Merge Android R (rvc-dev-plus-aosp-without-vendor@6692709)

Bug: 166295507
Merged-In: I70ea776b8589ac3a7982c710c5c8b2941d86e55b
Change-Id: Ic1d535e9d2d6f80d95215240dbdb024995b045f8
diff --git a/services/surfaceflinger/CompositionEngine/src/Output.cpp b/services/surfaceflinger/CompositionEngine/src/Output.cpp
index 01b5781..34dc536 100644
--- a/services/surfaceflinger/CompositionEngine/src/Output.cpp
+++ b/services/surfaceflinger/CompositionEngine/src/Output.cpp
@@ -14,14 +14,35 @@
  * limitations under the License.
  */
 
+#include <thread>
+
 #include <android-base/stringprintf.h>
 #include <compositionengine/CompositionEngine.h>
+#include <compositionengine/CompositionRefreshArgs.h>
 #include <compositionengine/DisplayColorProfile.h>
 #include <compositionengine/LayerFE.h>
+#include <compositionengine/LayerFECompositionState.h>
 #include <compositionengine/RenderSurface.h>
 #include <compositionengine/impl/Output.h>
+#include <compositionengine/impl/OutputCompositionState.h>
 #include <compositionengine/impl/OutputLayer.h>
+#include <compositionengine/impl/OutputLayerCompositionState.h>
+
+// TODO(b/129481165): remove the #pragma below and fix conversion issues
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wconversion"
+
+#include <renderengine/DisplaySettings.h>
+#include <renderengine/RenderEngine.h>
+
+// TODO(b/129481165): remove the #pragma below and fix conversion issues
+#pragma clang diagnostic pop // ignored "-Wconversion"
+
 #include <ui/DebugUtils.h>
+#include <ui/HdrCapabilities.h>
+#include <utils/Trace.h>
+
+#include "TracedOrdinal.h"
 
 namespace android::compositionengine {
 
@@ -29,20 +50,43 @@
 
 namespace impl {
 
-Output::Output(const CompositionEngine& compositionEngine)
-      : mCompositionEngine(compositionEngine) {}
+namespace {
+
+template <typename T>
+class Reversed {
+public:
+    explicit Reversed(const T& container) : mContainer(container) {}
+    auto begin() { return mContainer.rbegin(); }
+    auto end() { return mContainer.rend(); }
+
+private:
+    const T& mContainer;
+};
+
+// Helper for enumerating over a container in reverse order
+template <typename T>
+Reversed<T> reversed(const T& c) {
+    return Reversed<T>(c);
+}
+
+} // namespace
+
+std::shared_ptr<Output> createOutput(
+        const compositionengine::CompositionEngine& compositionEngine) {
+    return createOutputTemplated<Output>(compositionEngine);
+}
 
 Output::~Output() = default;
 
-const CompositionEngine& Output::getCompositionEngine() const {
-    return mCompositionEngine;
-}
-
 bool Output::isValid() const {
     return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
             mRenderSurface->isValid();
 }
 
+std::optional<DisplayId> Output::getDisplayId() const {
+    return {};
+}
+
 const std::string& Output::getName() const {
     return mName;
 }
@@ -52,73 +96,81 @@
 }
 
 void Output::setCompositionEnabled(bool enabled) {
-    if (mState.isEnabled == enabled) {
+    auto& outputState = editState();
+    if (outputState.isEnabled == enabled) {
         return;
     }
 
-    mState.isEnabled = enabled;
+    outputState.isEnabled = enabled;
     dirtyEntireOutput();
 }
 
-void Output::setProjection(const ui::Transform& transform, int32_t orientation, const Rect& frame,
-                           const Rect& viewport, const Rect& scissor, bool needsFiltering) {
-    mState.transform = transform;
-    mState.orientation = orientation;
-    mState.scissor = scissor;
-    mState.frame = frame;
-    mState.viewport = viewport;
-    mState.needsFiltering = needsFiltering;
+void Output::setProjection(const ui::Transform& transform, uint32_t orientation, const Rect& frame,
+                           const Rect& viewport, const Rect& sourceClip,
+                           const Rect& destinationClip, bool needsFiltering) {
+    auto& outputState = editState();
+    outputState.transform = transform;
+    outputState.orientation = orientation;
+    outputState.sourceClip = sourceClip;
+    outputState.destinationClip = destinationClip;
+    outputState.frame = frame;
+    outputState.viewport = viewport;
+    outputState.needsFiltering = needsFiltering;
 
     dirtyEntireOutput();
 }
 
-// TODO(lpique): Rename setSize() once more is moved.
+// TODO(b/121291683): Rename setSize() once more is moved.
 void Output::setBounds(const ui::Size& size) {
     mRenderSurface->setDisplaySize(size);
-    // TODO(lpique): Rename mState.size once more is moved.
-    mState.bounds = Rect(mRenderSurface->getSize());
+    // TODO(b/121291683): Rename outputState.size once more is moved.
+    editState().bounds = Rect(mRenderSurface->getSize());
 
     dirtyEntireOutput();
 }
 
 void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) {
-    mState.layerStackId = layerStackId;
-    mState.layerStackInternal = isInternal;
+    auto& outputState = editState();
+    outputState.layerStackId = layerStackId;
+    outputState.layerStackInternal = isInternal;
 
     dirtyEntireOutput();
 }
 
-void Output::setColorTransform(const mat4& transform) {
-    if (mState.colorTransformMat == transform) {
+void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
+    auto& colorTransformMatrix = editState().colorTransformMatrix;
+    if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
         return;
     }
 
-    const bool isIdentity = (transform == mat4());
-    const auto newColorTransform =
-            isIdentity ? HAL_COLOR_TRANSFORM_IDENTITY : HAL_COLOR_TRANSFORM_ARBITRARY_MATRIX;
-
-    mState.colorTransform = newColorTransform;
-    mState.colorTransformMat = transform;
+    colorTransformMatrix = *args.colorTransformMatrix;
 
     dirtyEntireOutput();
 }
 
-void Output::setColorMode(ui::ColorMode mode, ui::Dataspace dataspace,
-                          ui::RenderIntent renderIntent) {
-    if (mState.colorMode == mode && mState.dataspace == dataspace &&
-        mState.renderIntent == renderIntent) {
+void Output::setColorProfile(const ColorProfile& colorProfile) {
+    ui::Dataspace targetDataspace =
+            getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
+                                                         colorProfile.colorSpaceAgnosticDataspace);
+
+    auto& outputState = editState();
+    if (outputState.colorMode == colorProfile.mode &&
+        outputState.dataspace == colorProfile.dataspace &&
+        outputState.renderIntent == colorProfile.renderIntent &&
+        outputState.targetDataspace == targetDataspace) {
         return;
     }
 
-    mState.colorMode = mode;
-    mState.dataspace = dataspace;
-    mState.renderIntent = renderIntent;
+    outputState.colorMode = colorProfile.mode;
+    outputState.dataspace = colorProfile.dataspace;
+    outputState.renderIntent = colorProfile.renderIntent;
+    outputState.targetDataspace = targetDataspace;
 
-    mRenderSurface->setBufferDataspace(dataspace);
+    mRenderSurface->setBufferDataspace(colorProfile.dataspace);
 
     ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
-          decodeColorMode(mode).c_str(), mode, decodeRenderIntent(renderIntent).c_str(),
-          renderIntent);
+          decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
+          decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
 
     dirtyEntireOutput();
 }
@@ -134,7 +186,7 @@
 }
 
 void Output::dumpBase(std::string& out) const {
-    mState.dump(out);
+    dumpState(out);
 
     if (mDisplayColorProfile) {
         mDisplayColorProfile->dump(out);
@@ -148,8 +200,8 @@
         out.append("    No render surface!\n");
     }
 
-    android::base::StringAppendF(&out, "\n   %zu Layers\b", mOutputLayersOrderedByZ.size());
-    for (const auto& outputLayer : mOutputLayersOrderedByZ) {
+    android::base::StringAppendF(&out, "\n   %zu Layers\n", getOutputLayerCount());
+    for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
         if (!outputLayer) {
             continue;
         }
@@ -165,6 +217,10 @@
     mDisplayColorProfile = std::move(mode);
 }
 
+const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
+    return mReleasedLayers;
+}
+
 void Output::setDisplayColorProfileForTest(
         std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
     mDisplayColorProfile = std::move(mode);
@@ -176,68 +232,888 @@
 
 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
     mRenderSurface = std::move(surface);
-    mState.bounds = Rect(mRenderSurface->getSize());
+    editState().bounds = Rect(mRenderSurface->getSize());
 
     dirtyEntireOutput();
 }
 
+void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
+    if (cacheSize == 0) {
+        mClientCompositionRequestCache.reset();
+    } else {
+        mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
+    }
+};
+
 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
     mRenderSurface = std::move(surface);
 }
 
-const OutputCompositionState& Output::getState() const {
-    return mState;
-}
-
-OutputCompositionState& Output::editState() {
-    return mState;
-}
-
 Region Output::getDirtyRegion(bool repaintEverything) const {
-    Region dirty(mState.viewport);
+    const auto& outputState = getState();
+    Region dirty(outputState.viewport);
     if (!repaintEverything) {
-        dirty.andSelf(mState.dirtyRegion);
+        dirty.andSelf(outputState.dirtyRegion);
     }
     return dirty;
 }
 
-bool Output::belongsInOutput(uint32_t layerStackId, bool internalOnly) const {
+bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const {
     // The layerStackId's must match, and also the layer must not be internal
     // only when not on an internal output.
-    return (layerStackId == mState.layerStackId) && (!internalOnly || mState.layerStackInternal);
+    const auto& outputState = getState();
+    return layerStackId && (*layerStackId == outputState.layerStackId) &&
+            (!internalOnly || outputState.layerStackInternal);
 }
 
-compositionengine::OutputLayer* Output::getOutputLayerForLayer(
-        compositionengine::Layer* layer) const {
-    for (const auto& outputLayer : mOutputLayersOrderedByZ) {
-        if (outputLayer && &outputLayer->getLayer() == layer) {
-            return outputLayer.get();
+bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const {
+    const auto* layerFEState = layerFE->getCompositionState();
+    return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly);
+}
+
+std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
+        const sp<LayerFE>& layerFE) const {
+    return impl::createOutputLayer(*this, layerFE);
+}
+
+compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
+    auto index = findCurrentOutputLayerForLayer(layerFE);
+    return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
+}
+
+std::optional<size_t> Output::findCurrentOutputLayerForLayer(
+        const sp<compositionengine::LayerFE>& layer) const {
+    for (size_t i = 0; i < getOutputLayerCount(); i++) {
+        auto outputLayer = getOutputLayerOrderedByZByIndex(i);
+        if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
+            return i;
         }
     }
-    return nullptr;
+    return std::nullopt;
 }
 
-std::unique_ptr<compositionengine::OutputLayer> Output::getOrCreateOutputLayer(
-        std::optional<DisplayId> displayId, std::shared_ptr<compositionengine::Layer> layer,
-        sp<compositionengine::LayerFE> layerFE) {
-    for (auto& outputLayer : mOutputLayersOrderedByZ) {
-        if (outputLayer && &outputLayer->getLayer() == layer.get()) {
-            return std::move(outputLayer);
+void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
+    mReleasedLayers = std::move(layers);
+}
+
+void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
+                     LayerFESet& geomSnapshots) {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    rebuildLayerStacks(refreshArgs, geomSnapshots);
+}
+
+void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    updateColorProfile(refreshArgs);
+    updateAndWriteCompositionState(refreshArgs);
+    setColorTransform(refreshArgs);
+    beginFrame();
+    prepareFrame();
+    devOptRepaintFlash(refreshArgs);
+    finishFrame(refreshArgs);
+    postFramebuffer();
+}
+
+void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
+                                LayerFESet& layerFESet) {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    auto& outputState = editState();
+
+    // Do nothing if this output is not enabled or there is no need to perform this update
+    if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
+        return;
+    }
+
+    // Process the layers to determine visibility and coverage
+    compositionengine::Output::CoverageState coverage{layerFESet};
+    collectVisibleLayers(refreshArgs, coverage);
+
+    // Compute the resulting coverage for this output, and store it for later
+    const ui::Transform& tr = outputState.transform;
+    Region undefinedRegion{outputState.bounds};
+    undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
+
+    outputState.undefinedRegion = undefinedRegion;
+    outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
+}
+
+void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
+                                  compositionengine::Output::CoverageState& coverage) {
+    // Evaluate the layers from front to back to determine what is visible. This
+    // also incrementally calculates the coverage information for each layer as
+    // well as the entire output.
+    for (auto layer : reversed(refreshArgs.layers)) {
+        // Incrementally process the coverage for each layer
+        ensureOutputLayerIfVisible(layer, coverage);
+
+        // TODO(b/121291683): Stop early if the output is completely covered and
+        // no more layers could even be visible underneath the ones on top.
+    }
+
+    setReleasedLayers(refreshArgs);
+
+    finalizePendingOutputLayers();
+
+    // Generate a simple Z-order values to each visible output layer
+    uint32_t zOrder = 0;
+    for (auto* outputLayer : getOutputLayersOrderedByZ()) {
+        outputLayer->editState().z = zOrder++;
+    }
+}
+
+void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
+                                        compositionengine::Output::CoverageState& coverage) {
+    // Ensure we have a snapshot of the basic geometry layer state. Limit the
+    // snapshots to once per frame for each candidate layer, as layers may
+    // appear on multiple outputs.
+    if (!coverage.latchedLayers.count(layerFE)) {
+        coverage.latchedLayers.insert(layerFE);
+        layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
+    }
+
+    // Only consider the layers on the given layer stack
+    if (!belongsInOutput(layerFE)) {
+        return;
+    }
+
+    // Obtain a read-only pointer to the front-end layer state
+    const auto* layerFEState = layerFE->getCompositionState();
+    if (CC_UNLIKELY(!layerFEState)) {
+        return;
+    }
+
+    // handle hidden surfaces by setting the visible region to empty
+    if (CC_UNLIKELY(!layerFEState->isVisible)) {
+        return;
+    }
+
+    /*
+     * opaqueRegion: area of a surface that is fully opaque.
+     */
+    Region opaqueRegion;
+
+    /*
+     * visibleRegion: area of a surface that is visible on screen and not fully
+     * transparent. This is essentially the layer's footprint minus the opaque
+     * regions above it. Areas covered by a translucent surface are considered
+     * visible.
+     */
+    Region visibleRegion;
+
+    /*
+     * coveredRegion: area of a surface that is covered by all visible regions
+     * above it (which includes the translucent areas).
+     */
+    Region coveredRegion;
+
+    /*
+     * transparentRegion: area of a surface that is hinted to be completely
+     * transparent. This is only used to tell when the layer has no visible non-
+     * transparent regions and can be removed from the layer list. It does not
+     * affect the visibleRegion of this layer or any layers beneath it. The hint
+     * may not be correct if apps don't respect the SurfaceView restrictions
+     * (which, sadly, some don't).
+     */
+    Region transparentRegion;
+
+    /*
+     * shadowRegion: Region cast by the layer's shadow.
+     */
+    Region shadowRegion;
+
+    const ui::Transform& tr = layerFEState->geomLayerTransform;
+
+    // Get the visible region
+    // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
+    // for computations like this?
+    const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
+    visibleRegion.set(visibleRect);
+
+    if (layerFEState->shadowRadius > 0.0f) {
+        // if the layer casts a shadow, offset the layers visible region and
+        // calculate the shadow region.
+        const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
+        Rect visibleRectWithShadows(visibleRect);
+        visibleRectWithShadows.inset(inset, inset, inset, inset);
+        visibleRegion.set(visibleRectWithShadows);
+        shadowRegion = visibleRegion.subtract(visibleRect);
+    }
+
+    if (visibleRegion.isEmpty()) {
+        return;
+    }
+
+    // Remove the transparent area from the visible region
+    if (!layerFEState->isOpaque) {
+        if (tr.preserveRects()) {
+            // transform the transparent region
+            transparentRegion = tr.transform(layerFEState->transparentRegionHint);
+        } else {
+            // transformation too complex, can't do the
+            // transparent region optimization.
+            transparentRegion.clear();
         }
     }
-    return createOutputLayer(mCompositionEngine, displayId, *this, layer, layerFE);
+
+    // compute the opaque region
+    const auto layerOrientation = tr.getOrientation();
+    if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
+        // If we one of the simple category of transforms (0/90/180/270 rotation
+        // + any flip), then the opaque region is the layer's footprint.
+        // Otherwise we don't try and compute the opaque region since there may
+        // be errors at the edges, and we treat the entire layer as
+        // translucent.
+        opaqueRegion.set(visibleRect);
+    }
+
+    // Clip the covered region to the visible region
+    coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
+
+    // Update accumAboveCoveredLayers for next (lower) layer
+    coverage.aboveCoveredLayers.orSelf(visibleRegion);
+
+    // subtract the opaque region covered by the layers above us
+    visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
+
+    if (visibleRegion.isEmpty()) {
+        return;
+    }
+
+    // Get coverage information for the layer as previously displayed,
+    // also taking over ownership from mOutputLayersorderedByZ.
+    auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
+    auto prevOutputLayer =
+            prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
+
+    //  Get coverage information for the layer as previously displayed
+    // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
+    const Region kEmptyRegion;
+    const Region& oldVisibleRegion =
+            prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
+    const Region& oldCoveredRegion =
+            prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
+
+    // compute this layer's dirty region
+    Region dirty;
+    if (layerFEState->contentDirty) {
+        // we need to invalidate the whole region
+        dirty = visibleRegion;
+        // as well, as the old visible region
+        dirty.orSelf(oldVisibleRegion);
+    } else {
+        /* compute the exposed region:
+         *   the exposed region consists of two components:
+         *   1) what's VISIBLE now and was COVERED before
+         *   2) what's EXPOSED now less what was EXPOSED before
+         *
+         * note that (1) is conservative, we start with the whole visible region
+         * but only keep what used to be covered by something -- which mean it
+         * may have been exposed.
+         *
+         * (2) handles areas that were not covered by anything but got exposed
+         * because of a resize.
+         *
+         */
+        const Region newExposed = visibleRegion - coveredRegion;
+        const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
+        dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
+    }
+    dirty.subtractSelf(coverage.aboveOpaqueLayers);
+
+    // accumulate to the screen dirty region
+    coverage.dirtyRegion.orSelf(dirty);
+
+    // Update accumAboveOpaqueLayers for next (lower) layer
+    coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
+
+    // Compute the visible non-transparent region
+    Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
+
+    // Perform the final check to see if this layer is visible on this output
+    // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
+    const auto& outputState = getState();
+    Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
+    drawRegion.andSelf(outputState.bounds);
+    if (drawRegion.isEmpty()) {
+        return;
+    }
+
+    Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
+
+    // The layer is visible. Either reuse the existing outputLayer if we have
+    // one, or create a new one if we do not.
+    auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
+
+    // Store the layer coverage information into the layer state as some of it
+    // is useful later.
+    auto& outputLayerState = result->editState();
+    outputLayerState.visibleRegion = visibleRegion;
+    outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
+    outputLayerState.coveredRegion = coveredRegion;
+    outputLayerState.outputSpaceVisibleRegion =
+            outputState.transform.transform(visibleNonShadowRegion.intersect(outputState.viewport));
+    outputLayerState.shadowRegion = shadowRegion;
 }
 
-void Output::setOutputLayersOrderedByZ(OutputLayers&& layers) {
-    mOutputLayersOrderedByZ = std::move(layers);
+void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
+    // The base class does nothing with this call.
 }
 
-const Output::OutputLayers& Output::getOutputLayersOrderedByZ() const {
-    return mOutputLayersOrderedByZ;
+void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
+    for (auto* layer : getOutputLayersOrderedByZ()) {
+        layer->getLayerFE().prepareCompositionState(
+                args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
+                                               : LayerFE::StateSubset::Content);
+    }
+}
+
+void Output::updateAndWriteCompositionState(
+        const compositionengine::CompositionRefreshArgs& refreshArgs) {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    if (!getState().isEnabled) {
+        return;
+    }
+
+    mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
+    bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
+
+    for (auto* layer : getOutputLayersOrderedByZ()) {
+        layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
+                                      refreshArgs.devOptForceClientComposition ||
+                                              forceClientComposition,
+                                      refreshArgs.internalDisplayRotationFlags);
+
+        if (mLayerRequestingBackgroundBlur == layer) {
+            forceClientComposition = false;
+        }
+
+        // Send the updated state to the HWC, if appropriate.
+        layer->writeStateToHWC(refreshArgs.updatingGeometryThisFrame);
+    }
+}
+
+compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
+    compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
+    for (auto* layer : getOutputLayersOrderedByZ()) {
+        if (layer->getLayerFE().getCompositionState()->backgroundBlurRadius > 0) {
+            layerRequestingBgComposition = layer;
+        }
+    }
+    return layerRequestingBgComposition;
+}
+
+void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+    setColorProfile(pickColorProfile(refreshArgs));
+}
+
+// Returns a data space that fits all visible layers.  The returned data space
+// can only be one of
+//  - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
+//  - Dataspace::DISPLAY_P3
+//  - Dataspace::DISPLAY_BT2020
+// The returned HDR data space is one of
+//  - Dataspace::UNKNOWN
+//  - Dataspace::BT2020_HLG
+//  - Dataspace::BT2020_PQ
+ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
+                                       bool* outIsHdrClientComposition) const {
+    ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
+    *outHdrDataSpace = ui::Dataspace::UNKNOWN;
+
+    for (const auto* layer : getOutputLayersOrderedByZ()) {
+        switch (layer->getLayerFE().getCompositionState()->dataspace) {
+            case ui::Dataspace::V0_SCRGB:
+            case ui::Dataspace::V0_SCRGB_LINEAR:
+            case ui::Dataspace::BT2020:
+            case ui::Dataspace::BT2020_ITU:
+            case ui::Dataspace::BT2020_LINEAR:
+            case ui::Dataspace::DISPLAY_BT2020:
+                bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
+                break;
+            case ui::Dataspace::DISPLAY_P3:
+                bestDataSpace = ui::Dataspace::DISPLAY_P3;
+                break;
+            case ui::Dataspace::BT2020_PQ:
+            case ui::Dataspace::BT2020_ITU_PQ:
+                bestDataSpace = ui::Dataspace::DISPLAY_P3;
+                *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
+                *outIsHdrClientComposition =
+                        layer->getLayerFE().getCompositionState()->forceClientComposition;
+                break;
+            case ui::Dataspace::BT2020_HLG:
+            case ui::Dataspace::BT2020_ITU_HLG:
+                bestDataSpace = ui::Dataspace::DISPLAY_P3;
+                // When there's mixed PQ content and HLG content, we set the HDR
+                // data space to be BT2020_PQ and convert HLG to PQ.
+                if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
+                    *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
+                }
+                break;
+            default:
+                break;
+        }
+    }
+
+    return bestDataSpace;
+}
+
+compositionengine::Output::ColorProfile Output::pickColorProfile(
+        const compositionengine::CompositionRefreshArgs& refreshArgs) const {
+    if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
+        return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
+                            ui::RenderIntent::COLORIMETRIC,
+                            refreshArgs.colorSpaceAgnosticDataspace};
+    }
+
+    ui::Dataspace hdrDataSpace;
+    bool isHdrClientComposition = false;
+    ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
+
+    switch (refreshArgs.forceOutputColorMode) {
+        case ui::ColorMode::SRGB:
+            bestDataSpace = ui::Dataspace::V0_SRGB;
+            break;
+        case ui::ColorMode::DISPLAY_P3:
+            bestDataSpace = ui::Dataspace::DISPLAY_P3;
+            break;
+        default:
+            break;
+    }
+
+    // respect hdrDataSpace only when there is no legacy HDR support
+    const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
+            !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
+    if (isHdr) {
+        bestDataSpace = hdrDataSpace;
+    }
+
+    ui::RenderIntent intent;
+    switch (refreshArgs.outputColorSetting) {
+        case OutputColorSetting::kManaged:
+        case OutputColorSetting::kUnmanaged:
+            intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
+                           : ui::RenderIntent::COLORIMETRIC;
+            break;
+        case OutputColorSetting::kEnhanced:
+            intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
+            break;
+        default: // vendor display color setting
+            intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
+            break;
+    }
+
+    ui::ColorMode outMode;
+    ui::Dataspace outDataSpace;
+    ui::RenderIntent outRenderIntent;
+    mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
+                                           &outRenderIntent);
+
+    return ColorProfile{outMode, outDataSpace, outRenderIntent,
+                        refreshArgs.colorSpaceAgnosticDataspace};
+}
+
+void Output::beginFrame() {
+    auto& outputState = editState();
+    const bool dirty = !getDirtyRegion(false).isEmpty();
+    const bool empty = getOutputLayerCount() == 0;
+    const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
+
+    // If nothing has changed (!dirty), don't recompose.
+    // If something changed, but we don't currently have any visible layers,
+    //   and didn't when we last did a composition, then skip it this time.
+    // The second rule does two things:
+    // - When all layers are removed from a display, we'll emit one black
+    //   frame, then nothing more until we get new layers.
+    // - When a display is created with a private layer stack, we won't
+    //   emit any black frames until a layer is added to the layer stack.
+    const bool mustRecompose = dirty && !(empty && wasEmpty);
+
+    const char flagPrefix[] = {'-', '+'};
+    static_cast<void>(flagPrefix);
+    ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__,
+             mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
+             flagPrefix[empty], flagPrefix[wasEmpty]);
+
+    mRenderSurface->beginFrame(mustRecompose);
+
+    if (mustRecompose) {
+        outputState.lastCompositionHadVisibleLayers = !empty;
+    }
+}
+
+void Output::prepareFrame() {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    const auto& outputState = getState();
+    if (!outputState.isEnabled) {
+        return;
+    }
+
+    chooseCompositionStrategy();
+
+    mRenderSurface->prepareFrame(outputState.usesClientComposition,
+                                 outputState.usesDeviceComposition);
+}
+
+void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+    if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
+        return;
+    }
+
+    if (getState().isEnabled) {
+        // transform the dirty region into this screen's coordinate space
+        const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything);
+        if (!dirtyRegion.isEmpty()) {
+            base::unique_fd readyFence;
+            // redraw the whole screen
+            static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs));
+
+            mRenderSurface->queueBuffer(std::move(readyFence));
+        }
+    }
+
+    postFramebuffer();
+
+    std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
+
+    prepareFrame();
+}
+
+void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    if (!getState().isEnabled) {
+        return;
+    }
+
+    // Repaint the framebuffer (if needed), getting the optional fence for when
+    // the composition completes.
+    auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs);
+    if (!optReadyFence) {
+        return;
+    }
+
+    // swap buffers (presentation)
+    mRenderSurface->queueBuffer(std::move(*optReadyFence));
+}
+
+std::optional<base::unique_fd> Output::composeSurfaces(
+        const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    const auto& outputState = getState();
+    OutputCompositionState& outputCompositionState = editState();
+    const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
+                                                      outputState.usesClientComposition};
+
+    auto& renderEngine = getCompositionEngine().getRenderEngine();
+    const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
+
+    // If we the display is secure, protected content support is enabled, and at
+    // least one layer has protected content, we need to use a secure back
+    // buffer.
+    if (outputState.isSecure && supportsProtectedContent) {
+        auto layers = getOutputLayersOrderedByZ();
+        bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
+            return layer->getLayerFE().getCompositionState()->hasProtectedContent;
+        });
+        if (needsProtected != renderEngine.isProtected()) {
+            renderEngine.useProtectedContext(needsProtected);
+        }
+        if (needsProtected != mRenderSurface->isProtected() &&
+            needsProtected == renderEngine.isProtected()) {
+            mRenderSurface->setProtected(needsProtected);
+        }
+    }
+
+    base::unique_fd fd;
+    sp<GraphicBuffer> buf;
+
+    // If we aren't doing client composition on this output, but do have a
+    // flipClientTarget request for this frame on this output, we still need to
+    // dequeue a buffer.
+    if (hasClientComposition || outputState.flipClientTarget) {
+        buf = mRenderSurface->dequeueBuffer(&fd);
+        if (buf == nullptr) {
+            ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
+                  "client composition for this frame",
+                  mName.c_str());
+            return {};
+        }
+    }
+
+    base::unique_fd readyFence;
+    if (!hasClientComposition) {
+        setExpensiveRenderingExpected(false);
+        return readyFence;
+    }
+
+    ALOGV("hasClientComposition");
+
+    renderengine::DisplaySettings clientCompositionDisplay;
+    clientCompositionDisplay.physicalDisplay = outputState.destinationClip;
+    clientCompositionDisplay.clip = outputState.sourceClip;
+    clientCompositionDisplay.orientation = outputState.orientation;
+    clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
+            ? outputState.dataspace
+            : ui::Dataspace::UNKNOWN;
+    clientCompositionDisplay.maxLuminance =
+            mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
+
+    // Compute the global color transform matrix.
+    if (!outputState.usesDeviceComposition && !getSkipColorTransform()) {
+        clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
+    }
+
+    // Note: Updated by generateClientCompositionRequests
+    clientCompositionDisplay.clearRegion = Region::INVALID_REGION;
+
+    // Generate the client composition requests for the layers on this output.
+    std::vector<LayerFE::LayerSettings> clientCompositionLayers =
+            generateClientCompositionRequests(supportsProtectedContent,
+                                              clientCompositionDisplay.clearRegion,
+                                              clientCompositionDisplay.outputDataspace);
+    appendRegionFlashRequests(debugRegion, clientCompositionLayers);
+
+    // Check if the client composition requests were rendered into the provided graphic buffer. If
+    // so, we can reuse the buffer and avoid client composition.
+    if (mClientCompositionRequestCache) {
+        if (mClientCompositionRequestCache->exists(buf->getId(), clientCompositionDisplay,
+                                                   clientCompositionLayers)) {
+            outputCompositionState.reusedClientComposition = true;
+            setExpensiveRenderingExpected(false);
+            return readyFence;
+        }
+        mClientCompositionRequestCache->add(buf->getId(), clientCompositionDisplay,
+                                            clientCompositionLayers);
+    }
+
+    // We boost GPU frequency here because there will be color spaces conversion
+    // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
+    // GPU composition can finish in time. We must reset GPU frequency afterwards,
+    // because high frequency consumes extra battery.
+    const bool expensiveBlurs =
+            refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
+    const bool expensiveRenderingExpected =
+            clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs;
+    if (expensiveRenderingExpected) {
+        setExpensiveRenderingExpected(true);
+    }
+
+    std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers;
+    clientCompositionLayerPointers.reserve(clientCompositionLayers.size());
+    std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
+                   std::back_inserter(clientCompositionLayerPointers),
+                   [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* {
+                       return &settings;
+                   });
+
+    const nsecs_t renderEngineStart = systemTime();
+    status_t status =
+            renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers,
+                                    buf->getNativeBuffer(), /*useFramebufferCache=*/true,
+                                    std::move(fd), &readyFence);
+
+    if (status != NO_ERROR && mClientCompositionRequestCache) {
+        // If rendering was not successful, remove the request from the cache.
+        mClientCompositionRequestCache->remove(buf->getId());
+    }
+
+    auto& timeStats = getCompositionEngine().getTimeStats();
+    if (readyFence.get() < 0) {
+        timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
+    } else {
+        timeStats.recordRenderEngineDuration(renderEngineStart,
+                                             std::make_shared<FenceTime>(
+                                                     new Fence(dup(readyFence.get()))));
+    }
+
+    return readyFence;
+}
+
+std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
+        bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) {
+    std::vector<LayerFE::LayerSettings> clientCompositionLayers;
+    ALOGV("Rendering client layers");
+
+    const auto& outputState = getState();
+    const Region viewportRegion(outputState.viewport);
+    const bool useIdentityTransform = false;
+    bool firstLayer = true;
+    // Used when a layer clears part of the buffer.
+    Region stubRegion;
+
+    for (auto* layer : getOutputLayersOrderedByZ()) {
+        const auto& layerState = layer->getState();
+        const auto* layerFEState = layer->getLayerFE().getCompositionState();
+        auto& layerFE = layer->getLayerFE();
+
+        const Region clip(viewportRegion.intersect(layerState.visibleRegion));
+        ALOGV("Layer: %s", layerFE.getDebugName());
+        if (clip.isEmpty()) {
+            ALOGV("  Skipping for empty clip");
+            firstLayer = false;
+            continue;
+        }
+
+        const bool clientComposition = layer->requiresClientComposition();
+
+        // We clear the client target for non-client composed layers if
+        // requested by the HWC. We skip this if the layer is not an opaque
+        // rectangle, as by definition the layer must blend with whatever is
+        // underneath. We also skip the first layer as the buffer target is
+        // guaranteed to start out cleared.
+        const bool clearClientComposition =
+                layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
+
+        ALOGV("  Composition type: client %d clear %d", clientComposition, clearClientComposition);
+
+        // If the layer casts a shadow but the content casting the shadow is occluded, skip
+        // composing the non-shadow content and only draw the shadows.
+        const bool realContentIsVisible = clientComposition &&
+                !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
+
+        if (clientComposition || clearClientComposition) {
+            compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
+                    clip,
+                    useIdentityTransform,
+                    layer->needsFiltering() || outputState.needsFiltering,
+                    outputState.isSecure,
+                    supportsProtectedContent,
+                    clientComposition ? clearRegion : stubRegion,
+                    outputState.viewport,
+                    outputDataspace,
+                    realContentIsVisible,
+                    !clientComposition, /* clearContent  */
+            };
+            std::vector<LayerFE::LayerSettings> results =
+                    layerFE.prepareClientCompositionList(targetSettings);
+            if (realContentIsVisible && !results.empty()) {
+                layer->editState().clientCompositionTimestamp = systemTime();
+            }
+
+            clientCompositionLayers.insert(clientCompositionLayers.end(),
+                                           std::make_move_iterator(results.begin()),
+                                           std::make_move_iterator(results.end()));
+            results.clear();
+        }
+
+        firstLayer = false;
+    }
+
+    return clientCompositionLayers;
+}
+
+void Output::appendRegionFlashRequests(
+        const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
+    if (flashRegion.isEmpty()) {
+        return;
+    }
+
+    LayerFE::LayerSettings layerSettings;
+    layerSettings.source.buffer.buffer = nullptr;
+    layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
+    layerSettings.alpha = half(1.0);
+
+    for (const auto& rect : flashRegion) {
+        layerSettings.geometry.boundaries = rect.toFloatRect();
+        clientCompositionLayers.push_back(layerSettings);
+    }
+}
+
+void Output::setExpensiveRenderingExpected(bool) {
+    // The base class does nothing with this call.
+}
+
+void Output::postFramebuffer() {
+    ATRACE_CALL();
+    ALOGV(__FUNCTION__);
+
+    if (!getState().isEnabled) {
+        return;
+    }
+
+    auto& outputState = editState();
+    outputState.dirtyRegion.clear();
+    mRenderSurface->flip();
+
+    auto frame = presentAndGetFrameFences();
+
+    mRenderSurface->onPresentDisplayCompleted();
+
+    for (auto* layer : getOutputLayersOrderedByZ()) {
+        // The layer buffer from the previous frame (if any) is released
+        // by HWC only when the release fence from this frame (if any) is
+        // signaled.  Always get the release fence from HWC first.
+        sp<Fence> releaseFence = Fence::NO_FENCE;
+
+        if (auto hwcLayer = layer->getHwcLayer()) {
+            if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
+                releaseFence = f->second;
+            }
+        }
+
+        // If the layer was client composited in the previous frame, we
+        // need to merge with the previous client target acquire fence.
+        // Since we do not track that, always merge with the current
+        // client target acquire fence when it is available, even though
+        // this is suboptimal.
+        // TODO(b/121291683): Track previous frame client target acquire fence.
+        if (outputState.usesClientComposition) {
+            releaseFence =
+                    Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
+        }
+
+        layer->getLayerFE().onLayerDisplayed(releaseFence);
+    }
+
+    // We've got a list of layers needing fences, that are disjoint with
+    // OutputLayersOrderedByZ.  The best we can do is to
+    // supply them with the present fence.
+    for (auto& weakLayer : mReleasedLayers) {
+        if (auto layer = weakLayer.promote(); layer != nullptr) {
+            layer->onLayerDisplayed(frame.presentFence);
+        }
+    }
+
+    // Clear out the released layers now that we're done with them.
+    mReleasedLayers.clear();
 }
 
 void Output::dirtyEntireOutput() {
-    mState.dirtyRegion.set(mState.bounds);
+    auto& outputState = editState();
+    outputState.dirtyRegion.set(outputState.bounds);
+}
+
+void Output::chooseCompositionStrategy() {
+    // The base output implementation can only do client composition
+    auto& outputState = editState();
+    outputState.usesClientComposition = true;
+    outputState.usesDeviceComposition = false;
+    outputState.reusedClientComposition = false;
+}
+
+bool Output::getSkipColorTransform() const {
+    return true;
+}
+
+compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
+    compositionengine::Output::FrameFences result;
+    if (getState().usesClientComposition) {
+        result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
+    }
+    return result;
 }
 
 } // namespace impl