blob: 0cedfc8138804435964b21504b1f0d01db84c395 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferStateLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "BufferStateLayer.h"
#include <limits>
#include <FrameTimeline/FrameTimeline.h>
#include <compositionengine/CompositionEngine.h>
#include <gui/BufferQueue.h>
#include <private/gui/SyncFeatures.h>
#include <renderengine/Image.h>
#include "TunnelModeEnabledReporter.h"
#include <gui/TraceUtils.h>
#include "EffectLayer.h"
#include "FrameTracer/FrameTracer.h"
#include "TimeStats/TimeStats.h"
#define EARLY_RELEASE_ENABLED false
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/GLConsumer.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <renderengine/RenderEngine.h>
#include <ui/DebugUtils.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <cmath>
#include <cstdlib>
#include <mutex>
#include <sstream>
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "FrameTracer/FrameTracer.h"
#include "TimeStats/TimeStats.h"
namespace android {
using PresentState = frametimeline::SurfaceFrame::PresentState;
using gui::WindowInfo;
namespace {
static constexpr float defaultMaxLuminance = 1000.0;
constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
bool assignTransform(ui::Transform* dst, ui::Transform& from) {
if (*dst == from) {
return false;
}
*dst = from;
return true;
}
TimeStats::SetFrameRateVote frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate) {
using FrameRateCompatibility = TimeStats::SetFrameRateVote::FrameRateCompatibility;
using Seamlessness = TimeStats::SetFrameRateVote::Seamlessness;
const auto frameRateCompatibility = [frameRate] {
switch (frameRate.type) {
case Layer::FrameRateCompatibility::Default:
return FrameRateCompatibility::Default;
case Layer::FrameRateCompatibility::ExactOrMultiple:
return FrameRateCompatibility::ExactOrMultiple;
default:
return FrameRateCompatibility::Undefined;
}
}();
const auto seamlessness = [frameRate] {
switch (frameRate.seamlessness) {
case scheduler::Seamlessness::OnlySeamless:
return Seamlessness::ShouldBeSeamless;
case scheduler::Seamlessness::SeamedAndSeamless:
return Seamlessness::NotRequired;
default:
return Seamlessness::Undefined;
}
}();
return TimeStats::SetFrameRateVote{.frameRate = frameRate.rate.getValue(),
.frameRateCompatibility = frameRateCompatibility,
.seamlessness = seamlessness};
}
} // namespace
BufferStateLayer::BufferStateLayer(const LayerCreationArgs& args)
: Layer(args),
mTextureName(args.textureName),
mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()},
mHwcSlotGenerator(sp<HwcSlotGenerator>::make()) {
ALOGV("Creating Layer %s", getDebugName());
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
mDrawingState.dataspace = ui::Dataspace::V0_SRGB;
}
BufferStateLayer::~BufferStateLayer() {
// The original layer and the clone layer share the same texture and buffer. Therefore, only
// one of the layers, in this case the original layer, needs to handle the deletion. The
// original layer and the clone should be removed at the same time so there shouldn't be any
// issue with the clone layer trying to use the texture.
if (mBufferInfo.mBuffer != nullptr) {
callReleaseBufferCallback(mDrawingState.releaseBufferListener,
mBufferInfo.mBuffer->getBuffer(), mBufferInfo.mFrameNumber,
mBufferInfo.mFence,
mFlinger->getMaxAcquiredBufferCountForCurrentRefreshRate(
mOwnerUid));
}
if (!isClone()) {
// The original layer and the clone layer share the same texture. Therefore, only one of
// the layers, in this case the original layer, needs to handle the deletion. The original
// layer and the clone should be removed at the same time so there shouldn't be any issue
// with the clone layer trying to use the deleted texture.
mFlinger->deleteTextureAsync(mTextureName);
}
const int32_t layerId = getSequence();
mFlinger->mTimeStats->onDestroy(layerId);
mFlinger->mFrameTracer->onDestroy(layerId);
}
void BufferStateLayer::callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
const sp<GraphicBuffer>& buffer,
uint64_t framenumber,
const sp<Fence>& releaseFence,
uint32_t currentMaxAcquiredBufferCount) {
if (!listener) {
return;
}
ATRACE_FORMAT_INSTANT("callReleaseBufferCallback %s - %" PRIu64, getDebugName(), framenumber);
listener->onReleaseBuffer({buffer->getId(), framenumber},
releaseFence ? releaseFence : Fence::NO_FENCE,
currentMaxAcquiredBufferCount);
}
// -----------------------------------------------------------------------
// Interface implementation for Layer
// -----------------------------------------------------------------------
void BufferStateLayer::onLayerDisplayed(ftl::SharedFuture<FenceResult> futureFenceResult) {
// If we are displayed on multiple displays in a single composition cycle then we would
// need to do careful tracking to enable the use of the mLastClientCompositionFence.
// For example we can only use it if all the displays are client comp, and we need
// to merge all the client comp fences. We could do this, but for now we just
// disable the optimization when a layer is composed on multiple displays.
if (mClearClientCompositionFenceOnLayerDisplayed) {
mLastClientCompositionFence = nullptr;
} else {
mClearClientCompositionFenceOnLayerDisplayed = true;
}
// The previous release fence notifies the client that SurfaceFlinger is done with the previous
// buffer that was presented on this layer. The first transaction that came in this frame that
// replaced the previous buffer on this layer needs this release fence, because the fence will
// let the client know when that previous buffer is removed from the screen.
//
// Every other transaction on this layer does not need a release fence because no other
// Transactions that were set on this layer this frame are going to have their preceeding buffer
// removed from the display this frame.
//
// For example, if we have 3 transactions this frame. The first transaction doesn't contain a
// buffer so it doesn't need a previous release fence because the layer still needs the previous
// buffer. The second transaction contains a buffer so it needs a previous release fence because
// the previous buffer will be released this frame. The third transaction also contains a
// buffer. It replaces the buffer in the second transaction. The buffer in the second
// transaction will now no longer be presented so it is released immediately and the third
// transaction doesn't need a previous release fence.
sp<CallbackHandle> ch;
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->releasePreviousBuffer &&
mDrawingState.releaseBufferEndpoint == handle->listener) {
ch = handle;
break;
}
}
// Prevent tracing the same release multiple times.
if (mPreviousFrameNumber != mPreviousReleasedFrameNumber) {
mPreviousReleasedFrameNumber = mPreviousFrameNumber;
}
if (ch != nullptr) {
ch->previousReleaseCallbackId = mPreviousReleaseCallbackId;
ch->previousReleaseFences.emplace_back(std::move(futureFenceResult));
ch->name = mName;
}
}
void BufferStateLayer::onSurfaceFrameCreated(
const std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame) {
while (mPendingJankClassifications.size() >= kPendingClassificationMaxSurfaceFrames) {
// Too many SurfaceFrames pending classification. The front of the deque is probably not
// tracked by FrameTimeline and will never be presented. This will only result in a memory
// leak.
ALOGW("Removing the front of pending jank deque from layer - %s to prevent memory leak",
mName.c_str());
std::string miniDump = mPendingJankClassifications.front()->miniDump();
ALOGD("Head SurfaceFrame mini dump\n%s", miniDump.c_str());
mPendingJankClassifications.pop_front();
}
mPendingJankClassifications.emplace_back(surfaceFrame);
}
void BufferStateLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
for (const auto& handle : mDrawingState.callbackHandles) {
handle->transformHint = mTransformHint;
handle->dequeueReadyTime = dequeueReadyTime;
handle->currentMaxAcquiredBufferCount =
mFlinger->getMaxAcquiredBufferCountForCurrentRefreshRate(mOwnerUid);
ATRACE_FORMAT_INSTANT("releasePendingBuffer %s - %" PRIu64, getDebugName(),
handle->previousReleaseCallbackId.framenumber);
}
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->releasePreviousBuffer &&
mDrawingState.releaseBufferEndpoint == handle->listener) {
handle->previousReleaseCallbackId = mPreviousReleaseCallbackId;
break;
}
}
std::vector<JankData> jankData;
jankData.reserve(mPendingJankClassifications.size());
while (!mPendingJankClassifications.empty()
&& mPendingJankClassifications.front()->getJankType()) {
std::shared_ptr<frametimeline::SurfaceFrame> surfaceFrame =
mPendingJankClassifications.front();
mPendingJankClassifications.pop_front();
jankData.emplace_back(
JankData(surfaceFrame->getToken(), surfaceFrame->getJankType().value()));
}
mFlinger->getTransactionCallbackInvoker().addCallbackHandles(
mDrawingState.callbackHandles, jankData);
sp<Fence> releaseFence = Fence::NO_FENCE;
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->releasePreviousBuffer &&
mDrawingState.releaseBufferEndpoint == handle->listener) {
releaseFence =
handle->previousReleaseFence ? handle->previousReleaseFence : Fence::NO_FENCE;
break;
}
}
mDrawingState.callbackHandles = {};
}
bool BufferStateLayer::willPresentCurrentTransaction() const {
// Returns true if the most recent Transaction applied to CurrentState will be presented.
return (getSidebandStreamChanged() || getAutoRefresh() ||
(mDrawingState.modified &&
(mDrawingState.buffer != nullptr || mDrawingState.bgColorLayer != nullptr)));
}
Rect BufferStateLayer::getCrop(const Layer::State& s) const {
return s.crop;
}
bool BufferStateLayer::setTransform(uint32_t transform) {
if (mDrawingState.bufferTransform == transform) return false;
mDrawingState.bufferTransform = transform;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setTransformToDisplayInverse(bool transformToDisplayInverse) {
if (mDrawingState.transformToDisplayInverse == transformToDisplayInverse) return false;
mDrawingState.sequence++;
mDrawingState.transformToDisplayInverse = transformToDisplayInverse;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setCrop(const Rect& crop) {
if (mDrawingState.crop == crop) return false;
mDrawingState.sequence++;
mDrawingState.crop = crop;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setBufferCrop(const Rect& bufferCrop) {
if (mDrawingState.bufferCrop == bufferCrop) return false;
mDrawingState.sequence++;
mDrawingState.bufferCrop = bufferCrop;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setDestinationFrame(const Rect& destinationFrame) {
if (mDrawingState.destinationFrame == destinationFrame) return false;
mDrawingState.sequence++;
mDrawingState.destinationFrame = destinationFrame;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
// Translate destination frame into scale and position. If a destination frame is not set, use the
// provided scale and position
bool BufferStateLayer::updateGeometry() {
if ((mDrawingState.flags & layer_state_t::eIgnoreDestinationFrame) ||
mDrawingState.destinationFrame.isEmpty()) {
// If destination frame is not set, use the requested transform set via
// BufferStateLayer::setPosition and BufferStateLayer::setMatrix.
return assignTransform(&mDrawingState.transform, mRequestedTransform);
}
Rect destRect = mDrawingState.destinationFrame;
int32_t destW = destRect.width();
int32_t destH = destRect.height();
if (destRect.left < 0) {
destRect.left = 0;
destRect.right = destW;
}
if (destRect.top < 0) {
destRect.top = 0;
destRect.bottom = destH;
}
if (!mDrawingState.buffer) {
ui::Transform t;
t.set(destRect.left, destRect.top);
return assignTransform(&mDrawingState.transform, t);
}
uint32_t bufferWidth = mDrawingState.buffer->getWidth();
uint32_t bufferHeight = mDrawingState.buffer->getHeight();
// Undo any transformations on the buffer.
if (mDrawingState.bufferTransform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
if (mDrawingState.transformToDisplayInverse) {
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
}
float sx = destW / static_cast<float>(bufferWidth);
float sy = destH / static_cast<float>(bufferHeight);
ui::Transform t;
t.set(sx, 0, 0, sy);
t.set(destRect.left, destRect.top);
return assignTransform(&mDrawingState.transform, t);
}
bool BufferStateLayer::setMatrix(const layer_state_t::matrix22_t& matrix) {
if (mRequestedTransform.dsdx() == matrix.dsdx && mRequestedTransform.dtdy() == matrix.dtdy &&
mRequestedTransform.dtdx() == matrix.dtdx && mRequestedTransform.dsdy() == matrix.dsdy) {
return false;
}
ui::Transform t;
t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
mRequestedTransform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setPosition(float x, float y) {
if (mRequestedTransform.tx() == x && mRequestedTransform.ty() == y) {
return false;
}
mRequestedTransform.set(x, y);
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setBuffer(std::shared_ptr<renderengine::ExternalTexture>& buffer,
const BufferData& bufferData, nsecs_t postTime,
nsecs_t desiredPresentTime, bool isAutoTimestamp,
std::optional<nsecs_t> dequeueTime,
const FrameTimelineInfo& info) {
ATRACE_CALL();
if (!buffer) {
return false;
}
const bool frameNumberChanged =
bufferData.flags.test(BufferData::BufferDataChange::frameNumberChanged);
const uint64_t frameNumber =
frameNumberChanged ? bufferData.frameNumber : mDrawingState.frameNumber + 1;
if (mDrawingState.buffer) {
mReleasePreviousBuffer = true;
if (!mBufferInfo.mBuffer ||
(!mDrawingState.buffer->hasSameBuffer(*mBufferInfo.mBuffer) ||
mDrawingState.frameNumber != mBufferInfo.mFrameNumber)) {
// If mDrawingState has a buffer, and we are about to update again
// before swapping to drawing state, then the first buffer will be
// dropped and we should decrement the pending buffer count and
// call any release buffer callbacks if set.
callReleaseBufferCallback(mDrawingState.releaseBufferListener,
mDrawingState.buffer->getBuffer(), mDrawingState.frameNumber,
mDrawingState.acquireFence,
mFlinger->getMaxAcquiredBufferCountForCurrentRefreshRate(
mOwnerUid));
decrementPendingBufferCount();
if (mDrawingState.bufferSurfaceFrameTX != nullptr &&
mDrawingState.bufferSurfaceFrameTX->getPresentState() != PresentState::Presented) {
addSurfaceFrameDroppedForBuffer(mDrawingState.bufferSurfaceFrameTX);
mDrawingState.bufferSurfaceFrameTX.reset();
}
} else if (EARLY_RELEASE_ENABLED && mLastClientCompositionFence != nullptr) {
callReleaseBufferCallback(mDrawingState.releaseBufferListener,
mDrawingState.buffer->getBuffer(), mDrawingState.frameNumber,
mLastClientCompositionFence,
mFlinger->getMaxAcquiredBufferCountForCurrentRefreshRate(
mOwnerUid));
mLastClientCompositionFence = nullptr;
}
}
mDrawingState.frameNumber = frameNumber;
mDrawingState.releaseBufferListener = bufferData.releaseBufferListener;
mDrawingState.buffer = std::move(buffer);
mDrawingState.clientCacheId = bufferData.cachedBuffer;
mDrawingState.acquireFence = bufferData.flags.test(BufferData::BufferDataChange::fenceChanged)
? bufferData.acquireFence
: Fence::NO_FENCE;
mDrawingState.acquireFenceTime = std::make_unique<FenceTime>(mDrawingState.acquireFence);
if (mDrawingState.acquireFenceTime->getSignalTime() == Fence::SIGNAL_TIME_PENDING) {
// We latched this buffer unsiganled, so we need to pass the acquire fence
// on the callback instead of just the acquire time, since it's unknown at
// this point.
mCallbackHandleAcquireTimeOrFence = mDrawingState.acquireFence;
} else {
mCallbackHandleAcquireTimeOrFence = mDrawingState.acquireFenceTime->getSignalTime();
}
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
const int32_t layerId = getSequence();
mFlinger->mTimeStats->setPostTime(layerId, mDrawingState.frameNumber, getName().c_str(),
mOwnerUid, postTime, getGameMode());
mDrawingState.desiredPresentTime = desiredPresentTime;
mDrawingState.isAutoTimestamp = isAutoTimestamp;
const nsecs_t presentTime = [&] {
if (!isAutoTimestamp) return desiredPresentTime;
const auto prediction =
mFlinger->mFrameTimeline->getTokenManager()->getPredictionsForToken(info.vsyncId);
if (prediction.has_value()) return prediction->presentTime;
return static_cast<nsecs_t>(0);
}();
using LayerUpdateType = scheduler::LayerHistory::LayerUpdateType;
mFlinger->mScheduler->recordLayerHistory(this, presentTime, LayerUpdateType::Buffer);
setFrameTimelineVsyncForBufferTransaction(info, postTime);
if (dequeueTime && *dequeueTime != 0) {
const uint64_t bufferId = mDrawingState.buffer->getId();
mFlinger->mFrameTracer->traceNewLayer(layerId, getName().c_str());
mFlinger->mFrameTracer->traceTimestamp(layerId, bufferId, frameNumber, *dequeueTime,
FrameTracer::FrameEvent::DEQUEUE);
mFlinger->mFrameTracer->traceTimestamp(layerId, bufferId, frameNumber, postTime,
FrameTracer::FrameEvent::QUEUE);
}
mDrawingState.releaseBufferEndpoint = bufferData.releaseBufferEndpoint;
return true;
}
bool BufferStateLayer::setDataspace(ui::Dataspace dataspace) {
if (mDrawingState.dataspace == dataspace) return false;
mDrawingState.dataspace = dataspace;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setHdrMetadata(const HdrMetadata& hdrMetadata) {
if (mDrawingState.hdrMetadata == hdrMetadata) return false;
mDrawingState.hdrMetadata = hdrMetadata;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setSurfaceDamageRegion(const Region& surfaceDamage) {
mDrawingState.surfaceDamageRegion = surfaceDamage;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setApi(int32_t api) {
if (mDrawingState.api == api) return false;
mDrawingState.api = api;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setSidebandStream(const sp<NativeHandle>& sidebandStream) {
if (mDrawingState.sidebandStream == sidebandStream) return false;
if (mDrawingState.sidebandStream != nullptr && sidebandStream == nullptr) {
mFlinger->mTunnelModeEnabledReporter->decrementTunnelModeCount();
} else if (sidebandStream != nullptr) {
mFlinger->mTunnelModeEnabledReporter->incrementTunnelModeCount();
}
mDrawingState.sidebandStream = sidebandStream;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
if (!mSidebandStreamChanged.exchange(true)) {
// mSidebandStreamChanged was false
mFlinger->onLayerUpdate();
}
return true;
}
bool BufferStateLayer::setTransactionCompletedListeners(
const std::vector<sp<CallbackHandle>>& handles) {
// If there is no handle, we will not send a callback so reset mReleasePreviousBuffer and return
if (handles.empty()) {
mReleasePreviousBuffer = false;
return false;
}
const bool willPresent = willPresentCurrentTransaction();
for (const auto& handle : handles) {
// If this transaction set a buffer on this layer, release its previous buffer
handle->releasePreviousBuffer = mReleasePreviousBuffer;
// If this layer will be presented in this frame
if (willPresent) {
// If this transaction set an acquire fence on this layer, set its acquire time
handle->acquireTimeOrFence = mCallbackHandleAcquireTimeOrFence;
handle->frameNumber = mDrawingState.frameNumber;
// Store so latched time and release fence can be set
mDrawingState.callbackHandles.push_back(handle);
} else { // If this layer will NOT need to be relatched and presented this frame
// Notify the transaction completed thread this handle is done
mFlinger->getTransactionCallbackInvoker().registerUnpresentedCallbackHandle(handle);
}
}
mReleasePreviousBuffer = false;
mCallbackHandleAcquireTimeOrFence = -1;
return willPresent;
}
Rect BufferStateLayer::getBufferSize(const State& /*s*/) const {
// for buffer state layers we use the display frame size as the buffer size.
if (mBufferInfo.mBuffer == nullptr) {
return Rect::INVALID_RECT;
}
uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
// Undo any transformations on the buffer and return the result.
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return Rect(0, 0, static_cast<int32_t>(bufWidth), static_cast<int32_t>(bufHeight));
}
FloatRect BufferStateLayer::computeSourceBounds(const FloatRect& parentBounds) const {
if (mBufferInfo.mBuffer == nullptr) {
return parentBounds;
}
return getBufferSize(getDrawingState()).toFloatRect();
}
// -----------------------------------------------------------------------
bool BufferStateLayer::fenceHasSignaled() const {
if (SurfaceFlinger::enableLatchUnsignaledConfig != LatchUnsignaledConfig::Disabled) {
return true;
}
const bool fenceSignaled =
getDrawingState().acquireFence->getStatus() == Fence::Status::Signaled;
if (!fenceSignaled) {
mFlinger->mTimeStats->incrementLatchSkipped(getSequence(),
TimeStats::LatchSkipReason::LateAcquire);
}
return fenceSignaled;
}
bool BufferStateLayer::onPreComposition(nsecs_t refreshStartTime) {
for (const auto& handle : mDrawingState.callbackHandles) {
handle->refreshStartTime = refreshStartTime;
}
return hasReadyFrame();
}
void BufferStateLayer::setAutoRefresh(bool autoRefresh) {
mDrawingState.autoRefresh = autoRefresh;
}
bool BufferStateLayer::latchSidebandStream(bool& recomputeVisibleRegions) {
// We need to update the sideband stream if the layer has both a buffer and a sideband stream.
editCompositionState()->sidebandStreamHasFrame = hasFrameUpdate() && mSidebandStream.get();
if (mSidebandStreamChanged.exchange(false)) {
const State& s(getDrawingState());
// mSidebandStreamChanged was true
mSidebandStream = s.sidebandStream;
editCompositionState()->sidebandStream = mSidebandStream;
if (mSidebandStream != nullptr) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
recomputeVisibleRegions = true;
return true;
}
return false;
}
bool BufferStateLayer::hasFrameUpdate() const {
const State& c(getDrawingState());
return (mDrawingStateModified || mDrawingState.modified) && (c.buffer != nullptr || c.bgColorLayer != nullptr);
}
void BufferStateLayer::updateTexImage(nsecs_t latchTime) {
const State& s(getDrawingState());
if (!s.buffer) {
if (s.bgColorLayer) {
for (auto& handle : mDrawingState.callbackHandles) {
handle->latchTime = latchTime;
}
}
return;
}
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->frameNumber == mDrawingState.frameNumber) {
handle->latchTime = latchTime;
}
}
const int32_t layerId = getSequence();
const uint64_t bufferId = mDrawingState.buffer->getId();
const uint64_t frameNumber = mDrawingState.frameNumber;
const auto acquireFence = std::make_shared<FenceTime>(mDrawingState.acquireFence);
mFlinger->mTimeStats->setAcquireFence(layerId, frameNumber, acquireFence);
mFlinger->mTimeStats->setLatchTime(layerId, frameNumber, latchTime);
mFlinger->mFrameTracer->traceFence(layerId, bufferId, frameNumber, acquireFence,
FrameTracer::FrameEvent::ACQUIRE_FENCE);
mFlinger->mFrameTracer->traceTimestamp(layerId, bufferId, frameNumber, latchTime,
FrameTracer::FrameEvent::LATCH);
auto& bufferSurfaceFrame = mDrawingState.bufferSurfaceFrameTX;
if (bufferSurfaceFrame != nullptr &&
bufferSurfaceFrame->getPresentState() != PresentState::Presented) {
// Update only if the bufferSurfaceFrame wasn't already presented. A Presented
// bufferSurfaceFrame could be seen here if a pending state was applied successfully and we
// are processing the next state.
addSurfaceFramePresentedForBuffer(bufferSurfaceFrame,
mDrawingState.acquireFenceTime->getSignalTime(),
latchTime);
mDrawingState.bufferSurfaceFrameTX.reset();
}
std::deque<sp<CallbackHandle>> remainingHandles;
mFlinger->getTransactionCallbackInvoker()
.addOnCommitCallbackHandles(mDrawingState.callbackHandles, remainingHandles);
mDrawingState.callbackHandles = remainingHandles;
mDrawingStateModified = false;
}
void BufferStateLayer::gatherBufferInfo() {
if (!mBufferInfo.mBuffer || !mDrawingState.buffer->hasSameBuffer(*mBufferInfo.mBuffer)) {
decrementPendingBufferCount();
}
mPreviousReleaseCallbackId = {getCurrentBufferId(), mBufferInfo.mFrameNumber};
mBufferInfo.mBuffer = mDrawingState.buffer;
mBufferInfo.mFence = mDrawingState.acquireFence;
mBufferInfo.mFrameNumber = mDrawingState.frameNumber;
mBufferInfo.mPixelFormat =
!mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->getPixelFormat();
mBufferInfo.mFrameLatencyNeeded = true;
mBufferInfo.mDesiredPresentTime = mDrawingState.desiredPresentTime;
mBufferInfo.mFenceTime = std::make_shared<FenceTime>(mDrawingState.acquireFence);
mBufferInfo.mFence = mDrawingState.acquireFence;
mBufferInfo.mTransform = mDrawingState.bufferTransform;
auto lastDataspace = mBufferInfo.mDataspace;
mBufferInfo.mDataspace = translateDataspace(mDrawingState.dataspace);
if (lastDataspace != mBufferInfo.mDataspace) {
mFlinger->mSomeDataspaceChanged = true;
}
mBufferInfo.mCrop = computeBufferCrop(mDrawingState);
mBufferInfo.mScaleMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW;
mBufferInfo.mSurfaceDamage = mDrawingState.surfaceDamageRegion;
mBufferInfo.mHdrMetadata = mDrawingState.hdrMetadata;
mBufferInfo.mApi = mDrawingState.api;
mBufferInfo.mTransformToDisplayInverse = mDrawingState.transformToDisplayInverse;
mBufferInfo.mBufferSlot = mHwcSlotGenerator->getHwcCacheSlot(mDrawingState.clientCacheId);
}
Rect BufferStateLayer::computeBufferCrop(const State& s) {
if (s.buffer && !s.bufferCrop.isEmpty()) {
Rect bufferCrop;
s.buffer->getBounds().intersect(s.bufferCrop, &bufferCrop);
return bufferCrop;
} else if (s.buffer) {
return s.buffer->getBounds();
} else {
return s.bufferCrop;
}
}
sp<Layer> BufferStateLayer::createClone() {
LayerCreationArgs args(mFlinger.get(), nullptr, mName + " (Mirror)", 0, LayerMetadata());
args.textureName = mTextureName;
sp<BufferStateLayer> layer = mFlinger->getFactory().createBufferStateLayer(args);
layer->mHwcSlotGenerator = mHwcSlotGenerator;
layer->setInitialValuesForClone(sp<Layer>::fromExisting(this));
return layer;
}
bool BufferStateLayer::bufferNeedsFiltering() const {
const State& s(getDrawingState());
if (!s.buffer) {
return false;
}
int32_t bufferWidth = static_cast<int32_t>(s.buffer->getWidth());
int32_t bufferHeight = static_cast<int32_t>(s.buffer->getHeight());
// Undo any transformations on the buffer and return the result.
if (s.bufferTransform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
if (s.transformToDisplayInverse) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
}
const Rect layerSize{getBounds()};
int32_t layerWidth = layerSize.getWidth();
int32_t layerHeight = layerSize.getHeight();
// Align the layer orientation with the buffer before comparism
if (mTransformHint & ui::Transform::ROT_90) {
std::swap(layerWidth, layerHeight);
}
return layerWidth != bufferWidth || layerHeight != bufferHeight;
}
void BufferStateLayer::decrementPendingBufferCount() {
int32_t pendingBuffers = --mPendingBufferTransactions;
tracePendingBufferCount(pendingBuffers);
}
void BufferStateLayer::tracePendingBufferCount(int32_t pendingBuffers) {
ATRACE_INT(mBlastTransactionName.c_str(), pendingBuffers);
}
/*
* We don't want to send the layer's transform to input, but rather the
* parent's transform. This is because BufferStateLayer's transform is
* information about how the buffer is placed on screen. The parent's
* transform makes more sense to send since it's information about how the
* layer is placed on screen. This transform is used by input to determine
* how to go from screen space back to window space.
*/
ui::Transform BufferStateLayer::getInputTransform() const {
sp<Layer> parent = mDrawingParent.promote();
if (parent == nullptr) {
return ui::Transform();
}
return parent->getTransform();
}
/**
* Similar to getInputTransform, we need to update the bounds to include the transform.
* This is because bounds for BSL doesn't include buffer transform, where the input assumes
* that's already included.
*/
Rect BufferStateLayer::getInputBounds() const {
Rect bufferBounds = getCroppedBufferSize(getDrawingState());
if (mDrawingState.transform.getType() == ui::Transform::IDENTITY || !bufferBounds.isValid()) {
return bufferBounds;
}
return mDrawingState.transform.transform(bufferBounds);
}
bool BufferStateLayer::simpleBufferUpdate(const layer_state_t& s) const {
const uint64_t requiredFlags = layer_state_t::eBufferChanged;
const uint64_t deniedFlags = layer_state_t::eProducerDisconnect | layer_state_t::eLayerChanged |
layer_state_t::eRelativeLayerChanged | layer_state_t::eTransparentRegionChanged |
layer_state_t::eFlagsChanged | layer_state_t::eBlurRegionsChanged |
layer_state_t::eLayerStackChanged | layer_state_t::eAutoRefreshChanged |
layer_state_t::eReparent;
const uint64_t allowedFlags = layer_state_t::eHasListenerCallbacksChanged |
layer_state_t::eFrameRateSelectionPriority | layer_state_t::eFrameRateChanged |
layer_state_t::eSurfaceDamageRegionChanged | layer_state_t::eApiChanged |
layer_state_t::eMetadataChanged | layer_state_t::eDropInputModeChanged |
layer_state_t::eInputInfoChanged;
if ((s.what & requiredFlags) != requiredFlags) {
ALOGV("%s: false [missing required flags 0x%" PRIx64 "]", __func__,
(s.what | requiredFlags) & ~s.what);
return false;
}
if (s.what & deniedFlags) {
ALOGV("%s: false [has denied flags 0x%" PRIx64 "]", __func__, s.what & deniedFlags);
return false;
}
if (s.what & allowedFlags) {
ALOGV("%s: [has allowed flags 0x%" PRIx64 "]", __func__, s.what & allowedFlags);
}
if (s.what & layer_state_t::ePositionChanged) {
if (mRequestedTransform.tx() != s.x || mRequestedTransform.ty() != s.y) {
ALOGV("%s: false [ePositionChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eAlphaChanged) {
if (mDrawingState.color.a != s.alpha) {
ALOGV("%s: false [eAlphaChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eColorTransformChanged) {
if (mDrawingState.colorTransform != s.colorTransform) {
ALOGV("%s: false [eColorTransformChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eBackgroundColorChanged) {
if (mDrawingState.bgColorLayer || s.bgColorAlpha != 0) {
ALOGV("%s: false [eBackgroundColorChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eMatrixChanged) {
if (mRequestedTransform.dsdx() != s.matrix.dsdx ||
mRequestedTransform.dtdy() != s.matrix.dtdy ||
mRequestedTransform.dtdx() != s.matrix.dtdx ||
mRequestedTransform.dsdy() != s.matrix.dsdy) {
ALOGV("%s: false [eMatrixChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eCornerRadiusChanged) {
if (mDrawingState.cornerRadius != s.cornerRadius) {
ALOGV("%s: false [eCornerRadiusChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eBackgroundBlurRadiusChanged) {
if (mDrawingState.backgroundBlurRadius != static_cast<int>(s.backgroundBlurRadius)) {
ALOGV("%s: false [eBackgroundBlurRadiusChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eTransformChanged) {
if (mDrawingState.bufferTransform != s.transform) {
ALOGV("%s: false [eTransformChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eTransformToDisplayInverseChanged) {
if (mDrawingState.transformToDisplayInverse != s.transformToDisplayInverse) {
ALOGV("%s: false [eTransformToDisplayInverseChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eCropChanged) {
if (mDrawingState.crop != s.crop) {
ALOGV("%s: false [eCropChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eDataspaceChanged) {
if (mDrawingState.dataspace != s.dataspace) {
ALOGV("%s: false [eDataspaceChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eHdrMetadataChanged) {
if (mDrawingState.hdrMetadata != s.hdrMetadata) {
ALOGV("%s: false [eHdrMetadataChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eSidebandStreamChanged) {
if (mDrawingState.sidebandStream != s.sidebandStream) {
ALOGV("%s: false [eSidebandStreamChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eColorSpaceAgnosticChanged) {
if (mDrawingState.colorSpaceAgnostic != s.colorSpaceAgnostic) {
ALOGV("%s: false [eColorSpaceAgnosticChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eShadowRadiusChanged) {
if (mDrawingState.shadowRadius != s.shadowRadius) {
ALOGV("%s: false [eShadowRadiusChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eFixedTransformHintChanged) {
if (mDrawingState.fixedTransformHint != s.fixedTransformHint) {
ALOGV("%s: false [eFixedTransformHintChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eTrustedOverlayChanged) {
if (mDrawingState.isTrustedOverlay != s.isTrustedOverlay) {
ALOGV("%s: false [eTrustedOverlayChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eStretchChanged) {
StretchEffect temp = s.stretchEffect;
temp.sanitize();
if (mDrawingState.stretchEffect != temp) {
ALOGV("%s: false [eStretchChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eBufferCropChanged) {
if (mDrawingState.bufferCrop != s.bufferCrop) {
ALOGV("%s: false [eBufferCropChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eDestinationFrameChanged) {
if (mDrawingState.destinationFrame != s.destinationFrame) {
ALOGV("%s: false [eDestinationFrameChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eDimmingEnabledChanged) {
if (mDrawingState.dimmingEnabled != s.dimmingEnabled) {
ALOGV("%s: false [eDimmingEnabledChanged changed]", __func__);
return false;
}
}
ALOGV("%s: true", __func__);
return true;
}
void BufferStateLayer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
}
}
void BufferStateLayer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
bool BufferStateLayer::isOpaque(const Layer::State& s) const {
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
}
bool BufferStateLayer::canReceiveInput() const {
return !isHiddenByPolicy() && (mBufferInfo.mBuffer == nullptr || getAlpha() > 0.0f);
}
bool BufferStateLayer::isVisible() const {
return !isHiddenByPolicy() && getAlpha() > 0.0f &&
(mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
}
std::optional<compositionengine::LayerFE::LayerSettings> BufferStateLayer::prepareClientComposition(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) const {
std::optional<compositionengine::LayerFE::LayerSettings> layerSettings =
prepareClientCompositionInternal(targetSettings);
// Nothing to render.
if (!layerSettings) {
return {};
}
// HWC requests to clear this layer.
if (targetSettings.clearContent) {
prepareClearClientComposition(*layerSettings, false /* blackout */);
return *layerSettings;
}
// set the shadow for the layer if needed
prepareShadowClientComposition(*layerSettings, targetSettings.viewport);
return *layerSettings;
}
std::optional<compositionengine::LayerFE::LayerSettings>
BufferStateLayer::prepareClientCompositionInternal(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) const {
ATRACE_CALL();
std::optional<compositionengine::LayerFE::LayerSettings> result =
Layer::prepareClientComposition(targetSettings);
if (!result) {
return result;
}
if (CC_UNLIKELY(mBufferInfo.mBuffer == 0) && mSidebandStream != nullptr) {
// For surfaceview of tv sideband, there is no activeBuffer
// in bufferqueue, we need return LayerSettings.
return result;
}
const bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
((isSecure() || isProtected()) && !targetSettings.isSecure);
const bool bufferCanBeUsedAsHwTexture =
mBufferInfo.mBuffer->getUsage() & GraphicBuffer::USAGE_HW_TEXTURE;
compositionengine::LayerFE::LayerSettings& layer = *result;
if (blackOutLayer || !bufferCanBeUsedAsHwTexture) {
ALOGE_IF(!bufferCanBeUsedAsHwTexture, "%s is blacked out as buffer is not gpu readable",
mName.c_str());
prepareClearClientComposition(layer, true /* blackout */);
return layer;
}
const State& s(getDrawingState());
layer.source.buffer.buffer = mBufferInfo.mBuffer;
layer.source.buffer.isOpaque = isOpaque(s);
layer.source.buffer.fence = mBufferInfo.mFence;
layer.source.buffer.textureName = mTextureName;
layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
layer.source.buffer.isY410BT2020 = isHdrY410();
bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
float maxLuminance = 0.f;
if (hasSmpte2086 && hasCta861_3) {
maxLuminance = std::min(mBufferInfo.mHdrMetadata.smpte2086.maxLuminance,
mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel);
} else if (hasSmpte2086) {
maxLuminance = mBufferInfo.mHdrMetadata.smpte2086.maxLuminance;
} else if (hasCta861_3) {
maxLuminance = mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel;
} else {
switch (layer.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) {
case HAL_DATASPACE_TRANSFER_ST2084:
case HAL_DATASPACE_TRANSFER_HLG:
// Behavior-match previous releases for HDR content
maxLuminance = defaultMaxLuminance;
break;
}
}
layer.source.buffer.maxLuminanceNits = maxLuminance;
layer.frameNumber = mCurrentFrameNumber;
layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getId() : 0;
const bool useFiltering =
targetSettings.needsFiltering || mNeedsFiltering || bufferNeedsFiltering();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
getDrawingTransformMatrix(useFiltering, textureMatrix);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
const auto parentTransform = p->getTransform();
tr = tr * inverseOrientation(parentTransform.getOrientation());
}
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
const Rect win{getBounds()};
float bufferWidth = getBufferSize(s).getWidth();
float bufferHeight = getBufferSize(s).getHeight();
// BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
// been set and there is no parent layer bounds. In that case, the scale is meaningless so
// ignore them.
if (!getBufferSize(s).isValid()) {
bufferWidth = float(win.right) - float(win.left);
bufferHeight = float(win.bottom) - float(win.top);
}
const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
const float translateY = float(win.top) / bufferHeight;
const float translateX = float(win.left) / bufferWidth;
// Flip y-coordinates because GLConsumer expects OpenGL convention.
mat4 tr = mat4::translate(vec4(.5f, .5f, 0.f, 1.f)) * mat4::scale(vec4(1.f, -1.f, 1.f, 1.f)) *
mat4::translate(vec4(-.5f, -.5f, 0.f, 1.f)) *
mat4::translate(vec4(translateX, translateY, 0.f, 1.f)) *
mat4::scale(vec4(scaleWidth, scaleHeight, 1.0f, 1.0f));
layer.source.buffer.useTextureFiltering = useFiltering;
layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
return layer;
}
bool BufferStateLayer::isHdrY410() const {
// pixel format is HDR Y410 masquerading as RGBA_1010102
return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102);
}
sp<compositionengine::LayerFE> BufferStateLayer::getCompositionEngineLayerFE() const {
return asLayerFE();
}
compositionengine::LayerFECompositionState* BufferStateLayer::editCompositionState() {
return mCompositionState.get();
}
const compositionengine::LayerFECompositionState* BufferStateLayer::getCompositionState() const {
return mCompositionState.get();
}
void BufferStateLayer::preparePerFrameCompositionState() {
Layer::preparePerFrameCompositionState();
// Sideband layers
auto* compositionState = editCompositionState();
if (compositionState->sidebandStream.get() && !compositionState->sidebandStreamHasFrame) {
compositionState->compositionType =
aidl::android::hardware::graphics::composer3::Composition::SIDEBAND;
return;
} else if ((mDrawingState.flags & layer_state_t::eLayerIsDisplayDecoration) != 0) {
compositionState->compositionType =
aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION;
} else {
// Normal buffer layers
compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
compositionState->compositionType = mPotentialCursor
? aidl::android::hardware::graphics::composer3::Composition::CURSOR
: aidl::android::hardware::graphics::composer3::Composition::DEVICE;
}
compositionState->buffer = getBuffer();
compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT)
? 0
: mBufferInfo.mBufferSlot;
compositionState->acquireFence = mBufferInfo.mFence;
compositionState->frameNumber = mBufferInfo.mFrameNumber;
compositionState->sidebandStreamHasFrame = false;
}
void BufferStateLayer::onPostComposition(const DisplayDevice* display,
const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mBufferInfo.mFrameLatencyNeeded) return;
for (const auto& handle : mDrawingState.callbackHandles) {
handle->gpuCompositionDoneFence = glDoneFence;
handle->compositorTiming = compositorTiming;
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
const int32_t layerId = getSequence();
mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
const auto outputLayer = findOutputLayerForDisplay(display);
if (outputLayer && outputLayer->requiresClientComposition()) {
nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
clientCompositionTimestamp,
FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
// Update the SurfaceFrames in the drawing state
if (mDrawingState.bufferSurfaceFrameTX) {
mDrawingState.bufferSurfaceFrameTX->setGpuComposition();
}
for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
surfaceFrame->setGpuComposition();
}
}
std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
if (display) {
const Fps refreshRate = display->refreshRateConfigs().getActiveMode()->getFps();
const std::optional<Fps> renderRate =
mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
const auto vote = frameRateToSetFrameRateVotePayload(mDrawingState.frameRate);
const auto gameMode = getGameMode();
if (presentFence->isValid()) {
mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence,
refreshRate, renderRate, vote, gameMode);
mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
presentFence,
FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
} else if (const auto displayId = PhysicalDisplayId::tryCast(display->getId());
displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t actualPresentTime = display->getRefreshTimestamp();
mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime,
refreshRate, renderRate, vote, gameMode);
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(),
mCurrentFrameNumber, actualPresentTime,
FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentTime(actualPresentTime);
}
}
mFrameTracker.advanceFrame();
mBufferInfo.mFrameLatencyNeeded = false;
}
bool BufferStateLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
ATRACE_FORMAT_INSTANT("latchBuffer %s - %" PRIu64, getDebugName(),
getDrawingState().frameNumber);
bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
if (refreshRequired) {
return refreshRequired;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!fenceHasSignaled()) {
ATRACE_NAME("!fenceHasSignaled()");
mFlinger->onLayerUpdate();
return false;
}
updateTexImage(latchTime);
if (mDrawingState.buffer == nullptr) {
return false;
}
// Capture the old state of the layer for comparisons later
BufferInfo oldBufferInfo = mBufferInfo;
const bool oldOpacity = isOpaque(mDrawingState);
mPreviousFrameNumber = mCurrentFrameNumber;
mCurrentFrameNumber = mDrawingState.frameNumber;
gatherBufferInfo();
if (oldBufferInfo.mBuffer == nullptr) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
(mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
(mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
(mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
recomputeVisibleRegions = true;
}
if (oldBufferInfo.mBuffer != nullptr) {
uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
if (bufWidth != oldBufferInfo.mBuffer->getWidth() ||
bufHeight != oldBufferInfo.mBuffer->getHeight()) {
recomputeVisibleRegions = true;
}
}
if (oldOpacity != isOpaque(mDrawingState)) {
recomputeVisibleRegions = true;
}
return true;
}
bool BufferStateLayer::hasReadyFrame() const {
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
}
bool BufferStateLayer::isProtected() const {
return (mBufferInfo.mBuffer != nullptr) &&
(mBufferInfo.mBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool BufferStateLayer::getOpacityForFormat(PixelFormat format) {
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
switch (format) {
case PIXEL_FORMAT_RGBA_8888:
case PIXEL_FORMAT_BGRA_8888:
case PIXEL_FORMAT_RGBA_FP16:
case PIXEL_FORMAT_RGBA_1010102:
case PIXEL_FORMAT_R_8:
return false;
}
// in all other case, we have no blending (also for unknown formats)
return true;
}
bool BufferStateLayer::needsFiltering(const DisplayDevice* display) const {
const auto outputLayer = findOutputLayerForDisplay(display);
if (outputLayer == nullptr) {
return false;
}
// We need filtering if the sourceCrop rectangle size does not match the
// displayframe rectangle size (not a 1:1 render)
const auto& compositionState = outputLayer->getState();
const auto displayFrame = compositionState.displayFrame;
const auto sourceCrop = compositionState.sourceCrop;
return sourceCrop.getHeight() != displayFrame.getHeight() ||
sourceCrop.getWidth() != displayFrame.getWidth();
}
bool BufferStateLayer::needsFilteringForScreenshots(
const DisplayDevice* display, const ui::Transform& inverseParentTransform) const {
const auto outputLayer = findOutputLayerForDisplay(display);
if (outputLayer == nullptr) {
return false;
}
// We need filtering if the sourceCrop rectangle size does not match the
// viewport rectangle size (not a 1:1 render)
const auto& compositionState = outputLayer->getState();
const ui::Transform& displayTransform = display->getTransform();
const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse();
// Undo the transformation of the displayFrame so that we're back into
// layer-stack space.
const Rect frame = inverseTransform.transform(compositionState.displayFrame);
const FloatRect sourceCrop = compositionState.sourceCrop;
int32_t frameHeight = frame.getHeight();
int32_t frameWidth = frame.getWidth();
// If the display transform had a rotational component then undo the
// rotation so that the orientation matches the source crop.
if (displayTransform.getOrientation() & ui::Transform::ROT_90) {
std::swap(frameHeight, frameWidth);
}
return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth;
}
void BufferStateLayer::latchAndReleaseBuffer() {
if (hasReadyFrame()) {
bool ignored = false;
latchBuffer(ignored, systemTime());
}
releasePendingBuffer(systemTime());
}
PixelFormat BufferStateLayer::getPixelFormat() const {
return mBufferInfo.mPixelFormat;
}
bool BufferStateLayer::getTransformToDisplayInverse() const {
return mBufferInfo.mTransformToDisplayInverse;
}
Rect BufferStateLayer::getBufferCrop() const {
// this is the crop rectangle that applies to the buffer
// itself (as opposed to the window)
if (!mBufferInfo.mCrop.isEmpty()) {
// if the buffer crop is defined, we use that
return mBufferInfo.mCrop;
} else if (mBufferInfo.mBuffer != nullptr) {
// otherwise we use the whole buffer
return mBufferInfo.mBuffer->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
return Rect();
}
}
uint32_t BufferStateLayer::getBufferTransform() const {
return mBufferInfo.mTransform;
}
ui::Dataspace BufferStateLayer::getDataSpace() const {
return mBufferInfo.mDataspace;
}
ui::Dataspace BufferStateLayer::translateDataspace(ui::Dataspace dataspace) {
ui::Dataspace updatedDataspace = dataspace;
// translate legacy dataspaces to modern dataspaces
switch (dataspace) {
case ui::Dataspace::SRGB:
updatedDataspace = ui::Dataspace::V0_SRGB;
break;
case ui::Dataspace::SRGB_LINEAR:
updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
break;
case ui::Dataspace::JFIF:
updatedDataspace = ui::Dataspace::V0_JFIF;
break;
case ui::Dataspace::BT601_625:
updatedDataspace = ui::Dataspace::V0_BT601_625;
break;
case ui::Dataspace::BT601_525:
updatedDataspace = ui::Dataspace::V0_BT601_525;
break;
case ui::Dataspace::BT709:
updatedDataspace = ui::Dataspace::V0_BT709;
break;
default:
break;
}
return updatedDataspace;
}
sp<GraphicBuffer> BufferStateLayer::getBuffer() const {
return mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer() : nullptr;
}
void BufferStateLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) const {
sp<GraphicBuffer> buffer = getBuffer();
if (!buffer) {
ALOGE("Buffer should not be null!");
return;
}
GLConsumer::computeTransformMatrix(outMatrix, buffer->getWidth(), buffer->getHeight(),
buffer->getPixelFormat(), mBufferInfo.mCrop,
mBufferInfo.mTransform, filteringEnabled);
}
void BufferStateLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
Layer::setInitialValuesForClone(clonedFrom);
sp<BufferStateLayer> bufferClonedFrom =
sp<BufferStateLayer>::fromExisting(static_cast<BufferStateLayer*>(clonedFrom.get()));
mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
mPotentialCursor = bufferClonedFrom->mPotentialCursor;
mProtectedByApp = bufferClonedFrom->mProtectedByApp;
updateCloneBufferInfo();
}
void BufferStateLayer::updateCloneBufferInfo() {
if (!isClone() || !isClonedFromAlive()) {
return;
}
sp<BufferStateLayer> clonedFrom = sp<BufferStateLayer>::fromExisting(
static_cast<BufferStateLayer*>(getClonedFrom().get()));
mBufferInfo = clonedFrom->mBufferInfo;
mSidebandStream = clonedFrom->mSidebandStream;
surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
// After buffer info is updated, the drawingState from the real layer needs to be copied into
// the cloned. This is because some properties of drawingState can change when latchBuffer is
// called. However, copying the drawingState would also overwrite the cloned layer's relatives
// and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
// the cloned drawingState again.
wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
WindowInfo tmpInputInfo = mDrawingState.inputInfo;
cloneDrawingState(clonedFrom.get());
mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
mDrawingState.zOrderRelatives = tmpZOrderRelatives;
mDrawingState.inputInfo = tmpInputInfo;
}
void BufferStateLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) {
mTransformHint = getFixedTransformHint();
if (mTransformHint == ui::Transform::ROT_INVALID) {
mTransformHint = displayTransformHint;
}
}
const std::shared_ptr<renderengine::ExternalTexture>& BufferStateLayer::getExternalTexture() const {
return mBufferInfo.mBuffer;
}
} // namespace android