | EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount); | 
|  | EXPECT_EQ(1u, mFakeConsumer->mLastAddedFrameNumber); | 
|  | EXPECT_EQ(3, mFakeConsumer->mGetFrameTimestampsCount); | 
|  |  | 
|  | // Verify queries for timestamps that the producer doesn't know about | 
|  | // triggers a call to see if the consumer has any new timestamps. | 
|  | result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(4, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | } | 
|  |  | 
|  | TEST_F(GetFrameTimestampsTest, QueryPresentSupported) { | 
|  | bool displayPresentSupported = true; | 
|  | mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported); | 
|  |  | 
|  | // Verify supported bits are forwarded. | 
|  | int supportsPresent = -1; | 
|  | mWindow.get()->query(mWindow.get(), | 
|  | NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent); | 
|  | EXPECT_EQ(displayPresentSupported, supportsPresent); | 
|  | } | 
|  |  | 
|  | TEST_F(GetFrameTimestampsTest, QueryPresentNotSupported) { | 
|  | bool displayPresentSupported = false; | 
|  | mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported); | 
|  |  | 
|  | // Verify supported bits are forwarded. | 
|  | int supportsPresent = -1; | 
|  | mWindow.get()->query(mWindow.get(), | 
|  | NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent); | 
|  | EXPECT_EQ(displayPresentSupported, supportsPresent); | 
|  | } | 
|  |  | 
|  | TEST_F(GetFrameTimestampsTest, SnapToNextTickBasic) { | 
|  | nsecs_t phase = 4000; | 
|  | nsecs_t interval = 1000; | 
|  |  | 
|  | // Timestamp in previous interval. | 
|  | nsecs_t timestamp = 3500; | 
|  | EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick( | 
|  | timestamp, phase, interval)); | 
|  |  | 
|  | // Timestamp in next interval. | 
|  | timestamp = 4500; | 
|  | EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick( | 
|  | timestamp, phase, interval)); | 
|  |  | 
|  | // Timestamp multiple intervals before. | 
|  | timestamp = 2500; | 
|  | EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick( | 
|  | timestamp, phase, interval)); | 
|  |  | 
|  | // Timestamp multiple intervals after. | 
|  | timestamp = 6500; | 
|  | EXPECT_EQ(7000, ProducerFrameEventHistory::snapToNextTick( | 
|  | timestamp, phase, interval)); | 
|  |  | 
|  | // Timestamp on previous interval. | 
|  | timestamp = 3000; | 
|  | EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick( | 
|  | timestamp, phase, interval)); | 
|  |  | 
|  | // Timestamp on next interval. | 
|  | timestamp = 5000; | 
|  | EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick( | 
|  | timestamp, phase, interval)); | 
|  |  | 
|  | // Timestamp equal to phase. | 
|  | timestamp = 4000; | 
|  | EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick( | 
|  | timestamp, phase, interval)); | 
|  | } | 
|  |  | 
|  | // int(big_timestamp / interval) < 0, which can cause a crash or invalid result | 
|  | // if the number of intervals elapsed is internally stored in an int. | 
|  | TEST_F(GetFrameTimestampsTest, SnapToNextTickOverflow) { | 
|  | nsecs_t phase = 0; | 
|  | nsecs_t interval = 4000; | 
|  | nsecs_t big_timestamp = 8635916564000; | 
|  | int32_t intervals = big_timestamp / interval; | 
|  |  | 
|  | EXPECT_LT(intervals, 0); | 
|  | EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick( | 
|  | big_timestamp, phase, interval)); | 
|  | EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick( | 
|  | big_timestamp, big_timestamp, interval)); | 
|  | } | 
|  |  | 
|  | // This verifies the compositor timing is updated by refresh events | 
|  | // and piggy backed on a queue, dequeue, and enabling of timestamps.. | 
|  | TEST_F(GetFrameTimestampsTest, CompositorTimingUpdatesBasic) { | 
|  | CompositorTiming initialCompositorTiming { | 
|  | 1000000000, // 1s deadline | 
|  | 16666667, // 16ms interval | 
|  | 50000000, // 50ms present latency | 
|  | }; | 
|  | mCfeh->initializeCompositorTiming(initialCompositorTiming); | 
|  |  | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // We get the initial values before any frames are submitted. | 
|  | nsecs_t compositeDeadline = 0; | 
|  | nsecs_t compositeInterval = 0; | 
|  | nsecs_t compositeToPresentLatency = 0; | 
|  | mSurface->setNow(initialCompositorTiming.deadline - 1); | 
|  | int result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); | 
|  | EXPECT_EQ(initialCompositorTiming.interval, compositeInterval); | 
|  | EXPECT_EQ(initialCompositorTiming.presentLatency, | 
|  | compositeToPresentLatency); | 
|  |  | 
|  | dequeueAndQueue(0); | 
|  | addFrameEvents(true, NO_FRAME_INDEX, 0); | 
|  |  | 
|  | // Still get the initial values because the frame events for frame 0 | 
|  | // didn't get a chance to piggyback on a queue or dequeue yet. | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); | 
|  | EXPECT_EQ(initialCompositorTiming.interval, compositeInterval); | 
|  | EXPECT_EQ(initialCompositorTiming.presentLatency, | 
|  | compositeToPresentLatency); | 
|  |  | 
|  | dequeueAndQueue(1); | 
|  | addFrameEvents(true, 0, 1); | 
|  |  | 
|  | // Now expect the composite values associated with frame 1. | 
|  | mSurface->setNow(mFrames[0].mRefreshes[1].kCompositorTiming.deadline); | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.deadline, | 
|  | compositeDeadline); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.interval, | 
|  | compositeInterval); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.presentLatency, | 
|  | compositeToPresentLatency); | 
|  |  | 
|  | dequeueAndQueue(2); | 
|  | addFrameEvents(true, 1, 2); | 
|  |  | 
|  | // Now expect the composite values associated with frame 2. | 
|  | mSurface->setNow(mFrames[1].mRefreshes[1].kCompositorTiming.deadline); | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.deadline, | 
|  | compositeDeadline); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.interval, | 
|  | compositeInterval); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.presentLatency, | 
|  | compositeToPresentLatency); | 
|  |  | 
|  | // Re-enabling frame timestamps should get the latest values. | 
|  | disableFrameTimestamps(); | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // Now expect the composite values associated with frame 3. | 
|  | mSurface->setNow(mFrames[2].mRefreshes[1].kCompositorTiming.deadline); | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.deadline, | 
|  | compositeDeadline); | 
|  | EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.interval, | 
|  | compositeInterval); | 
|  | EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.presentLatency, | 
|  | compositeToPresentLatency); | 
|  | } | 
|  |  | 
|  | // This verifies the compositor deadline properly snaps to the the next | 
|  | // deadline based on the current time. | 
|  | TEST_F(GetFrameTimestampsTest, CompositorTimingDeadlineSnaps) { | 
|  | CompositorTiming initialCompositorTiming { | 
|  | 1000000000, // 1s deadline | 
|  | 16666667, // 16ms interval | 
|  | 50000000, // 50ms present latency | 
|  | }; | 
|  | mCfeh->initializeCompositorTiming(initialCompositorTiming); | 
|  |  | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | nsecs_t compositeDeadline = 0; | 
|  | nsecs_t compositeInterval = 0; | 
|  | nsecs_t compositeToPresentLatency = 0; | 
|  |  | 
|  | // A "now" just before the deadline snaps to the deadline. | 
|  | mSurface->setNow(initialCompositorTiming.deadline - 1); | 
|  | int result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); | 
|  | nsecs_t expectedDeadline = initialCompositorTiming.deadline; | 
|  | EXPECT_EQ(expectedDeadline, compositeDeadline); | 
|  |  | 
|  | dequeueAndQueue(0); | 
|  | addFrameEvents(true, NO_FRAME_INDEX, 0); | 
|  |  | 
|  | // A "now" just after the deadline snaps properly. | 
|  | mSurface->setNow(initialCompositorTiming.deadline + 1); | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | expectedDeadline = | 
|  | initialCompositorTiming.deadline +initialCompositorTiming.interval; | 
|  | EXPECT_EQ(expectedDeadline, compositeDeadline); | 
|  |  | 
|  | dequeueAndQueue(1); | 
|  | addFrameEvents(true, 0, 1); | 
|  |  | 
|  | // A "now" just after the next interval snaps properly. | 
|  | mSurface->setNow( | 
|  | mFrames[0].mRefreshes[1].kCompositorTiming.deadline + | 
|  | mFrames[0].mRefreshes[1].kCompositorTiming.interval + 1); | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | expectedDeadline = | 
|  | mFrames[0].mRefreshes[1].kCompositorTiming.deadline + | 
|  | mFrames[0].mRefreshes[1].kCompositorTiming.interval * 2; | 
|  | EXPECT_EQ(expectedDeadline, compositeDeadline); | 
|  |  | 
|  | dequeueAndQueue(2); | 
|  | addFrameEvents(true, 1, 2); | 
|  |  | 
|  | // A "now" over 1 interval before the deadline snaps properly. | 
|  | mSurface->setNow( | 
|  | mFrames[1].mRefreshes[1].kCompositorTiming.deadline - | 
|  | mFrames[1].mRefreshes[1].kCompositorTiming.interval - 1); | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | expectedDeadline = | 
|  | mFrames[1].mRefreshes[1].kCompositorTiming.deadline - | 
|  | mFrames[1].mRefreshes[1].kCompositorTiming.interval; | 
|  | EXPECT_EQ(expectedDeadline, compositeDeadline); | 
|  |  | 
|  | // Re-enabling frame timestamps should get the latest values. | 
|  | disableFrameTimestamps(); | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // A "now" over 2 intervals before the deadline snaps properly. | 
|  | mSurface->setNow( | 
|  | mFrames[2].mRefreshes[1].kCompositorTiming.deadline - | 
|  | mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2 - 1); | 
|  | result = native_window_get_compositor_timing(mWindow.get(), | 
|  | &compositeDeadline, &compositeInterval, &compositeToPresentLatency); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | expectedDeadline = | 
|  | mFrames[2].mRefreshes[1].kCompositorTiming.deadline - | 
|  | mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2; | 
|  | EXPECT_EQ(expectedDeadline, compositeDeadline); | 
|  | } | 
|  |  | 
|  | // This verifies the timestamps recorded in the consumer's | 
|  | // FrameTimestampsHistory are properly retrieved by the producer for the | 
|  | // correct frames. | 
|  | TEST_F(GetFrameTimestampsTest, TimestampsAssociatedWithCorrectFrame) { | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | const uint64_t fId1 = getNextFrameId(); | 
|  | dequeueAndQueue(0); | 
|  | mFrames[0].signalQueueFences(); | 
|  |  | 
|  | const uint64_t fId2 = getNextFrameId(); | 
|  | dequeueAndQueue(1); | 
|  | mFrames[1].signalQueueFences(); | 
|  |  | 
|  | addFrameEvents(true, NO_FRAME_INDEX, 0); | 
|  | mFrames[0].signalRefreshFences(); | 
|  | addFrameEvents(true, 0, 1); | 
|  | mFrames[0].signalReleaseFences(); | 
|  | mFrames[1].signalRefreshFences(); | 
|  |  | 
|  | // Verify timestamps are correct for frame 1. | 
|  | resetTimestamps(); | 
|  | int result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime, | 
|  | outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); | 
|  | EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime); | 
|  |  | 
|  | // Verify timestamps are correct for frame 2. | 
|  | resetTimestamps(); | 
|  | result = getAllFrameTimestamps(fId2); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[0].kGpuCompositionDoneTime, | 
|  | outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); | 
|  | } | 
|  |  | 
|  | // This test verifies the acquire fence recorded by the consumer is not sent | 
|  | // back to the producer and the producer saves its own fence. | 
|  | TEST_F(GetFrameTimestampsTest, QueueTimestampsNoSync) { | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // Dequeue and queue frame 1. | 
|  | const uint64_t fId1 = getNextFrameId(); | 
|  | dequeueAndQueue(0); | 
|  |  | 
|  | // Verify queue-related timestamps for f1 are available immediately in the | 
|  | // producer without asking the consumer again, even before signaling the | 
|  | // acquire fence. | 
|  | resetTimestamps(); | 
|  | int oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | int result = native_window_get_frame_timestamps(mWindow.get(), fId1, | 
|  | &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, | 
|  | nullptr, nullptr, nullptr, nullptr, nullptr); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime); | 
|  |  | 
|  | // Signal acquire fences. Verify a sync call still isn't necessary. | 
|  | mFrames[0].signalQueueFences(); | 
|  |  | 
|  | oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | result = native_window_get_frame_timestamps(mWindow.get(), fId1, | 
|  | &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, | 
|  | nullptr, nullptr, nullptr, nullptr, nullptr); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  |  | 
|  | // Dequeue and queue frame 2. | 
|  | const uint64_t fId2 = getNextFrameId(); | 
|  | dequeueAndQueue(1); | 
|  |  | 
|  | // Verify queue-related timestamps for f2 are available immediately in the | 
|  | // producer without asking the consumer again, even before signaling the | 
|  | // acquire fence. | 
|  | resetTimestamps(); | 
|  | oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | result = native_window_get_frame_timestamps(mWindow.get(), fId2, | 
|  | &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, | 
|  | nullptr, nullptr, nullptr, nullptr, nullptr); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime); | 
|  |  | 
|  | // Signal acquire fences. Verify a sync call still isn't necessary. | 
|  | mFrames[1].signalQueueFences(); | 
|  |  | 
|  | oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | result = native_window_get_frame_timestamps(mWindow.get(), fId2, | 
|  | &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, | 
|  | nullptr, nullptr, nullptr, nullptr, nullptr); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime); | 
|  | } | 
|  |  | 
|  | TEST_F(GetFrameTimestampsTest, ZeroRequestedTimestampsNoSync) { | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // Dequeue and queue frame 1. | 
|  | dequeueAndQueue(0); | 
|  | mFrames[0].signalQueueFences(); | 
|  |  | 
|  | // Dequeue and queue frame 2. | 
|  | const uint64_t fId2 = getNextFrameId(); | 
|  | dequeueAndQueue(1); | 
|  | mFrames[1].signalQueueFences(); | 
|  |  | 
|  | addFrameEvents(true, NO_FRAME_INDEX, 0); | 
|  | mFrames[0].signalRefreshFences(); | 
|  | addFrameEvents(true, 0, 1); | 
|  | mFrames[0].signalReleaseFences(); | 
|  | mFrames[1].signalRefreshFences(); | 
|  |  | 
|  | // Verify a request for no timestamps doesn't result in a sync call. | 
|  | int oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | int result = native_window_get_frame_timestamps(mWindow.get(), fId2, | 
|  | nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, | 
|  | nullptr, nullptr); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | } | 
|  |  | 
|  | // This test verifies that fences can signal and update timestamps producer | 
|  | // side without an additional sync call to the consumer. | 
|  | TEST_F(GetFrameTimestampsTest, FencesInProducerNoSync) { | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // Dequeue and queue frame 1. | 
|  | const uint64_t fId1 = getNextFrameId(); | 
|  | dequeueAndQueue(0); | 
|  | mFrames[0].signalQueueFences(); | 
|  |  | 
|  | // Dequeue and queue frame 2. | 
|  | dequeueAndQueue(1); | 
|  | mFrames[1].signalQueueFences(); | 
|  |  | 
|  | addFrameEvents(true, NO_FRAME_INDEX, 0); | 
|  | addFrameEvents(true, 0, 1); | 
|  |  | 
|  | // Verify available timestamps are correct for frame 1, before any | 
|  | // fence has been signaled. | 
|  | // Note: A sync call is necessary here since the events triggered by | 
|  | // addFrameEvents didn't get to piggyback on the earlier queues/dequeues. | 
|  | resetTimestamps(); | 
|  | int oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | int result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); | 
|  |  | 
|  | // Verify available timestamps are correct for frame 1 again, before any | 
|  | // fence has been signaled. | 
|  | // This time a sync call should not be necessary. | 
|  | resetTimestamps(); | 
|  | oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); | 
|  |  | 
|  | // Signal the fences for frame 1. | 
|  | mFrames[0].signalRefreshFences(); | 
|  | mFrames[0].signalReleaseFences(); | 
|  |  | 
|  | // Verify all timestamps are available without a sync call. | 
|  | resetTimestamps(); | 
|  | oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime, | 
|  | outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); | 
|  | EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime); | 
|  | } | 
|  |  | 
|  | // This test verifies that if the frame wasn't GPU composited but has a refresh | 
|  | // event a sync call isn't made to get the GPU composite done time since it will | 
|  | // never exist. | 
|  | TEST_F(GetFrameTimestampsTest, NoGpuNoSync) { | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // Dequeue and queue frame 1. | 
|  | const uint64_t fId1 = getNextFrameId(); | 
|  | dequeueAndQueue(0); | 
|  | mFrames[0].signalQueueFences(); | 
|  |  | 
|  | // Dequeue and queue frame 2. | 
|  | dequeueAndQueue(1); | 
|  | mFrames[1].signalQueueFences(); | 
|  |  | 
|  | addFrameEvents(false, NO_FRAME_INDEX, 0); | 
|  | addFrameEvents(false, 0, 1); | 
|  |  | 
|  | // Verify available timestamps are correct for frame 1, before any | 
|  | // fence has been signaled. | 
|  | // Note: A sync call is necessary here since the events triggered by | 
|  | // addFrameEvents didn't get to piggyback on the earlier queues/dequeues. | 
|  | resetTimestamps(); | 
|  | int oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | int result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); | 
|  |  | 
|  | // Signal the fences for frame 1. | 
|  | mFrames[0].signalRefreshFences(); | 
|  | mFrames[0].signalReleaseFences(); | 
|  |  | 
|  | // Verify all timestamps, except GPU composition, are available without a | 
|  | // sync call. | 
|  | resetTimestamps(); | 
|  | oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); | 
|  | EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime); | 
|  | } | 
|  |  | 
|  | // This test verifies that if the certain timestamps can't possibly exist for | 
|  | // the most recent frame, then a sync call is not done. | 
|  | TEST_F(GetFrameTimestampsTest, NoReleaseNoSync) { | 
|  | enableFrameTimestamps(); | 
|  |  | 
|  | // Dequeue and queue frame 1. | 
|  | const uint64_t fId1 = getNextFrameId(); | 
|  | dequeueAndQueue(0); | 
|  | mFrames[0].signalQueueFences(); | 
|  |  | 
|  | // Dequeue and queue frame 2. | 
|  | const uint64_t fId2 = getNextFrameId(); | 
|  | dequeueAndQueue(1); | 
|  | mFrames[1].signalQueueFences(); | 
|  |  | 
|  | addFrameEvents(false, NO_FRAME_INDEX, 0); | 
|  | addFrameEvents(false, 0, 1); | 
|  |  | 
|  | // Verify available timestamps are correct for frame 1, before any | 
|  | // fence has been signaled. | 
|  | // Note: A sync call is necessary here since the events triggered by | 
|  | // addFrameEvents didn't get to piggyback on the earlier queues/dequeues. | 
|  | resetTimestamps(); | 
|  | int oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | int result = getAllFrameTimestamps(fId1); | 
|  | EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); | 
|  | EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); | 
|  |  | 
|  | mFrames[0].signalRefreshFences(); | 
|  | mFrames[0].signalReleaseFences(); | 
|  | mFrames[1].signalRefreshFences(); | 
|  |  | 
|  | // Verify querying for all timestmaps of f2 does not do a sync call. Even | 
|  | // though the lastRefresh, dequeueReady, and release times aren't | 
|  | // available, a sync call should not occur because it's not possible for f2 | 
|  | // to encounter the final value for those events until another frame is | 
|  | // queued. | 
|  | resetTimestamps(); | 
|  | oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | result = getAllFrameTimestamps(fId2); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(NO_ERROR, result); | 
|  | EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); | 
|  | EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime); | 
|  | EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); | 
|  | EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime); | 
|  | EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); | 
|  | } | 
|  |  | 
|  | // This test verifies there are no sync calls for present times | 
|  | // when they aren't supported and that an error is returned. | 
|  |  | 
|  | TEST_F(GetFrameTimestampsTest, PresentUnsupportedNoSync) { | 
|  | enableFrameTimestamps(); | 
|  | mSurface->mFakeSurfaceComposer->setSupportsPresent(false); | 
|  |  | 
|  | // Dequeue and queue frame 1. | 
|  | const uint64_t fId1 = getNextFrameId(); | 
|  | dequeueAndQueue(0); | 
|  |  | 
|  | // Verify a query for the Present times do not trigger a sync call if they | 
|  | // are not supported. | 
|  | resetTimestamps(); | 
|  | int oldCount = mFakeConsumer->mGetFrameTimestampsCount; | 
|  | int result = native_window_get_frame_timestamps(mWindow.get(), fId1, | 
|  | nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, | 
|  | &outDisplayPresentTime, nullptr, nullptr); | 
|  | EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); | 
|  | EXPECT_EQ(BAD_VALUE, result); | 
|  | EXPECT_EQ(-1, outDisplayPresentTime); | 
|  | } | 
|  |  | 
|  | } // namespace android |