Merge Android R (rvc-dev-plus-aosp-without-vendor@6692709)
Bug: 166295507
Merged-In: I70ea776b8589ac3a7982c710c5c8b2941d86e55b
Change-Id: Ic1d535e9d2d6f80d95215240dbdb024995b045f8
diff --git a/services/surfaceflinger/CompositionEngine/src/Output.cpp b/services/surfaceflinger/CompositionEngine/src/Output.cpp
index 01b5781..34dc536 100644
--- a/services/surfaceflinger/CompositionEngine/src/Output.cpp
+++ b/services/surfaceflinger/CompositionEngine/src/Output.cpp
@@ -14,14 +14,35 @@
* limitations under the License.
*/
+#include <thread>
+
#include <android-base/stringprintf.h>
#include <compositionengine/CompositionEngine.h>
+#include <compositionengine/CompositionRefreshArgs.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/LayerFE.h>
+#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/RenderSurface.h>
#include <compositionengine/impl/Output.h>
+#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayer.h>
+#include <compositionengine/impl/OutputLayerCompositionState.h>
+
+// TODO(b/129481165): remove the #pragma below and fix conversion issues
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wconversion"
+
+#include <renderengine/DisplaySettings.h>
+#include <renderengine/RenderEngine.h>
+
+// TODO(b/129481165): remove the #pragma below and fix conversion issues
+#pragma clang diagnostic pop // ignored "-Wconversion"
+
#include <ui/DebugUtils.h>
+#include <ui/HdrCapabilities.h>
+#include <utils/Trace.h>
+
+#include "TracedOrdinal.h"
namespace android::compositionengine {
@@ -29,20 +50,43 @@
namespace impl {
-Output::Output(const CompositionEngine& compositionEngine)
- : mCompositionEngine(compositionEngine) {}
+namespace {
+
+template <typename T>
+class Reversed {
+public:
+ explicit Reversed(const T& container) : mContainer(container) {}
+ auto begin() { return mContainer.rbegin(); }
+ auto end() { return mContainer.rend(); }
+
+private:
+ const T& mContainer;
+};
+
+// Helper for enumerating over a container in reverse order
+template <typename T>
+Reversed<T> reversed(const T& c) {
+ return Reversed<T>(c);
+}
+
+} // namespace
+
+std::shared_ptr<Output> createOutput(
+ const compositionengine::CompositionEngine& compositionEngine) {
+ return createOutputTemplated<Output>(compositionEngine);
+}
Output::~Output() = default;
-const CompositionEngine& Output::getCompositionEngine() const {
- return mCompositionEngine;
-}
-
bool Output::isValid() const {
return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
mRenderSurface->isValid();
}
+std::optional<DisplayId> Output::getDisplayId() const {
+ return {};
+}
+
const std::string& Output::getName() const {
return mName;
}
@@ -52,73 +96,81 @@
}
void Output::setCompositionEnabled(bool enabled) {
- if (mState.isEnabled == enabled) {
+ auto& outputState = editState();
+ if (outputState.isEnabled == enabled) {
return;
}
- mState.isEnabled = enabled;
+ outputState.isEnabled = enabled;
dirtyEntireOutput();
}
-void Output::setProjection(const ui::Transform& transform, int32_t orientation, const Rect& frame,
- const Rect& viewport, const Rect& scissor, bool needsFiltering) {
- mState.transform = transform;
- mState.orientation = orientation;
- mState.scissor = scissor;
- mState.frame = frame;
- mState.viewport = viewport;
- mState.needsFiltering = needsFiltering;
+void Output::setProjection(const ui::Transform& transform, uint32_t orientation, const Rect& frame,
+ const Rect& viewport, const Rect& sourceClip,
+ const Rect& destinationClip, bool needsFiltering) {
+ auto& outputState = editState();
+ outputState.transform = transform;
+ outputState.orientation = orientation;
+ outputState.sourceClip = sourceClip;
+ outputState.destinationClip = destinationClip;
+ outputState.frame = frame;
+ outputState.viewport = viewport;
+ outputState.needsFiltering = needsFiltering;
dirtyEntireOutput();
}
-// TODO(lpique): Rename setSize() once more is moved.
+// TODO(b/121291683): Rename setSize() once more is moved.
void Output::setBounds(const ui::Size& size) {
mRenderSurface->setDisplaySize(size);
- // TODO(lpique): Rename mState.size once more is moved.
- mState.bounds = Rect(mRenderSurface->getSize());
+ // TODO(b/121291683): Rename outputState.size once more is moved.
+ editState().bounds = Rect(mRenderSurface->getSize());
dirtyEntireOutput();
}
void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) {
- mState.layerStackId = layerStackId;
- mState.layerStackInternal = isInternal;
+ auto& outputState = editState();
+ outputState.layerStackId = layerStackId;
+ outputState.layerStackInternal = isInternal;
dirtyEntireOutput();
}
-void Output::setColorTransform(const mat4& transform) {
- if (mState.colorTransformMat == transform) {
+void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
+ auto& colorTransformMatrix = editState().colorTransformMatrix;
+ if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
return;
}
- const bool isIdentity = (transform == mat4());
- const auto newColorTransform =
- isIdentity ? HAL_COLOR_TRANSFORM_IDENTITY : HAL_COLOR_TRANSFORM_ARBITRARY_MATRIX;
-
- mState.colorTransform = newColorTransform;
- mState.colorTransformMat = transform;
+ colorTransformMatrix = *args.colorTransformMatrix;
dirtyEntireOutput();
}
-void Output::setColorMode(ui::ColorMode mode, ui::Dataspace dataspace,
- ui::RenderIntent renderIntent) {
- if (mState.colorMode == mode && mState.dataspace == dataspace &&
- mState.renderIntent == renderIntent) {
+void Output::setColorProfile(const ColorProfile& colorProfile) {
+ ui::Dataspace targetDataspace =
+ getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
+ colorProfile.colorSpaceAgnosticDataspace);
+
+ auto& outputState = editState();
+ if (outputState.colorMode == colorProfile.mode &&
+ outputState.dataspace == colorProfile.dataspace &&
+ outputState.renderIntent == colorProfile.renderIntent &&
+ outputState.targetDataspace == targetDataspace) {
return;
}
- mState.colorMode = mode;
- mState.dataspace = dataspace;
- mState.renderIntent = renderIntent;
+ outputState.colorMode = colorProfile.mode;
+ outputState.dataspace = colorProfile.dataspace;
+ outputState.renderIntent = colorProfile.renderIntent;
+ outputState.targetDataspace = targetDataspace;
- mRenderSurface->setBufferDataspace(dataspace);
+ mRenderSurface->setBufferDataspace(colorProfile.dataspace);
ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
- decodeColorMode(mode).c_str(), mode, decodeRenderIntent(renderIntent).c_str(),
- renderIntent);
+ decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
+ decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
dirtyEntireOutput();
}
@@ -134,7 +186,7 @@
}
void Output::dumpBase(std::string& out) const {
- mState.dump(out);
+ dumpState(out);
if (mDisplayColorProfile) {
mDisplayColorProfile->dump(out);
@@ -148,8 +200,8 @@
out.append(" No render surface!\n");
}
- android::base::StringAppendF(&out, "\n %zu Layers\b", mOutputLayersOrderedByZ.size());
- for (const auto& outputLayer : mOutputLayersOrderedByZ) {
+ android::base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount());
+ for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
if (!outputLayer) {
continue;
}
@@ -165,6 +217,10 @@
mDisplayColorProfile = std::move(mode);
}
+const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
+ return mReleasedLayers;
+}
+
void Output::setDisplayColorProfileForTest(
std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
mDisplayColorProfile = std::move(mode);
@@ -176,68 +232,888 @@
void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
mRenderSurface = std::move(surface);
- mState.bounds = Rect(mRenderSurface->getSize());
+ editState().bounds = Rect(mRenderSurface->getSize());
dirtyEntireOutput();
}
+void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
+ if (cacheSize == 0) {
+ mClientCompositionRequestCache.reset();
+ } else {
+ mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
+ }
+};
+
void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
mRenderSurface = std::move(surface);
}
-const OutputCompositionState& Output::getState() const {
- return mState;
-}
-
-OutputCompositionState& Output::editState() {
- return mState;
-}
-
Region Output::getDirtyRegion(bool repaintEverything) const {
- Region dirty(mState.viewport);
+ const auto& outputState = getState();
+ Region dirty(outputState.viewport);
if (!repaintEverything) {
- dirty.andSelf(mState.dirtyRegion);
+ dirty.andSelf(outputState.dirtyRegion);
}
return dirty;
}
-bool Output::belongsInOutput(uint32_t layerStackId, bool internalOnly) const {
+bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const {
// The layerStackId's must match, and also the layer must not be internal
// only when not on an internal output.
- return (layerStackId == mState.layerStackId) && (!internalOnly || mState.layerStackInternal);
+ const auto& outputState = getState();
+ return layerStackId && (*layerStackId == outputState.layerStackId) &&
+ (!internalOnly || outputState.layerStackInternal);
}
-compositionengine::OutputLayer* Output::getOutputLayerForLayer(
- compositionengine::Layer* layer) const {
- for (const auto& outputLayer : mOutputLayersOrderedByZ) {
- if (outputLayer && &outputLayer->getLayer() == layer) {
- return outputLayer.get();
+bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const {
+ const auto* layerFEState = layerFE->getCompositionState();
+ return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly);
+}
+
+std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
+ const sp<LayerFE>& layerFE) const {
+ return impl::createOutputLayer(*this, layerFE);
+}
+
+compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
+ auto index = findCurrentOutputLayerForLayer(layerFE);
+ return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
+}
+
+std::optional<size_t> Output::findCurrentOutputLayerForLayer(
+ const sp<compositionengine::LayerFE>& layer) const {
+ for (size_t i = 0; i < getOutputLayerCount(); i++) {
+ auto outputLayer = getOutputLayerOrderedByZByIndex(i);
+ if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
+ return i;
}
}
- return nullptr;
+ return std::nullopt;
}
-std::unique_ptr<compositionengine::OutputLayer> Output::getOrCreateOutputLayer(
- std::optional<DisplayId> displayId, std::shared_ptr<compositionengine::Layer> layer,
- sp<compositionengine::LayerFE> layerFE) {
- for (auto& outputLayer : mOutputLayersOrderedByZ) {
- if (outputLayer && &outputLayer->getLayer() == layer.get()) {
- return std::move(outputLayer);
+void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
+ mReleasedLayers = std::move(layers);
+}
+
+void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
+ LayerFESet& geomSnapshots) {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ rebuildLayerStacks(refreshArgs, geomSnapshots);
+}
+
+void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ updateColorProfile(refreshArgs);
+ updateAndWriteCompositionState(refreshArgs);
+ setColorTransform(refreshArgs);
+ beginFrame();
+ prepareFrame();
+ devOptRepaintFlash(refreshArgs);
+ finishFrame(refreshArgs);
+ postFramebuffer();
+}
+
+void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
+ LayerFESet& layerFESet) {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ auto& outputState = editState();
+
+ // Do nothing if this output is not enabled or there is no need to perform this update
+ if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
+ return;
+ }
+
+ // Process the layers to determine visibility and coverage
+ compositionengine::Output::CoverageState coverage{layerFESet};
+ collectVisibleLayers(refreshArgs, coverage);
+
+ // Compute the resulting coverage for this output, and store it for later
+ const ui::Transform& tr = outputState.transform;
+ Region undefinedRegion{outputState.bounds};
+ undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
+
+ outputState.undefinedRegion = undefinedRegion;
+ outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
+}
+
+void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
+ compositionengine::Output::CoverageState& coverage) {
+ // Evaluate the layers from front to back to determine what is visible. This
+ // also incrementally calculates the coverage information for each layer as
+ // well as the entire output.
+ for (auto layer : reversed(refreshArgs.layers)) {
+ // Incrementally process the coverage for each layer
+ ensureOutputLayerIfVisible(layer, coverage);
+
+ // TODO(b/121291683): Stop early if the output is completely covered and
+ // no more layers could even be visible underneath the ones on top.
+ }
+
+ setReleasedLayers(refreshArgs);
+
+ finalizePendingOutputLayers();
+
+ // Generate a simple Z-order values to each visible output layer
+ uint32_t zOrder = 0;
+ for (auto* outputLayer : getOutputLayersOrderedByZ()) {
+ outputLayer->editState().z = zOrder++;
+ }
+}
+
+void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
+ compositionengine::Output::CoverageState& coverage) {
+ // Ensure we have a snapshot of the basic geometry layer state. Limit the
+ // snapshots to once per frame for each candidate layer, as layers may
+ // appear on multiple outputs.
+ if (!coverage.latchedLayers.count(layerFE)) {
+ coverage.latchedLayers.insert(layerFE);
+ layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
+ }
+
+ // Only consider the layers on the given layer stack
+ if (!belongsInOutput(layerFE)) {
+ return;
+ }
+
+ // Obtain a read-only pointer to the front-end layer state
+ const auto* layerFEState = layerFE->getCompositionState();
+ if (CC_UNLIKELY(!layerFEState)) {
+ return;
+ }
+
+ // handle hidden surfaces by setting the visible region to empty
+ if (CC_UNLIKELY(!layerFEState->isVisible)) {
+ return;
+ }
+
+ /*
+ * opaqueRegion: area of a surface that is fully opaque.
+ */
+ Region opaqueRegion;
+
+ /*
+ * visibleRegion: area of a surface that is visible on screen and not fully
+ * transparent. This is essentially the layer's footprint minus the opaque
+ * regions above it. Areas covered by a translucent surface are considered
+ * visible.
+ */
+ Region visibleRegion;
+
+ /*
+ * coveredRegion: area of a surface that is covered by all visible regions
+ * above it (which includes the translucent areas).
+ */
+ Region coveredRegion;
+
+ /*
+ * transparentRegion: area of a surface that is hinted to be completely
+ * transparent. This is only used to tell when the layer has no visible non-
+ * transparent regions and can be removed from the layer list. It does not
+ * affect the visibleRegion of this layer or any layers beneath it. The hint
+ * may not be correct if apps don't respect the SurfaceView restrictions
+ * (which, sadly, some don't).
+ */
+ Region transparentRegion;
+
+ /*
+ * shadowRegion: Region cast by the layer's shadow.
+ */
+ Region shadowRegion;
+
+ const ui::Transform& tr = layerFEState->geomLayerTransform;
+
+ // Get the visible region
+ // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
+ // for computations like this?
+ const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
+ visibleRegion.set(visibleRect);
+
+ if (layerFEState->shadowRadius > 0.0f) {
+ // if the layer casts a shadow, offset the layers visible region and
+ // calculate the shadow region.
+ const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
+ Rect visibleRectWithShadows(visibleRect);
+ visibleRectWithShadows.inset(inset, inset, inset, inset);
+ visibleRegion.set(visibleRectWithShadows);
+ shadowRegion = visibleRegion.subtract(visibleRect);
+ }
+
+ if (visibleRegion.isEmpty()) {
+ return;
+ }
+
+ // Remove the transparent area from the visible region
+ if (!layerFEState->isOpaque) {
+ if (tr.preserveRects()) {
+ // transform the transparent region
+ transparentRegion = tr.transform(layerFEState->transparentRegionHint);
+ } else {
+ // transformation too complex, can't do the
+ // transparent region optimization.
+ transparentRegion.clear();
}
}
- return createOutputLayer(mCompositionEngine, displayId, *this, layer, layerFE);
+
+ // compute the opaque region
+ const auto layerOrientation = tr.getOrientation();
+ if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
+ // If we one of the simple category of transforms (0/90/180/270 rotation
+ // + any flip), then the opaque region is the layer's footprint.
+ // Otherwise we don't try and compute the opaque region since there may
+ // be errors at the edges, and we treat the entire layer as
+ // translucent.
+ opaqueRegion.set(visibleRect);
+ }
+
+ // Clip the covered region to the visible region
+ coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
+
+ // Update accumAboveCoveredLayers for next (lower) layer
+ coverage.aboveCoveredLayers.orSelf(visibleRegion);
+
+ // subtract the opaque region covered by the layers above us
+ visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
+
+ if (visibleRegion.isEmpty()) {
+ return;
+ }
+
+ // Get coverage information for the layer as previously displayed,
+ // also taking over ownership from mOutputLayersorderedByZ.
+ auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
+ auto prevOutputLayer =
+ prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
+
+ // Get coverage information for the layer as previously displayed
+ // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
+ const Region kEmptyRegion;
+ const Region& oldVisibleRegion =
+ prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
+ const Region& oldCoveredRegion =
+ prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
+
+ // compute this layer's dirty region
+ Region dirty;
+ if (layerFEState->contentDirty) {
+ // we need to invalidate the whole region
+ dirty = visibleRegion;
+ // as well, as the old visible region
+ dirty.orSelf(oldVisibleRegion);
+ } else {
+ /* compute the exposed region:
+ * the exposed region consists of two components:
+ * 1) what's VISIBLE now and was COVERED before
+ * 2) what's EXPOSED now less what was EXPOSED before
+ *
+ * note that (1) is conservative, we start with the whole visible region
+ * but only keep what used to be covered by something -- which mean it
+ * may have been exposed.
+ *
+ * (2) handles areas that were not covered by anything but got exposed
+ * because of a resize.
+ *
+ */
+ const Region newExposed = visibleRegion - coveredRegion;
+ const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
+ dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
+ }
+ dirty.subtractSelf(coverage.aboveOpaqueLayers);
+
+ // accumulate to the screen dirty region
+ coverage.dirtyRegion.orSelf(dirty);
+
+ // Update accumAboveOpaqueLayers for next (lower) layer
+ coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
+
+ // Compute the visible non-transparent region
+ Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
+
+ // Perform the final check to see if this layer is visible on this output
+ // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
+ const auto& outputState = getState();
+ Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
+ drawRegion.andSelf(outputState.bounds);
+ if (drawRegion.isEmpty()) {
+ return;
+ }
+
+ Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
+
+ // The layer is visible. Either reuse the existing outputLayer if we have
+ // one, or create a new one if we do not.
+ auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
+
+ // Store the layer coverage information into the layer state as some of it
+ // is useful later.
+ auto& outputLayerState = result->editState();
+ outputLayerState.visibleRegion = visibleRegion;
+ outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
+ outputLayerState.coveredRegion = coveredRegion;
+ outputLayerState.outputSpaceVisibleRegion =
+ outputState.transform.transform(visibleNonShadowRegion.intersect(outputState.viewport));
+ outputLayerState.shadowRegion = shadowRegion;
}
-void Output::setOutputLayersOrderedByZ(OutputLayers&& layers) {
- mOutputLayersOrderedByZ = std::move(layers);
+void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
+ // The base class does nothing with this call.
}
-const Output::OutputLayers& Output::getOutputLayersOrderedByZ() const {
- return mOutputLayersOrderedByZ;
+void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
+ for (auto* layer : getOutputLayersOrderedByZ()) {
+ layer->getLayerFE().prepareCompositionState(
+ args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
+ : LayerFE::StateSubset::Content);
+ }
+}
+
+void Output::updateAndWriteCompositionState(
+ const compositionengine::CompositionRefreshArgs& refreshArgs) {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ if (!getState().isEnabled) {
+ return;
+ }
+
+ mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
+ bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
+
+ for (auto* layer : getOutputLayersOrderedByZ()) {
+ layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
+ refreshArgs.devOptForceClientComposition ||
+ forceClientComposition,
+ refreshArgs.internalDisplayRotationFlags);
+
+ if (mLayerRequestingBackgroundBlur == layer) {
+ forceClientComposition = false;
+ }
+
+ // Send the updated state to the HWC, if appropriate.
+ layer->writeStateToHWC(refreshArgs.updatingGeometryThisFrame);
+ }
+}
+
+compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
+ compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
+ for (auto* layer : getOutputLayersOrderedByZ()) {
+ if (layer->getLayerFE().getCompositionState()->backgroundBlurRadius > 0) {
+ layerRequestingBgComposition = layer;
+ }
+ }
+ return layerRequestingBgComposition;
+}
+
+void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+ setColorProfile(pickColorProfile(refreshArgs));
+}
+
+// Returns a data space that fits all visible layers. The returned data space
+// can only be one of
+// - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
+// - Dataspace::DISPLAY_P3
+// - Dataspace::DISPLAY_BT2020
+// The returned HDR data space is one of
+// - Dataspace::UNKNOWN
+// - Dataspace::BT2020_HLG
+// - Dataspace::BT2020_PQ
+ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
+ bool* outIsHdrClientComposition) const {
+ ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
+ *outHdrDataSpace = ui::Dataspace::UNKNOWN;
+
+ for (const auto* layer : getOutputLayersOrderedByZ()) {
+ switch (layer->getLayerFE().getCompositionState()->dataspace) {
+ case ui::Dataspace::V0_SCRGB:
+ case ui::Dataspace::V0_SCRGB_LINEAR:
+ case ui::Dataspace::BT2020:
+ case ui::Dataspace::BT2020_ITU:
+ case ui::Dataspace::BT2020_LINEAR:
+ case ui::Dataspace::DISPLAY_BT2020:
+ bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
+ break;
+ case ui::Dataspace::DISPLAY_P3:
+ bestDataSpace = ui::Dataspace::DISPLAY_P3;
+ break;
+ case ui::Dataspace::BT2020_PQ:
+ case ui::Dataspace::BT2020_ITU_PQ:
+ bestDataSpace = ui::Dataspace::DISPLAY_P3;
+ *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
+ *outIsHdrClientComposition =
+ layer->getLayerFE().getCompositionState()->forceClientComposition;
+ break;
+ case ui::Dataspace::BT2020_HLG:
+ case ui::Dataspace::BT2020_ITU_HLG:
+ bestDataSpace = ui::Dataspace::DISPLAY_P3;
+ // When there's mixed PQ content and HLG content, we set the HDR
+ // data space to be BT2020_PQ and convert HLG to PQ.
+ if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
+ *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ return bestDataSpace;
+}
+
+compositionengine::Output::ColorProfile Output::pickColorProfile(
+ const compositionengine::CompositionRefreshArgs& refreshArgs) const {
+ if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
+ return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
+ ui::RenderIntent::COLORIMETRIC,
+ refreshArgs.colorSpaceAgnosticDataspace};
+ }
+
+ ui::Dataspace hdrDataSpace;
+ bool isHdrClientComposition = false;
+ ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
+
+ switch (refreshArgs.forceOutputColorMode) {
+ case ui::ColorMode::SRGB:
+ bestDataSpace = ui::Dataspace::V0_SRGB;
+ break;
+ case ui::ColorMode::DISPLAY_P3:
+ bestDataSpace = ui::Dataspace::DISPLAY_P3;
+ break;
+ default:
+ break;
+ }
+
+ // respect hdrDataSpace only when there is no legacy HDR support
+ const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
+ !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
+ if (isHdr) {
+ bestDataSpace = hdrDataSpace;
+ }
+
+ ui::RenderIntent intent;
+ switch (refreshArgs.outputColorSetting) {
+ case OutputColorSetting::kManaged:
+ case OutputColorSetting::kUnmanaged:
+ intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
+ : ui::RenderIntent::COLORIMETRIC;
+ break;
+ case OutputColorSetting::kEnhanced:
+ intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
+ break;
+ default: // vendor display color setting
+ intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
+ break;
+ }
+
+ ui::ColorMode outMode;
+ ui::Dataspace outDataSpace;
+ ui::RenderIntent outRenderIntent;
+ mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
+ &outRenderIntent);
+
+ return ColorProfile{outMode, outDataSpace, outRenderIntent,
+ refreshArgs.colorSpaceAgnosticDataspace};
+}
+
+void Output::beginFrame() {
+ auto& outputState = editState();
+ const bool dirty = !getDirtyRegion(false).isEmpty();
+ const bool empty = getOutputLayerCount() == 0;
+ const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
+
+ // If nothing has changed (!dirty), don't recompose.
+ // If something changed, but we don't currently have any visible layers,
+ // and didn't when we last did a composition, then skip it this time.
+ // The second rule does two things:
+ // - When all layers are removed from a display, we'll emit one black
+ // frame, then nothing more until we get new layers.
+ // - When a display is created with a private layer stack, we won't
+ // emit any black frames until a layer is added to the layer stack.
+ const bool mustRecompose = dirty && !(empty && wasEmpty);
+
+ const char flagPrefix[] = {'-', '+'};
+ static_cast<void>(flagPrefix);
+ ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__,
+ mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
+ flagPrefix[empty], flagPrefix[wasEmpty]);
+
+ mRenderSurface->beginFrame(mustRecompose);
+
+ if (mustRecompose) {
+ outputState.lastCompositionHadVisibleLayers = !empty;
+ }
+}
+
+void Output::prepareFrame() {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ const auto& outputState = getState();
+ if (!outputState.isEnabled) {
+ return;
+ }
+
+ chooseCompositionStrategy();
+
+ mRenderSurface->prepareFrame(outputState.usesClientComposition,
+ outputState.usesDeviceComposition);
+}
+
+void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+ if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
+ return;
+ }
+
+ if (getState().isEnabled) {
+ // transform the dirty region into this screen's coordinate space
+ const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything);
+ if (!dirtyRegion.isEmpty()) {
+ base::unique_fd readyFence;
+ // redraw the whole screen
+ static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs));
+
+ mRenderSurface->queueBuffer(std::move(readyFence));
+ }
+ }
+
+ postFramebuffer();
+
+ std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
+
+ prepareFrame();
+}
+
+void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ if (!getState().isEnabled) {
+ return;
+ }
+
+ // Repaint the framebuffer (if needed), getting the optional fence for when
+ // the composition completes.
+ auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs);
+ if (!optReadyFence) {
+ return;
+ }
+
+ // swap buffers (presentation)
+ mRenderSurface->queueBuffer(std::move(*optReadyFence));
+}
+
+std::optional<base::unique_fd> Output::composeSurfaces(
+ const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ const auto& outputState = getState();
+ OutputCompositionState& outputCompositionState = editState();
+ const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
+ outputState.usesClientComposition};
+
+ auto& renderEngine = getCompositionEngine().getRenderEngine();
+ const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
+
+ // If we the display is secure, protected content support is enabled, and at
+ // least one layer has protected content, we need to use a secure back
+ // buffer.
+ if (outputState.isSecure && supportsProtectedContent) {
+ auto layers = getOutputLayersOrderedByZ();
+ bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
+ return layer->getLayerFE().getCompositionState()->hasProtectedContent;
+ });
+ if (needsProtected != renderEngine.isProtected()) {
+ renderEngine.useProtectedContext(needsProtected);
+ }
+ if (needsProtected != mRenderSurface->isProtected() &&
+ needsProtected == renderEngine.isProtected()) {
+ mRenderSurface->setProtected(needsProtected);
+ }
+ }
+
+ base::unique_fd fd;
+ sp<GraphicBuffer> buf;
+
+ // If we aren't doing client composition on this output, but do have a
+ // flipClientTarget request for this frame on this output, we still need to
+ // dequeue a buffer.
+ if (hasClientComposition || outputState.flipClientTarget) {
+ buf = mRenderSurface->dequeueBuffer(&fd);
+ if (buf == nullptr) {
+ ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
+ "client composition for this frame",
+ mName.c_str());
+ return {};
+ }
+ }
+
+ base::unique_fd readyFence;
+ if (!hasClientComposition) {
+ setExpensiveRenderingExpected(false);
+ return readyFence;
+ }
+
+ ALOGV("hasClientComposition");
+
+ renderengine::DisplaySettings clientCompositionDisplay;
+ clientCompositionDisplay.physicalDisplay = outputState.destinationClip;
+ clientCompositionDisplay.clip = outputState.sourceClip;
+ clientCompositionDisplay.orientation = outputState.orientation;
+ clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
+ ? outputState.dataspace
+ : ui::Dataspace::UNKNOWN;
+ clientCompositionDisplay.maxLuminance =
+ mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
+
+ // Compute the global color transform matrix.
+ if (!outputState.usesDeviceComposition && !getSkipColorTransform()) {
+ clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
+ }
+
+ // Note: Updated by generateClientCompositionRequests
+ clientCompositionDisplay.clearRegion = Region::INVALID_REGION;
+
+ // Generate the client composition requests for the layers on this output.
+ std::vector<LayerFE::LayerSettings> clientCompositionLayers =
+ generateClientCompositionRequests(supportsProtectedContent,
+ clientCompositionDisplay.clearRegion,
+ clientCompositionDisplay.outputDataspace);
+ appendRegionFlashRequests(debugRegion, clientCompositionLayers);
+
+ // Check if the client composition requests were rendered into the provided graphic buffer. If
+ // so, we can reuse the buffer and avoid client composition.
+ if (mClientCompositionRequestCache) {
+ if (mClientCompositionRequestCache->exists(buf->getId(), clientCompositionDisplay,
+ clientCompositionLayers)) {
+ outputCompositionState.reusedClientComposition = true;
+ setExpensiveRenderingExpected(false);
+ return readyFence;
+ }
+ mClientCompositionRequestCache->add(buf->getId(), clientCompositionDisplay,
+ clientCompositionLayers);
+ }
+
+ // We boost GPU frequency here because there will be color spaces conversion
+ // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
+ // GPU composition can finish in time. We must reset GPU frequency afterwards,
+ // because high frequency consumes extra battery.
+ const bool expensiveBlurs =
+ refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
+ const bool expensiveRenderingExpected =
+ clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs;
+ if (expensiveRenderingExpected) {
+ setExpensiveRenderingExpected(true);
+ }
+
+ std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers;
+ clientCompositionLayerPointers.reserve(clientCompositionLayers.size());
+ std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
+ std::back_inserter(clientCompositionLayerPointers),
+ [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* {
+ return &settings;
+ });
+
+ const nsecs_t renderEngineStart = systemTime();
+ status_t status =
+ renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers,
+ buf->getNativeBuffer(), /*useFramebufferCache=*/true,
+ std::move(fd), &readyFence);
+
+ if (status != NO_ERROR && mClientCompositionRequestCache) {
+ // If rendering was not successful, remove the request from the cache.
+ mClientCompositionRequestCache->remove(buf->getId());
+ }
+
+ auto& timeStats = getCompositionEngine().getTimeStats();
+ if (readyFence.get() < 0) {
+ timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
+ } else {
+ timeStats.recordRenderEngineDuration(renderEngineStart,
+ std::make_shared<FenceTime>(
+ new Fence(dup(readyFence.get()))));
+ }
+
+ return readyFence;
+}
+
+std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
+ bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) {
+ std::vector<LayerFE::LayerSettings> clientCompositionLayers;
+ ALOGV("Rendering client layers");
+
+ const auto& outputState = getState();
+ const Region viewportRegion(outputState.viewport);
+ const bool useIdentityTransform = false;
+ bool firstLayer = true;
+ // Used when a layer clears part of the buffer.
+ Region stubRegion;
+
+ for (auto* layer : getOutputLayersOrderedByZ()) {
+ const auto& layerState = layer->getState();
+ const auto* layerFEState = layer->getLayerFE().getCompositionState();
+ auto& layerFE = layer->getLayerFE();
+
+ const Region clip(viewportRegion.intersect(layerState.visibleRegion));
+ ALOGV("Layer: %s", layerFE.getDebugName());
+ if (clip.isEmpty()) {
+ ALOGV(" Skipping for empty clip");
+ firstLayer = false;
+ continue;
+ }
+
+ const bool clientComposition = layer->requiresClientComposition();
+
+ // We clear the client target for non-client composed layers if
+ // requested by the HWC. We skip this if the layer is not an opaque
+ // rectangle, as by definition the layer must blend with whatever is
+ // underneath. We also skip the first layer as the buffer target is
+ // guaranteed to start out cleared.
+ const bool clearClientComposition =
+ layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
+
+ ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition);
+
+ // If the layer casts a shadow but the content casting the shadow is occluded, skip
+ // composing the non-shadow content and only draw the shadows.
+ const bool realContentIsVisible = clientComposition &&
+ !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
+
+ if (clientComposition || clearClientComposition) {
+ compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
+ clip,
+ useIdentityTransform,
+ layer->needsFiltering() || outputState.needsFiltering,
+ outputState.isSecure,
+ supportsProtectedContent,
+ clientComposition ? clearRegion : stubRegion,
+ outputState.viewport,
+ outputDataspace,
+ realContentIsVisible,
+ !clientComposition, /* clearContent */
+ };
+ std::vector<LayerFE::LayerSettings> results =
+ layerFE.prepareClientCompositionList(targetSettings);
+ if (realContentIsVisible && !results.empty()) {
+ layer->editState().clientCompositionTimestamp = systemTime();
+ }
+
+ clientCompositionLayers.insert(clientCompositionLayers.end(),
+ std::make_move_iterator(results.begin()),
+ std::make_move_iterator(results.end()));
+ results.clear();
+ }
+
+ firstLayer = false;
+ }
+
+ return clientCompositionLayers;
+}
+
+void Output::appendRegionFlashRequests(
+ const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
+ if (flashRegion.isEmpty()) {
+ return;
+ }
+
+ LayerFE::LayerSettings layerSettings;
+ layerSettings.source.buffer.buffer = nullptr;
+ layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
+ layerSettings.alpha = half(1.0);
+
+ for (const auto& rect : flashRegion) {
+ layerSettings.geometry.boundaries = rect.toFloatRect();
+ clientCompositionLayers.push_back(layerSettings);
+ }
+}
+
+void Output::setExpensiveRenderingExpected(bool) {
+ // The base class does nothing with this call.
+}
+
+void Output::postFramebuffer() {
+ ATRACE_CALL();
+ ALOGV(__FUNCTION__);
+
+ if (!getState().isEnabled) {
+ return;
+ }
+
+ auto& outputState = editState();
+ outputState.dirtyRegion.clear();
+ mRenderSurface->flip();
+
+ auto frame = presentAndGetFrameFences();
+
+ mRenderSurface->onPresentDisplayCompleted();
+
+ for (auto* layer : getOutputLayersOrderedByZ()) {
+ // The layer buffer from the previous frame (if any) is released
+ // by HWC only when the release fence from this frame (if any) is
+ // signaled. Always get the release fence from HWC first.
+ sp<Fence> releaseFence = Fence::NO_FENCE;
+
+ if (auto hwcLayer = layer->getHwcLayer()) {
+ if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
+ releaseFence = f->second;
+ }
+ }
+
+ // If the layer was client composited in the previous frame, we
+ // need to merge with the previous client target acquire fence.
+ // Since we do not track that, always merge with the current
+ // client target acquire fence when it is available, even though
+ // this is suboptimal.
+ // TODO(b/121291683): Track previous frame client target acquire fence.
+ if (outputState.usesClientComposition) {
+ releaseFence =
+ Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
+ }
+
+ layer->getLayerFE().onLayerDisplayed(releaseFence);
+ }
+
+ // We've got a list of layers needing fences, that are disjoint with
+ // OutputLayersOrderedByZ. The best we can do is to
+ // supply them with the present fence.
+ for (auto& weakLayer : mReleasedLayers) {
+ if (auto layer = weakLayer.promote(); layer != nullptr) {
+ layer->onLayerDisplayed(frame.presentFence);
+ }
+ }
+
+ // Clear out the released layers now that we're done with them.
+ mReleasedLayers.clear();
}
void Output::dirtyEntireOutput() {
- mState.dirtyRegion.set(mState.bounds);
+ auto& outputState = editState();
+ outputState.dirtyRegion.set(outputState.bounds);
+}
+
+void Output::chooseCompositionStrategy() {
+ // The base output implementation can only do client composition
+ auto& outputState = editState();
+ outputState.usesClientComposition = true;
+ outputState.usesDeviceComposition = false;
+ outputState.reusedClientComposition = false;
+}
+
+bool Output::getSkipColorTransform() const {
+ return true;
+}
+
+compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
+ compositionengine::Output::FrameFences result;
+ if (getState().usesClientComposition) {
+ result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
+ }
+ return result;
}
} // namespace impl